Supporting Information

Cu-catalyzed borylative cyclization of

N-(o-alkynylaryl)imines

Tingting Zhang,[‡] Jinhai Gui,[‡] Yu Mo, Yuchuan Pu, Hongping Zhao, Yong Liu* and Chengyu He*

Corresponding author E-mail address: ly286489482@163.com; hecy@cwnu.edu.cn

Table of Contents

1.	General Information
2.	Preparation of <i>N</i> -(<i>o</i> -alkynylaryl)imines4
3.	Cu-catalyzed borylative cyclization of N-(o-alkynylaryl)imines4
4.	Synthetic Transformations12
5.	Control Experiments20
6.	NMR Spectra of Products21
7.	Single-crystal X-ray Diffraction Studies45
8.	References

1. General Information

All reactions were carried out under the argon atmosphere in flame-dried glassware. Unless otherwise noted, all the reagents were obtained from commercial supplier and used as received without further purification. The solvents used in the reactions were distilled from appropriate drying agents prior to use. Flash column chromatography was performed using 200–300 mesh silica gel. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Advance 400 spectrometer (¹H: 400 MHz, ¹³C: 100 MHz). Chemical shifts (δ) are reported in parts per million (ppm) relative to residual chloroform (δ = 7.26 ppm, ¹H; 77.16 ppm, ¹³C). High resolution mass spectra were obtained on Bruker Compass DataAnalysis 4.0 spectrometer in ESI mode. The X-ray single-crystal determination was performed on Bruker D8 VENTURE X-ray single crystal diffractometer.

2. Preparation of N-(o-alkynylaryl)imines

Step 1: In an argon atmosphere, terminal alkynes (6 mmol) was added to a solution of 2-iodoaniline (5 mmol), $Pd(PPh_3)_2Cl_2$ (0.125 mmol, 87.8 mg) and CuI (0.25 mmol, 47.6 mg) in Et₃N (5 mL). The reaction was stirred at room temperature and monitored by TLC. Upon completion, the reaction was quenched with aqueous NH₄Cl and extracted with EtOAc (3 x 15 mL). The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel to afford the *o*-alkynylanilines.

Step 2: The product (2 mmol) obtained in the first step, arylaldehyde (2 mmol), anhydrous MgSO₄ (50 mmol, 6.0 g) and chloroform (50 mL) were added to a round bottom flask that attached with a water separator and condenser. The resulting suspension was refluxed at 110°C and monitored by ¹H NMR. Upon completion, the suspension was filtered, and the filter cake washed with chloroform twice. The filtrate was concentrated under reduced pressure to give the *N*-(*o*-alkynylaryl)imines **1a–1x** without further purification.

3. Cu-catalyzed borylative cyclization of N-(o-alkynylaryl)imines

3.1 Typical Procedure

In an argon atmosphere, the *N*-(*o*-alkynylaryl)imines 1a-1x (0.1 mmol) was added to a solution of B₂pin₂ (0.15 mmol, 38 mg), Cu(MeCN)₄PF₆ (0.01 mmol, 4 mg), PPh₃ (0.012 mmol, 3 mg), *t*-BuONa (0.15 mmol, 15 mg), *t*-BuOH (0.2 mmol, 19 µL) in THF (2 mL). The reaction was stirred at room temperature and monitored by TLC. Upon completion, the resulting solution was diluted with DCM, filtered through a short plug of silica, and concentrated *in vacuo*. The residue was purified by flash column chromatography to give products 2a-2x.¹⁻⁴

3.2 Characterization Data for the Products of 2a–2x (*E*)-2-(4-Nitrophenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl -ene)indoline (2a)

Yellow solid, 38.6 mg, 85% yield, m.p. = 134.0 °C – 135.4 °C. R_f = 0.4 (petroleum ether/ethyl acetate = 20:1), ¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, J = 8.6 Hz, 2H), 7.56 (d, J = 8.6 Hz, 2H), 7.42 (t, J = 7.3 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.20 (d, J = 7.1 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 6.65 (d, J = 7.9 Hz, 1H), 6.43 (t, J

= 7.6 Hz, 1H), 6.17 (d, J = 7.9 Hz, 1H), 6.07 (s, 1H), 2.96 (br, 1H), 1.09 (s, 6H), 1.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 153.5, 152.3, 147.1, 142.0, 131.2, 128.8, 128.3, 126.6, 126.5, 126.4, 123.9, 119.0, 110.9, 83.4, 65.4, 24.8, 24.3. HRMS (ESI): [M+H]⁺ calcd. for C₂₇H₂₈BN₂O₄⁺ 455.2137, found 455.2139.

(*E*)-3-(Phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-2-(4-(trifluoromethyl)phenyl)indoline (2b)

Yellow solid, 43.9 mg, 92% yield, m.p. = 182.1 °C - 182.6 °C. R_f = 0.5 (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.52 (s, 2H), 7.42 (dd, J = 12.5, 7.6 Hz, 3H), 7.36 – 7.30 (m, 1H), 7.22 (d, J = 7.1 Hz, 2H), 7.05 (t, J = 7.6 Hz, 1H), 6.62 (d, J = 7.9 Hz, 1H), 6.40 (t, J = 7.6 Hz, 1H), 6.18

(d, J = 7.9 Hz, 1H), 6.03 (s, 1H), 4.24 (s, 1H), 1.06 (s, 6H), 1.01 (s, 6H).¹³**C NMR** (100 MHz, CDCl₃) δ 155.3, 154.0, 146.6, 142.4, 131.0, 130.3, 130.1, 129.3, 128.7, 128.5, 128.4, 127.0 (q, J = 559 Hz), 126.6, 126.3, 126.2, 124.6 (dd, J = 115, 4 Hz), 118.5, 110.6, 83.2, 65.8, 24.7, 24.1. **HRMS (ESI)**: [M+H]⁺ calcd. for C₂₈H₂₈BF₃NO₂⁺ 478.2160, found 478.2161.

(*E*)-4-(3-(Phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)indolin-2-yl)benzonitrile (2c)

Yellow solid, 36.1 mg, 83% yield, m.p. = 147.4 °C – 148.5 °C. R_f = 0.3 (petroleum ether/ethyl acetate = 1:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.3 Hz, 2H), 7.50 (d, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.38 – 7.30 (m, 1H), 7.21 (d, *J* = 6.6 Hz, 2H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 6.41 (t, *J* = 7.6

Hz, 1H), 6.17 (d, J = 7.9 Hz, 1H), 6.00 (s, 1H), 4.24 (s, 1H), 1.08 (s, 6H), 1.02 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 153.9, 150.6, 142.2, 132.5, 131.1, 128.8, 128.4, 128.2, 126.6, 126.4, 126.3, 118.9, 118.7, 111.0, 110.7, 83.34, 65.7, 24.8, 24.3. HRMS (ESI): [M+H]⁺ calcd. for C₂₈H₂₈BN₂O₂⁺ 435.2238, found 435.2239.

(*E*)-2-(4-Chlorophenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methylene)indoline (2d)

Yellow solid, 38.2 mg, 86% yield, m.p. = 135.9 °C – 136.5 °C. R_f = 0.5 (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (t, *J* = 7.4 Hz, 2H), 7.32 (m, 6H), 7.23 (d, *J* = 7.0 Hz, 2H), 7.04 (m, 1H), 6.61 (d, *J* = 7.9 Hz, 1H), 6.39 (t, *J* = 7.6 Hz, 1H), 6.17 (d, J = 7.8 Hz, 1H), 5.95 (s, 1H), 4.17 (s, 1H), 1.08 (s, 6H), 1.04 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 154.1, 144.2, 142.5, 132.9, 130.9, 128.9, 128.7, 128.6, 128.4, 126.7, 126.3, 126.2, 118.4, 110.6, 83.2, 65.5, 24.8, 24.3. HRMS (ESI): [M+H]⁺ calcd. for C₂₇H₂₈BClNO₂⁺ 444.1896, found 444.1901.

(*E*)-2-(4-Bromophenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methylene)indoline (2e)

Yellow solid, 42.5 mg, 87% yield, m.p. = 160.1 °C – 162.4 °C. R_f = 0.4 (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, J = 16.5, 7.9 Hz, 4H), 7.38 – 7.32 (m, 1H), 7.26 (dd, J = 16.9, 7.7 Hz, 4H), 7.05 (t, J = 7.6 Hz, 1H), 6.61 (d, J = 7.9 Hz, 1H), 6.40 (t, J = 7.6 Hz, 1H), 6.20 (d, J = 8.7 Hz, 1H), 5.95 (s,

1H), 4.19 (s, 1H), 1.10 (s, 6H), 1.06 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 154.1, 144.7, 142.5, 131.6, 130.9, 129.3, 128.8, 128.5, 126.7, 126.3, 126.2, 121.1, 118.4, 110.6, 83.2, 65.6, 24.8, 24.7, 24.3. **HRMS (ESI)**: [M+H]⁺ calcd. for C₂₇H₂₈BBrNO₂⁺ 488.1391, found 488.1396.

(*E*)-3-(Phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-2-(p-tolyl) indoline (2f)

Yellow solid, 34.7 mg, 82% yield, m.p. = 138.2 °C – 140.1 °C. R_f = 0.4 (petroleum ether/ethyl acetate = 20:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 (t, *J* = 7.5 Hz, 2H), 7.33 (d, *J* = 7.3 Hz, 1H), 7.29 – 7.20 (m, 4H), 7.12 (d, *J* = 7.8 Hz, 2H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.59 (d, *J* = 7.9 Hz, 1H), 6.37 (t, *J* = 7.6 Hz, 1H), 6.18 (d, *J* = 7.9

Hz, 1H), 5.95 (s, 1H), 4.15 (s, 1H), 2.34 (s, 3H), 1.05 (s, 6H), 1.03 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 154.4, 142.8, 142.7, 136.8, 130.6, 129.1, 128.7, 128.5, 127.4, 127.0, 126.1, 126.1, 118.1, 110.6, 83.1, 65.9, 24.7, 24.3, 21.1. HRMS (ESI): [M+H]⁺ calcd. for C₂₈H₃₁BNO₂⁺ 424.2442, found 424.2446.

(*E*)-2-(4-(*tert*-Butyl)phenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methylene)indoline (2g)

Yellow solid, 37.2 mg, 80% yield, m.p. = 147.4 °C – 148.5 °C. R_f = 0.5 (petroleum ether/ethyl acetate = 10:1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (t, *J* = 7.4 Hz, 2H), 7.38 – 7.24 (m, 7H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.58 (d, *J* = 7.9 Hz, 1H), 6.38 (t, *J* = 7.6 Hz, 1H), 6.21 (d, *J* = 7.9 Hz, 1H), 5.95 (s, 1H), 4.16 (s, 1H), 1.32 (s, 9H),

1.00 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 154.3, 150.2, 142.8, 130.6, 128.7, 128.6 127.4, 127.0, 126.2, 126.1, 125.4, 118.1, 110.7, 83.0, 65.9, 34.5, 31.4, 24.7, 24.1. HRMS (ESI): [M+H]⁺ calcd. for C₃₁H₃₇BNO₂⁺ 466.2912, found 466.2912.

(*E*)-2-([1,1'-Biphenyl]-4-yl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methylene)indoline (2h)

Yellow solid, 34.0 mg, 70% yield, m.p. = $89.4 \text{ }^{\circ}\text{C} - 90.6 \text{ }^{\circ}\text{C}$. R_f = 0.5 (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400

MHz, CDCl₃) δ 7.59 (dd, J = 13.5, 7.9 Hz, 4H), 7.51 – 7.41 (m, 6H), 7.37 (dd, J = 11.5, 7.2 Hz, 2H), 7.33 – 7.26 (m, 2H), 7.06 (t, J = 7.5 Hz, 1H), 6.63 (d, J = 7.9 Hz, 1H), 6.41 (t, J = 7.5 Hz, 1H), 6.23 (d, J = 7.8 Hz, 1H), 6.05 (s, 1H), 4.26 (s, 1H), 1.07 (s, 6H), 1.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 154.3, 144.8, 142.7, 141.1, 140.2, 130.8, 128.8, 128.7, 128.6, 128.0, 127.3, 127.2, 127.1, 127.0, 126.2, 126.2, 118.3, 110.7, 83.2, 66.0, 24.7, 24.3. HRMS (ESI): [M+H]⁺ calcd. for C₃₃H₃₃BNO₂⁺ 486.2599, found 486.2605.

(*E*)-3-(Phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-2-(m-tolyl) indoline (2i)

Yellow solid, 36.4 mg, 86% yield, m.p. = 72.7 °C – 74.1 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (t, J = 7.4 Hz, 2H), 7.37 – 7.31 (m, 1H), 7.27 (d, J = 6.9 Hz, 2H), 7.25 – 7.16 (m, 3H), 7.09 (d, J = 6.8 Hz, 1H), 7.04 (dd, J = 11.1, 4.1 Hz, 1H), 6.60 (d, J = 7.9 Hz, 1H), 6.39 (t, J = 7.5 Hz, 1H), 6.21

(d, J = 7.8 Hz, 1H), 5.97 (s, 1H), 4.19 (s, 1H), 2.37 (s, 3H), 1.06 (s, 6H), 1.04 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 154.4, 145.6, 142.8, 137.9, 130.7, 128.7, 128.4, 128.5, 127.9, 127.0, 126.2, 126.1, 124.4, 118.1, 110.6, 83.1, 66.2, 24.7, 24.6, 24.2, 21.5. HRMS (ESI): [M+H]⁺ calcd. for C₂₈H₃₁BNO₂⁺ 424.2442, found 424.2445.

(*E*)-2-(3-Bromophenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methylene)indoline (2j)

Yellow solid, 41.0 mg, 84% yield, m.p. = 89.4 °C – 91.6 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.42 (t, J = 7.2 Hz, 3H), 7.37 – 7.14 (m, 5H), 7.05 (t, J = 7.5 Hz, 1H), 6.62 (d, J = 7.8 Hz, 1H), 6.40 (t, J = 7.4 Hz, 1H), 6.17 (d, J = 7.8 Hz, 1H), 5.94 (s, 1H), 4.18 (s, 1H), 1.10 (s, 6H), 1.07

(s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 154.2, 147.9, 142.4, 131.3, 130.9, 130.4, 130.2, 128.8, 128.5, 126.6, 126.3, 126.3, 125.5, 122.2, 118.4, 110.6, 83.3, 65.7, 24.8, 24.3. HRMS (ESI): [M+H]⁺ calcd. for C₂₇H₂₈BBrNO₂⁺ 488.1391, found 488.1396.

(*E*)-3-(Phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-2-(o-tolyl) indoline (2k)

Yellow solid, 36.0 mg, 85% yield, m.p. = 177.2 °C – 178.7 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, J = 7.4 Hz, 2H), 7.38 – 7.31 (m, 2H), 7.26 (d, J = 1.4 Hz, 1H), 7.18 (ddd, J = 12.7, 9.7, 6.1 Hz, 3H), 7.02 (t, J = 7.6 Hz, 1H), 6.59 (d, J = 7.9 Hz, 1H), 6.40 (t, J = 7.6 Hz, 1H), 6.23 (d, J = 7.9

Hz, 1H), 6.16 (s, 1H), 4.07 (s, 1H), 2.61 (br, 3H), 0.99 (s, 6H), 0.88 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 154.2, 144.5, 142.7, 136.3, 130.7, 129.9, 128.8, 128.5, 127.4, 127.1, 126.8, 126.3, 126.2, 123.0, 118.3, 111.2, 82.9, 63.1, 24.4, 24.0, 19.7. **HRMS(ESI)**: [M+H]⁺ calcd. for C₂₈H₃₁BNO₂⁺ 424.2442, found 424.2447.

(E)-2-(2-Bromophenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)

methylene)indoline (21)

Yellow solid, 43.0 mg, 88% yield, m.p. = 87.5 °C – 89.3 °C. $R_f = 0.4$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (t, J = 9.6 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.41 – 7.30 (m, 4H), 7.30 – 7.23 (m,1H), 7.13 (td, J = 7.8, 1.5 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.59 (d, J = 7.9 Hz, 1H), 6.38 (t, J = 7.5 Hz, 1H), 6.33

(s, 1H), 6.26 (d, J = 7.9 Hz, 1H), 4.51 (s, 1H), 1.05 (s, 6H), 0.89 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 153.7, 145.3, 142.4, 132.4, 131.0, 128.8, 128.5, 128.5, 128.1, 128.1, 126.8, 126.3, 126.1, 125.3, 118.0, 110.7, 83.1, 65.5, 24.3, 24.2. HRMS (ESI): [M+H]⁺ calcd. for C₂₇H₂₈BBrNO₂⁺ 488.1391, found 488.1396.

(*E*)-2-(2-Nitrophenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methylene)indoline (2m)

Yellow solid, 37.2 mg, 82% yield, m.p. = 193.9 °C – 195.5 °C. $R_f = 0.4$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.9 Hz, 1H), 7.61 – 7.51 (m, 2H), 7.47 – 7.38 (m, 3H), 7.35 (t, J = 7.3 Hz, 1H), 7.23 (d, J = 20.4 Hz, 2H), 7.05 (t, J = 7.6 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 6.36 (t, J = 7.6 Hz, 1H), 6.19

(d, J = 7.9 Hz, 1H), 6.16 (s, 1H), 5.02 (s, 1H), 0.99 (s, 6H), 0.86 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 153.6, 145.0, 142.3, 140.9, 133.9, 131.4, 128.8, 128.5, 128.4, 127.6, 126.4, 126.3, 126.1, 123.6, 117.9, 110.2, 83.3, 61.7, 24.2, 24.1. HRMS (ESI): [M+H]⁺ calcd. for C₂₇H₂₈BN₂O₄⁺ 455.2137, found 455.2138.

(*E*)-2-(3,4-Dimethylphenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methylene)indoline (2n)

Yellow solid, 36.3 mg, 83% yield, m.p. = 147.4 °C – 148.5 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (t, J = 7.3 Hz, 2H), 7.32 (dd, J = 8.0, 6.7 Hz,1H), 7.27 (dd, J = 11.1, 4.3 Hz, 2H), 7.18 (s, 1H), 7.09 (q, J = 7.8 Hz, 2H), 7.02 (t, J = 7.6 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.38 (t, J = 7.6 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.38 (t, J = 8.0 Hz, 1H

7.5 Hz, 1H), 6.19 (d, J = 7.9 Hz, 1H), 5.93 (d, J = 1.1 Hz, 1H), 4.16 (s, 1H), 2.26 (s, 6H), 1.06 (s, 6H), 1.04 (s, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 155.7, 154.5, 143.3, 142.8, 136.3, 135.4, 130.6, 129.8, 129.1, 128.7, 128.6, 127.0, 126.1, 126.1, 124.7, 118.1, 110.6, 83.0, 66.0, 24.7, 24.3, 19.8, 19.4. **HRMS (ESI)**: [M+H]⁺ calcd. for C₂₉H₃₃BNO₂⁺ 438.2599, found 438.2601.

(*E*)-2-(2-Chloro-4-fluorophenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)indoline (20)

Yellow solid, 39.2 mg, 85% yield, m.p. = 79.7 °C – 80.5 °C. $R_f = 0.4$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, *J* = 7.5 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.30 (d, *J* = 6.7 Hz, 2H), 7.20 (dd, *J* = 8.4, 2.5 Hz, 1H), 7.04 (t, *J* = 7.3 Hz, 1H), 6.95 (td, *J* = 8.4, 2.5 Hz, 1H), 6.59 (d, *J* = 7.9 Hz, 1H), 6.39 (t, *J* =

7.5 Hz, 1H), 6.31 (s, 1H), 6.25 (d, J = 7.9 Hz, 1H), 4.35 (br, 1H), 1.07 (s, 6H), 0.92 (s,

6H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 160.3, 154.5, 153.7, 142.2, 139.9 (d, J = 4 Hz), 135.0 (d, J = 10 Hz), 131.1, 128.9, 128.8, 128.4, 126.5, 126.1, 118.2, 116.3 (d, J = 25 Hz), 114.4 (d, J = 21 Hz), 110.8, 83.2, 62.5, 24.3, 24.2. HRMS (ESI): [M+H]⁺ calcd. for C₂₇H₂₇BClFNO₂⁺ 462.1802, found 462.1804.

(*E*)-3-(Phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-2-(3,4,5-trifluorophenyl)indoline (2p)

Yellow solid, 39.4 mg, 85% yield, m.p. = 64.1 °C – 64.4 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 6.7 Hz, 1H), 7.35 (d, J = 5.8 Hz, 1H), 7.21 (s, 2H), 7.10 – 6.98 (m, 3H), 6.65 (d, J = 7.7 Hz, 1H), 6.40 (d, J = 7.5 Hz, 1H), 6.15 (d, J = 7.6 Hz, 1H), 5.91 (s, 1H), 3.47 (s, 1H),

1.14 (s, 6H), 1.11 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 153.8, 151.0 (ddd, *J* = 250, 10, 4 Hz), 141.8 (q, *J* = 6 Hz), 138.9 (dt, *J* = 251, 15 Hz), 131.1, 128.8, 128.4, 126.4, 126.4, 126.1, 118.8, 111.5 (d, *J* = 6 Hz), 111.3 (d, *J* = 5 Hz), 110.6, 83.4, 65.0, 24.8, 24.4. **HRMS (ESI)**: [M+H]⁺ calcd. for C₂₇H₂₆BF₃NO₂⁺ 464.2003, found 464.2008.

(*E*)-2-Phenyl-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene) indoline (2q)

Yellow solid, 34.4 mg, 84% yield (1.120 g, 84% yield for its gram scale reaction), m.p. = 127.7 °C - 128.9 °C. $R_f = 0.4$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.36 (m, 5H), 7.36 - 7.30 (m, 3H), 7.28 - 7.24 (m, 2H), 7.03 (dd, J = 11.1, 4.1 Hz, 1H), 6.60 (d, J = 7.9 Hz, 1H), 6.39 (t, J = 7.6 Hz, 1H), 6.20

(d, J = 7.9 Hz, 1H), 6.00 (s, 1H), 4.20 (br, 1H), 1.05 (s, 6H), 1.02 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 154.3, 145.7, 142.7, 130.7, 128.7, 128.6, 127.5, 127.3, 127.0, 126.2, 126.1, 118.2, 110.7, 83.1, 66.3, 24.7, 24.2. HRMS (ESI): [M+H]⁺ calcd. for C₂₇H₂₉BNO₂⁺ 410.2286, found 410.2291.

(*E*)-2-(Naphthalen-1-yl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methylene)indoline (2r)

Yellow solid, 36.8 mg, 80% yield, m.p. = 96.8 °C – 98.0 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.61 – 7.53 (m, 1H), 7.52 – 7.32 (m, 7H), 7.02 (t, J = 7.3 Hz, 1H), 6.78 (s, 1H), 6.56 (d, J = 7.9 Hz, 1H), 6.42 (t, J = 7.5 Hz, 1H), 6.35 (d, J = 7.8 Hz, 1H), 4.19 (s, 1H), 0.81

(s, 6H), 0.47 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 154.5, 142.5, 142.1, 133.8, 132.0, 130.8, 128.8, 128.7, 128.5, 127.5, 127.3, 126.3, 126.2, 126.1, 126.0, 125.7, 123.4, 118.3, 111.3, 82.8, 76.7, 62.3, 24.1, 23.9. **HRMS (ESI)**: [M+H]⁺ calcd. for C₃₁H₃₁BNO₂⁺ 460.2442, found 460.2444.

(E)-2-(Benzofuran-2-yl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)

methylene)indoline (2s)

Yellow solid, 41.3 mg, 92% yield, m.p. = 86.5 °C – 87.1 °C. $R_f = 0.3$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.42 (m, 4H), 7.35 (dd, J = 13.9, 6.7 Hz, 3H), 7.28 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 7.4 Hz, 1H), 7.04 (t, J = 7.6 Hz, 1H), 6.66 (d, J = 7.9 Hz, 1H), 6.61 (s, 1H), 6.41 (t, J = 7.5 Hz, 1H), 6.29

(d, J = 7.9 Hz, 1H), 6.25 (s, 1H), 4.59 (s, 1H), 1.11 (s, 6H), 0.95 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 154.9, 154.1, 151.8, 142.0, 130.8, 128.8, 128.5, 128.4, 126.4, 126.2, 126.2, 123.9, 122.7, 121.1, 118.6, 111.0, 102.5, 83.3, 60.0, 24.6, 24.4. **HRMS** (ESI): [M+H]⁺ calcd. for C₂₉H₂₉BNO₃⁺ 450.2235, found 450.2237.

(*E*)-2-(Benzo[b]thiophen-2-yl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)indoline (2t)

Yellow solid, 41.9 mg, 90% yield, m.p. = 78.5 °C – 80.1 °C. $R_f = 0.3$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.7 Hz, 1H), 7.71 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 7.38 – 7.30 (m, 4H), 7.28 (d, J = 2.4 Hz, 3H), 7.06 (t, J = 7.3 Hz, 1H), 6.67 (d, J = 7.9 Hz, 1H), 6.43 (t, J = 7.5 Hz,

1H), 6.23 (d, J = 7.8 Hz, 1H), 4.34 (s, 1H), 1.12 (s, 5H), 1.08 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 153.9, 149.4, 142.2, 139.4, 139.3, 130.9, 128.7, 128.4, 126.4, 126.3, 125.9, 124.2, 124.1, 123.3, 122.4, 121.3, 118.8, 111.0, 83.3, 62.0, 24.7, 24.4. HRMS (ESI): [M+H]⁺ calcd. for C₂₉H₂₉BNO₂S⁺ 466.2007, found 466.2008.

(*E*)-7-Methyl-2-(4-nitrophenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)indoline (2u)

Yellow solid, 27.8 mg, 57% yield, m.p. = 94.1 °C – 94.8 °C. $R_f = 0.3$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 8.6 Hz, 2H), 7.41 (t, J = 7.3 Hz, 2H), 7.36 – 7.27 (m, 2H), 7.20 (d, J = 7.2 Hz, 2H), 6.45 (s, 1H), 6.25 (d, J = 8.1 Hz, 1H), 6.08 – 6.01 (m, 1H), 4.21

(s, 1H), 2.21 (s, 3H), 1.08 (s, 6H), 1.02 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 154.1, 152.6, 147.0, 142.3, 141.9, 129.7, 128.7, 128.5, 128.2, 126.3, 126.0, 124.1, 123.8, 120.1, 111.2, 83.3, 65.7, 24.8, 24.3, 21.7. HRMS (ESI): [M+H]⁺ calcd. for C₂₈H₃₀BN₂O₄⁺ 469.2293, found 469.2298.

(*E*)-6-Chloro-2-(4-nitrophenyl)-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)indoline (2v)

Yellow solid, 19.6 mg, 40% yield, m.p. = 110 °C – 111 °C. $R_f = 0.4$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.8 Hz, 2H), 7.52 (d, J =8.8 Hz, 2H), 7.39 (t, J = 7.3 Hz, 2H), 7.34 – 7.31 (m, 1H), 7.15 (d, J = 7.0 Hz, 2H), 6.56 (d, J = 1.8 Hz, 1H), 6.34 (dd, J = 8.5, 1.9 Hz, 1H), 6.05 (s, 1H), 6.01 (d, J = 8.5 Hz, 1H),

4.31 (s, 1H), 1.06 (s, 6H), 1.01 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 153.6,

152.0, 147.2, 141.8, 136.9, 128.9, 128.2, 127.0, 126.7, 125.0, 124.0, 118.9, 110.3, 83.5, 77.2, 65.8, 24.8, 24.3. **HRMS (ESI)**: [M+K]⁺ calcd. for C₂₈H₂₆BF₃N₂O₄K⁺ 527.1306, found 527.1310.

(*E*)-2-(4-Nitrophenyl)-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)(4-(trifluoro-methyl)phenyl)methylene)indoline (2w)

Yellow solid, 35.5 mg, 68% yield, m.p. = 73.1 °C – 74.9 °C. R_f = 0.4 (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 8.7 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.7 Hz, 2H), 7.34 (d, J = 7.5 Hz, 2H), 7.10 (t, J = 7.6 Hz, 1H), 6.65 (t, J = 8.1 Hz, 1H), 6.45 (t, J = 7.6 Hz, 1H), 6.17 (d, J = 7.9 Hz, 1H), 6.07 (s, 1H), 4.30 (s, 1H), 1.10 (s, 6H),

1.04 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 154.2, 152.1, 147.1, 146.1, 131.7, 128.9, 128.5(dd, J = 33, 5 Hz), 128.2, 127.2 (q, J = 721 Hz), 126.2, 125.9, 125.7(q, J =4 Hz), 123.9, 118.9, 110.9, 83.6, 65.6, 24.8, 24.3. HRMS (ESI): [M+H]⁺ calcd. for C₂₈H₂₇BF₃N₂O₄⁺ 523.2010, found 523.2011.

(*E*)-3-((4-Chlorophenyl)(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methylene)-2-(4-nitrophenyl)indoline (2x)

Yellow oil, 22.0 mg, 45% yield, $R_f = 0.4$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 8.8 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.05 (d, J = 7.7 Hz, 2H), 7.03 – 6.95 (m, 1H), 6.55 (d, J = 7.9 Hz, 1H), 6.38 (t, 1H), 6.19 (d, J = 7.8 Hz, 1H), 5.95 (s, 1H), 4.17 (s, 1H), 1.00 (s, 6H), 0.94 (s, 6H). ¹³C NMR (100

MHz, CDCl₃) δ 154.6, 153.0, 151.2, 146.0, 139.4, 131.2, 130.4, 128.0, 127.1, 125.2, 125.1, 122.9, 117.9, 109.8, 82.5, 64.5, 23.8, 23.3. **HRMS (ESI)**: [M+K]⁺ calcd. for C₂₇H₂₆BClN₂O₄K⁺ 527.1306, found 527.1310.

4. Synthetic Transformations

In an argon atmosphere, 2q (0.1 mmol, 40.9 mg) was added to a solution of NaBO₃·4H₂O (0.15 mmol, 23.6 mg), KOH (0.3 mmol, 16.8 mg) in THF (2 mL) and H₂O (0.4 mL). After the reaction was stirred at room temperature for 1.5 h, the resulting mixture was extract with EtOAc twice. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography to afford **3a** as white solid.

Phenyl(2-phenylindolin-3-yl)methanone (3a)

White solid, 27.8 mg, 82% yield, dr = 16:1, m.p. = 177.1 °C - 178.6 °C. $R_f = 0.5$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.3 Hz, 2H), 7.74 - 7.59 (m, 1H), 7.54 - 7.42 (m, 4H), 7.43 - 7.21 (m, 3H), 7.12 (t, J = 7.5 Hz, 1H), 6.78 (t, J = 8.3 Hz, 2H), 6.64 (t, J = 7.4 Hz, 1H), 5.69 (d, J = 8.4 Hz, 1H), 5.07

¹³C NMR Spectra of **3a** (100 MHz, CDCl₃)

Under an ambient atmosphere, 2q (0.1 mmol, 40.9 mg) was added to a solution of NaBO₃·4H₂O (0.15 mmol, 23.6 mg) in THF (2 mL) and H₂O (0.4 mL). The reaction was open to air and stirred at 10 °C for 4 h. The resulting mixture was extract with EtOAc twice. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography to afford **3b** as gray solid.

Phenyl(2-phenyl-1H-indol-3-yl)methanone (3b)

Gray solid, 23.2 mg, 69% yield, m.p. = 178.1 °C – 179.4 °C. $R_f = 0.2$ (petroleum ether/ethyl acetate = 10:1). ¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (s, 1H), 7.97 (d, J = 7.9 Hz, 1H), 7.67 (m, 2H), 7.47 (d, J = 7.9 Hz, 1H), 7.39 (m, 2H), 7.33 (m, 2H), 7.23 (m, 6H). ¹³**C NMR** (100 MHz, CDCl₃) δ 193.1, 143.5, 139.7, 135.5, 131.7, 131.6, 129.7, 129.2,

128.8, 128.7, 128.4, 127.8, 123.6, 122.2, 121.8, 110.9. HRMS (ESI): $[M+H]^+$ calcd. for $C_{21}H_{16}NO^+$ 298.1226, found 298.1226.

In an argon atmosphere, 2q (0.1 mmol, 40.9 mg) was added to a solution of *p*-TsOH (0.4 mmol, 72.9 mg) in THF (2 mL). After the reaction was stirred at room temperature for 4 h, the resulting mixture was filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography to afford **3c** as white solid.

2-Phenyl-3-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-1Hindole (3c)

White solid, 36.8 mg, 90% yield, m.p. = 177.8 °C – 180.4 °C. R_f = 0.4 (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.39 – 7.32 (m, 3H), 7.29 (dt, J = 9.6, 4.3 Hz, 1H), 7.25 – 7.21 (m, 2H), 7.20 – 7.17 (m, 2H), 7.17 – 7.09 (m, 2H), 7.07 – 6.99 (m, 1H), 4.30 (s, 1H), 1.16 (s, 6H), 1.09 (s, 6H). ¹³C NMR

(100 MHz, CDCl₃) δ 142.9, 136.1, 135.7,133.3, 129.5, 128.8, 128.4, 128.3, 128.1, 127.6, 125.0, 122.0, 121.4, 119.2, 111.4, 110.6, 83.7, 24.9, 24.5. **HRMS (ESI)**: [M+H]⁺ calcd. for C₂₇H₂₉BNO₂⁺ 410.2286, found 410.2291.

¹³C NMR Spectra of 3c (100 MHz, CDCl₃)

In an argon atmosphere, 2q (0.1 mmol, 40.9 mg) was added to a solution of Pd(PPh₃)₄ (0.01 mmol, 12.0 mg), PhI (0.10 mmol, 11.2µL), Na₂CO₃ (0.30 mmol, 31.8 mg) in THF (1 mL), H₂O (1 mL) and MeOH (0.25 mL). After the reaction was stirred at 75 °C for 4 h, the resulting mixture was extract with EtOAc twice. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography to afford 3d as yellow oil.

3-(Diphenylmethylene)-2-phenylindoline (3d)

Yellow oil, 21.1 mg, 53% yield, $R_f = 0.7$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (m, 6H), 7.15 (m, 6H), 7.04 (ddd, J = 8.2, 6.2, 2.4 Hz, 1H), 6.93 (dd, J = 6.2, 2.1 Hz, 4H), 6.64 (d, J = 7.9 Hz, 1H), 6.47 (m, 2H), 5.45 (s, 1H), 4.13 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 144.1, 142.8, 142.7, 142.3, 140.0, 135.8, 129.5, 129.0, 128.8, 128.6, 128.3,

128.1, 127.2, 127.1, 126.7, 126.6, 126.4, 124.5, 118.3, 110.0, 66.3. HRMS (ESI): $[M+H]^+$ calcd. for $C_{27}H_{22}N^+$ 360.1747, found 360.1747.

¹H NMR Spectra of 3d (400 MHz, CDCl₃)

5. Control Experiments

A) In an argon atmosphere, **1a** (0.1 mmol, 45.4 mg) was added to a solution of B_2pin_2 (0.15 mmol, 38 mg), Cu(MeCN)₄PF₆ (0.01 mmol, 4 mg), PPh₃ (n mol%), *t*-BuONa (0.15 mmol, 15 mg), *t*-BuOH (0.2 mmol, 19 µL) in THF (2 mL). After the reaction was stirred at room temperature for 2 h, the reaction solution was filtered, and concentrated *in vacuo*. The residue was analyzed by ¹H NMR using CH₂Br₂ as the internal standard.

B) In an argon atmosphere, **1a** (0.1 mmol, 45.4 mg) was added to a solution of B_2pin_2 (0.15 mmol, 38 mg), Cu(MeCN)₄PF₆ (0.01 mmol, 4 mg), PPh₃ (0.012 mmol, 3 mg), *t*-BuONa (n equiv.), *t*-BuOH (0.2 mmol, 19 µL) in THF (2 mL). After the reaction was stirred at room temperature for 2 h, the reaction solution was filtered, and concentrated *in vacuo*. The residue was analyzed by ¹H NMR using CH₂Br₂ as the internal standard.

6. NMR Spectra of Products

¹H NMR Spectra of 2a (400 MHz, CDCl₃)

¹H NMR Spectra of **2b** (400 MHz, CDCl₃)

¹H NMR Spectra of 2c (400 MHz, CDCl₃)

¹H NMR Spectra of 2d (400 MHz, CDCl₃)

¹H NMR Spectra of 2e (400 MHz, CDCl₃)

¹H NMR Spectra of 2f (400 MHz, CDCl₃)

¹³C NMR Spectra of 2f (100 MHz, CDCl₃)

¹³C NMR Spectra of 2g (100 MHz, CDCl₃)

¹H NMR Spectra of 2h (400 MHz, CDCl₃)

¹H NMR Spectra of 2i (400 MHz, CDCl₃)

¹H NMR Spectra of 2j (400 MHz, CDCl₃)

¹H NMR Spectra of 2l (400 MHz, CDCl₃)

¹H NMR Spectra of 2m (400 MHz, CDCl₃)

¹H NMR Spectra of **2n** (400 MHz, CDCl₃).

¹³C NMR Spectra of **2n** (100 MHz, CDCl₃)

¹H NMR Spectra of **20** (400 MHz, CDCl₃)

¹H NMR Spectra of 2r (400 MHz, CDCl₃)

¹³C NMR Spectra of 2r (100 MHz, CDCl₃)

¹H NMR Spectra of 2s (400 MHz, CDCl₃)

¹H NMR Spectra of 2t (400 MHz, CDCl₃)

¹³C NMR Spectra of 2t (100 MHz, CDCl₃)

¹H NMR Spectra of 2u (400 MHz, CDCl₃)

¹³C NMR Spectra of 2u (100 MHz, CDCl₃)

	155.22	-147.01 $\angle 142.32$ $\angle 141.92$	128.73 128.46 128.22 128.22 128.22 128.34 128.05 128.05 128.05 128.05	-111.17	-83.31	€71.35 €71.03 76.72	65.66	24.17	21.08
--	--------	---	--	---------	--------	---------------------------	-------	-------	-------

¹H NMR Spectra of 2v (400 MHz, CDCl₃)

¹³C NMR Spectra of 2v (100 MHz, CDCl₃)

¹H NMR Spectra of **2w** (400 MHz, CDCl₃)

7. Single-crystal X-ray Diffraction Studies

In an argon atmosphere, 1q (0.1 mmol, 1.0 equiv.) was added to a solution of B₂pin₂ (0.15 mmol, 38 mg), Cu(MeCN)₄PF₆ (0.01 mmol, 4 mg), PPh₃ (0.012 mmol, 3 mg), *t*-BuONa (0.15 mmol, 15 mg), *t*-BuOH (0.2 mmol, 19 µL) in THF (2 mL). The reaction was stirred at room temperature and monitored by TLC. After the reaction was completed, trifluoroacetic anhydride (TFAA) (0.5 mmol, 69 µL) was added to the reaction system. After stirring at room temperature for 5 minutes, the resulting mixture was extract with EtOAc twice. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography to afford **2q-TFA**.

The structure of **2q-TFA** was determined by the X-ray diffraction analysis of single crystal, which recrystallized from a mixed solution of CH_2Cl_2 and hexane. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

ORTEP of **2q-TFA** (CCDC: 2415602) (Thermal probability ellipsoids shown at the 40% probability level)

Identification code	2q-TFA
Empirical formula	C ₂₉ H ₂₇ BF ₃ NO ₃
Formula weight	505.32
Temperature/K	291.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	13.9881(4)
b/Å	13.1835(4)
c/Å	14.3886(4)
α/°	90
β/°	104.046(2)
γ/°	90
Volume/Å ³	2574.10(13)
Z	4
$\rho_{calc}g/cm^3$	1.304
µ/mm ⁻¹	0.815
F(000)	1056.0
Crystal size/mm ³	0.3 imes 0.22 imes 0.1
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2 Θ range for data collection/°	7.908 to 136.558
Index ranges	$-16 \le h \le 16, -15 \le k \le 13, -17 \le l \le 16$
Reflections collected	34191

Table S1 Crystal data and structure refinement for 2q-TFA.

Independent reflections	4642 [$R_{int} = 0.0829, R_{sigma} = 0.0532$]
Data/restraints/parameters	4642/0/338
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0715, wR_2 = 0.1778$
Final R indexes [all data]	$R_1 = 0.0815, wR_2 = 0.1882$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.39

8. References

- 1. L. Ferrand, Y. Lyu, A. Rivera-Hernández, B. J. Fallon, M. Amatore, C. Aubert and M. Petit, *Synthesis*, 2017, **49**, 3895–3904.
- 2. W. Ming, X. Liu, A. Friedrich, J. Krebs and T. B. Marder, Org. Lett. 2020, 22, 365-370.
- 3. S. Perrone, A. Salomone, A. Caroli, A. Falcicchio, C. Citti, G. Cannazza and L. Troisi, *Eur. J. Org. Chem.* 2014, **2014**, 5932–5938.