Electron Donor-Acceptor (EDA) Complex Mediated Visible-Light Driven Sulfur–Fluorine Bond Reduction of Pentafluorosulfanyl Arenes Using Potassium Iodide

Tatsuhiro Uchikura, Fua Akutsu and Takahiko Akiyama

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo 171-8588, Japan

Email: takahiko.akiyama@gakushuin.ac.jp

Contents	Page
1. General Methods	S2
2. Screening of conditions	S3
3. Synthetic procedures and characterization of new compounds	S4
4. Mechanistic study	
4-1. Measurement of quantum yield	S10
4-2. UV–Vis spectra	S12
4-3. Emission spectra and Stern–Volmer plot	S13
4-4. Cyclic Voltammetry	S14
4-5. Detection of iodine	S15
4-6. DFT calculation	S17
5. References	S24
6. NMR spectra	S25

1. General Methods

All operations were performed under nitrogen unless otherwise noted. NMR spectra for products data (¹H and ¹³C) were recorded on a Bruker AVANCE-III (400 MHz for ¹H, 100 MHz for ¹³C, 376 MHz for ¹⁹F) and JEOL ECZ-400 (400 MHz for ¹H, 101 MHz for ¹³C, 376 MHz for ¹⁹F, 149 MHz for ¹¹⁹Sn, 80 MHz for ¹²⁷I) spectrometer using CDCl₃ [tetramethylsilane (0 ppm) served as an internal standard in ¹H NMR and CDCl₃ (77.0 ppm) in ¹³C NMR, 4-fluoroanisole (-124.6 ppm) served as an internal standard in ¹⁹F NMR]. Chemical shifts are expressed in parts per million (ppm). ESI mass analyses were performed on Bruker micrOTOF mass spectrometer. IR spectra were recorded on a FT/IR-4200 (JASCO Co., Ltd.). UV-Vis spectra were recorded on a V-670 UV–VIS–NIR spectrometer (JASCO Co., Ltd.). Cyclic Voltammetry was performed on ALS Model612E Electrochemical Analyzer (BAS Inc.). Visible light irradiation was performed with PR160L-467 nm (Kessil Co., Ltd.) for 467 nm LED and LED450-100STND (Optcode Co., Ltd.) for 450 nm blue LED.

Solvents were distilled according to the usual procedures and stored over molecular sieves unless otherwise noted. All of the substrates were purified by distillation (for liquid) or recrystallization (for solid). Other chemicals were purchased and used as received.

2. Screening of conditions

	NC	SF ₅ +	M additive solvent NC 2a hν (λ nm), time	, ↓ S ↓ 3a		
entry	М	solvent	additive	time	λ	yield
1	SnBu ₃	THF	Lil (20 equiv), Et ₃ N (1.0 equiv)	24 h	467	82% (74%)
2	SnBu ₃	THF	Lil (3.0 equiv), Et ₃ N (1.0 equiv)	24 h	467	45%
3	SnBu ₃	THF	Lil (1.0 equiv), Et ₃ N (1.0 equiv)	24 h	467	30%
4	SnBu ₃	THF	Lil (20 equiv), Et ₃ N (1.0 equiv)	6 h	467	61%
5	Bpin	THF	Lil (20 equiv), Et ₃ N (1.0 equiv)	24 h	467	22%
6	SnBu ₂	THE	Lil (20 equiv)	24 h	467	82% (81%)
7	SnBu ₂	THE	Lil (3.0 equiv)	24 h	467	45%
8	SnBua	DMF	Lil (3.0 equiv)	24 h	467	(63%)
9	SnBus	THE		24 h	467	0%
10	SnBug	THE	LiBr (3.0 equiv)	24 h	467	0%
11	SnBua	THE		24 h	467	0%
12	SnBu ₂	THE	LiBF₄ (3.0 equiv)	24 h	467	0%
13	SnBu ₂	DMF	Lil (20 equiv)	24 h	467	(71%)
14	SnBua	MeCN	Lil (20 equiv)	24 h	467	50%
15	SnBu	Et ₂ O	Lil (20 equiv)	24 h	467	46%
16	SnBu ₂	1.4-dioxane	Lil (20 equiv)	24 h	467	0%
17	SnBu ₃	MeOH	Lil (20 equiv)	24 h	467	0%
18	SnBu ₂	DMF	Lil (6.0 equiv)	24 h	467	57%
19	SnBu ₃	DMF	Nal (6.0 equiv)	24 h	467	73% (75%)
20	SnBu ₃	DMF	MgI ₂ (6.0 equiv)	24 h	467	67% (68%)
21	SnBu ₃	DMF	KI (6.0 equiv)	24 h	467	79% (78%)
22	SnBu ₃	DMF	Cal ₂ (6.0 equiv)	24 h	467	73% (70%)
23	SnBu ₃	DMF	^{<i>n</i>} Bu ₄ NI (6.0 equiv)	24 h	467	24%
24	SnBu ₃	THF	I ₂ (6.0 equiv)	24 h	467	0%
25	SnBu ₃	DMF	Cul (6.0 equiv)	24 h	467	<10%
26	SnBu ₃	DMF	Nil ₂ (6.0 equiv)	24 h	467	0%
27	SnBu ₃	DMF	Col ₂ (6.0 equiv)	24 h	467	0%
28	SnBu ₃	DMF	KBr (6.0 equiv)	24 h	467	0%
29	SnBu ₃	DMF	KCI (6.0 equiv)	24 h	467	0%
30	SnBu ₃	DMF	KBF ₄ (6.0 equiv)	24 h	467	0%
31	SnBu ₃	DMF	KIO ₄ (6.0 equiv)	24 h	467	0%
32	SnBu ₃	DMF	KI (6.0 equiv)	24 h	427	55%
33	SnBu ₃	DMF	KI (6.0 equiv)	24 h	390	<31%
34	SnBu ₃	DMF	KI (10 mol%)	24 h	467	<10%

Table S1. Screening of conditions

3. Synthetic Procedures and Characterization of New Compounds

General procedure of reduction of trifluoromethylarene (Procedure I)

In a dried test tube, **1a** (22.9 mg, 0.10 mmol), **2a** (93.0 μ L, 0.30 mmol) and KI (99.6 mg, 0.60 mmol) were mixed in DMF (2 mL), and degassed three times by the freeze-pump-thaw. The mixture was irradiated with 467 nm blue LED for 24 h. After the irradiation, water was added to the mixture and extracted with ethyl acetate for 3 times. The combined organic phase was dried over Na₂SO₄ and the solvent was removed *in vacuo* by rotary evaporator and resulting DMF was removed by smart evaporator C1 (BioChromato Co., Ltd.). The crude mixture was purified by preparative TLC on SiO₂ (hexane: diethyl ether = 4 : 1) to give **3a** (13.7 mg, 0.078 mmol) in 78%. The reactions using other substrates in Figure 2 were performed based on this Procedure I.

Data	of	pro	du	cts

3a	Colorless oil, 13.7 mg, 78%
S	¹ H NMR (400 MHz, CDCl ₃) δ 7.52 (d, $J = 8.5$ Hz, 2H), 7.32 (d, $J = 8.5$ Hz, 2H), 5.87
NC	(ddt, J = 16.8, 10.1, 6.6 Hz, 1H), 5.28 (ddt, J = 17.0, 1.4, 1.4 Hz, 1H), 5.18 (ddt, J =
	10.0, 1.2, 1.2 Hz, 1H), 3.63 (ddd, <i>J</i> = 6.5, 1.4, 1.2 Hz, 2H).
	¹³ C NMR (101 MHz, CDCl ₃) δ 144.1, 132.2, 127.5, 118.9, 108.5, 35.2.
	LRMS (ESI): [M+Na]+ Calcd for C ₁₀ H ₉ NNaS: 198.04, Found 198.04
	HRMS (ESI): [M+Na]+ Calcd for C ₁₀ H ₉ NNaS: 198.0353, Found 198.0350
	IR (neat, cm ⁻¹): 2225, 1594, 1487, 1220, 1089, 772.

3b	Yellow solid, 15.7 mg, 81%
S	¹ H NMR (400 MHz, CDCl ₃) δ 8.16 – 8.10 (m, 2H), 7.37 – 7.32 (m, 2H), 5.89 (ddt, J
O ₂ N	= 16.7, 10.0, 6.4 Hz, 1H), $5.36 - 5.28$ (m, 1H), 5.21 (ddt, $J = 10.1$, 1.4, 1.4 Hz, 1H),
	3.68 (ddd, <i>J</i> = 6.5, 1.4, 1.4 Hz, 2H).
	¹³ C NMR (100 MHz, CDCl ₃) δ 146.8, 144.9, 131.8, 126.5, 123.7, 118.9, 34.9.
	LRMS (ESI): [M+Na]+ Calcd for C ₉ H ₉ NNaO ₂ S: 218.03, Found 218.03
	HRMS (ESI): [M+Na]+ Calcd for C ₉ H ₉ NNaO ₂ S: 218.0252, Found 218.0255
	IR (neat, cm ⁻¹): 1578, 1510, 1337, 1090.

3c	White solid, 10.2 mg, 49%
S	¹ H NMR (400 MHz, CDCl ₃) δ 7.97 – 7.89 (m, 2H), 7.35 – 7.27 (m, 2H), 5.89 (ddt, J
MeO ₂ C	= 16.9, 10.1, 6.7 Hz, 1H), 5.26 (ddt, <i>J</i> = 17.2, 1.7, 1.6 Hz, 1H), 5.15 (ddt, <i>J</i> = 10.0, 1.3,
	1.3 Hz, 1H), 3.90 (s, 3H), 3.67 – 3.59 (m, 2H).
	¹³ C NMR (101 MHz, CDCl ₃) δ 166.8, 143.2, 132.6, 129.8, 127.1, 127.0, 118.4, 52.0,
	35.5.
	LRMS (ESI): [M+Na]+ Calcd for C ₁₁ H ₁₂ NaO ₂ S: 231.05, Found 231.05
	HRMS (ESI): [M+Na]+ Calcd for C ₁₁ H ₁₂ NaO ₂ S: 231.0456, Found 231.0454
	IR (neat, cm ⁻¹): 1718, 1595, 1435, 1285, 1111, 772.

3d	Yellow solid, 4.3 mg, 22%
^{O₂N} S	¹ H NMR (400 MHz, CDCl ₃) δ 8.14 (t, J = 2.0 Hz, 1H), 8.03 – 7.99 (m, 1H), 7.62 –
	7.57 (m, 1H), 7.44 (t, <i>J</i> = 8.0 Hz, 1H), 5.87 (ddt, <i>J</i> = 16.9, 10.0, 6.8 Hz, 1H), 5.23 (ddt,
	J = 17.0, 1.4, 1.4 Hz, 1H), 5.15 (ddt, $J = 10.0, 1.1, 1.1$ Hz, 1H), 3.64 (d, $J = 6.8$ Hz,
	2H).
	¹³ C NMR (101 MHz, CDCl ₃) δ 148.4, 139.0, 134.6, 132.4, 129.4, 123.1, 120.7, 118.8,
	36.4.
	LRMS (ESI): [M+Na]+ Calcd for C ₉ H ₉ NNaO ₂ S: 218.03, Found 218.03
	HRMS (ESI): [M+Na]+ Calcd for C ₉ H ₉ NNaO ₂ S: 218.0252, Found 218.0254
	IR (neat, cm ⁻¹): 1636, 1525, 1348, 1127, 925, 750, 730.

4b	Colorless oil, 12.0 mg, 63%
	¹ H NMR (400 MHz, CDCl ₃) δ 7.51 (d, $J = 8.5$ Hz, 2H), 7.32 (d, $J = 8.5$ Hz, 2H), 4.98
s s	(s, 1H), 4.92 (s, 1H), 3.60 (s, 2H), 1.85 (s, 3H).
NC	¹³ C NMR (101 MHz, CDCl ₃) δ 144.5, 139.5, 132.1, 127.6, 118.9, 114.8, 108.4, 39.8,
	21.2.
	LRMS (ESI): [M+H]+ Calcd for C ₁₁ H ₁₂ NS: 190.07, Found 190.07
	HRMS (ESI): [M+H]+ Calcd for C ₁₁ H ₁₂ NS: 190.0690, Found 190.0692
	IR (neat, cm ⁻¹): 2225, 1593, 1486, 1089, 772.

4d	Colorless oil, 11.3 mg, 56%
S	¹ H NMR (400 MHz, CDCl ₃) δ 7.54 – 7.49 (m, 2H), 7.32 – 7.27 (m, 2H), 5.28 (ddt, J
NC	= 9.0, 6.1, 1.4 Hz, 1H), 3.61 (d, <i>J</i> = 7.6 Hz, 2H), 1.74 (d, <i>J</i> = 0.4 Hz, 3H), 1.70 (s, 3H).
	¹³ C NMR (101 MHz, CDCl ₃) δ 145.3, 137.9, 132.1, 127.1, 119.0, 117.8, 108.1, 30.4,
	25.7, 17.9.
	LRMS (ESI): [M+Na]+ Calcd for C ₁₂ H ₁₃ NNaS: 226.07, Found 226.07
	HRMS (ESI): [M+Na]+ Calcd for C ₁₂ H ₁₃ NNaS: 226.0666, Found 226.0667
	IR (neat, cm ⁻¹): 2225, 1592, 1486, 1089, 821, 772.

4e	White solid, 8.3 mg, 33%
S Ph	¹ H NMR (400 MHz, CDCl ₃) δ 7.57 – 7.50 (m, 2H), 7.41 – 7.34 (m, 2H), 7.34 – 7.22
NC	(m, 5H), 6.59 (d, J = 15.8 Hz, 1H), 6.23 (dt, J = 15.8, 7.0 Hz, 1H), 3.81 (dd, J = 7.0,
	1.3 Hz, 2H).
	¹³ C NMR (101 MHz, CDCl ₃) δ 144.0, 136.2, 133.9, 132.2, 128.6, 128.0, 127.7, 126.4,
	123.4, 118.8, 108.6, 35.1.
	LRMS (ESI): [M+Na]+ Calcd for C ₁₆ H ₁₃ NNaS: 274.07, Found 274.07
	HRMS (ESI): [M+Na]+ Calcd for C ₁₆ H ₁₃ NNaS: 274.0666, Found 274.0664
	IR (neat, cm ⁻¹):2224, 1590, 1486, 1220, 1087, 772.

4f ^{S1}	White solid, 11.9 mg, 53%
S → ^{Ph}	¹ H NMR (400 MHz, CDCl ₃) δ 7.50 (d, $J = 8.6$ Hz, 2H), 7.39 – 7.27 (m, 7H), 4.20 (s,
NC	2H).
	¹³ C NMR (101 MHz, CDCl ₃) δ 144.4, 135.7, 132.2, 128.8, 128.7, 127.7, 127.3, 118.8,
	108.5, 37.0.

4h	White solid, 12.8 mg, 46%
^t Bu	1 H NMR (400 MHz, CDCl ₃) δ 7.53 – 7.48 (m, 2H), 7.38 – 7.27 (m, 6H), 4.18 (s, 2H),
s	1.31 (s, 9H).
NC	¹³ C NMR (101 MHz, CDCl ₃) δ 150.8, 144.9, 132.5, 132.2, 128.4, 127.0, 125.7, 118.9,
	108.3, 36.6, 34.5, 31.3.
	LRMS (ESI): [M+Na]+ Calcd for C ₁₈ H ₁₉ NNaS: 304.11, Found 304.11
	HRMS (ESI): [M+Na]+ Calcd for C ₁₈ H ₁₉ NNaS: 304.1136, Found 304.1135
	IR (neat, cm ⁻¹): 2227, 1594, 1486, 1220, 1087, 772.

4j	White solid, 12.6 mg, 73%
S S	¹ H NMR (400 MHz, CDCl ₃) δ 7.62 – 7.56 (m, 2H), 7.46 – 7.40 (m, 2H), 3.70 (d, J =
NC	2.6 Hz, 2H), 2.27 (t, <i>J</i> = 2.6 Hz, 1H).
	¹³ C NMR (101 MHz, CDCl ₃) δ 142.7, 132.3, 127.5, 118.7, 109.2, 78.4, 72.2, 20.7.
	LRMS (ESI): [M+Na]+ Calcd for C ₁₀ H ₇ NNaS: 196.02, Found 196.02
	HRMS (ESI): [M+Na]+ Calcd for C ₁₀ H ₇ NNaS: 196.0197, Found 196.0198
	IR (neat, cm ⁻¹): 3235, 2925, 2852, 2225, 1594, 1488, 1402, 1261, 1092, 809, 771.

1 mmol scale experiment

In a dried Schlenk flask, **1b** (249 mg, 1.0 mmol), **2a** (0.93 mL, 3.0 mmol) and KI (996 mg, 6.0 mmol) were mixed in DMF (20 mL), and degassed five times by the freeze-pump-thaw. The mixture was irradiated with two 467 nm blue LED for 72 h. After the irradiation, water was added to the mixture and extracted with ethyl acetate for 3 times. The combined organic phase was dried over Na_2SO_4 and the solvent was removed *in vacuo* by rotary evaporator and resulting DMF was removed by smart evaporator C1 (BioChromato Co., Ltd.). The crude mixture was purified by preparative TLC on SiO₂ (hexane: diethyl ether = 4 : 1) to give **3b** (127 mg, 0.65 mmol) in 65%.

4. Mechanistic study

4-1. Measurement of quantum yield

4-1-1. Measurement of photon flux^{S2}

The photon flux of this blue LED was determined by standard ferrioxalate actinometry. The ferrioxalate solution was prepared by $K_3[Fe(C_2O_4)_3] \cdot 3H_2O$ (2.21 g) dissolving in degassed 0.05 M H₂SO₄ aq. (30 mL). The buffered phenanthroline solution was prepared by 1,10-phenanthroline (50 mg) and sodium acetate (11.25 g) dissolving in degassed 0.5 M H₂SO₄ aq. (50 mL).

The ferrioxalate solution (2.0 mL) in the reaction vessel was irradiated for 1 s or 2 s, and the buffered phenanthroline solution (1.0 mL) was added. The non-irradiated ferrioxalate solution was also treated under the same conditions (as t = 0 sample). This mixture was left to stand for 30 min, followed by diluted 8 times with distilled water. The concentrations of Fe(phen)₃²⁺ were measured by UV–Vis spectra.

The conversion of Fe³⁺ into Fe²⁺ was calculated using:

$$mol \ Fe^{2+} = \frac{V \cdot \Delta A_{510 \ nm}}{l \cdot \varepsilon}$$

[*V*: total volume of solution (0.003 × 8 L), $\Delta A_{510 \text{ nm}}$: difference in the absorbance at $\lambda = 510 \text{ nm}$ between irradiated and non-irradiated solutions, *l*: path length (1.0 cm), ε : molar absorptivity of Fe(phen)₃²⁺ at 510 nm (11000 L•mol⁻¹•cm⁻¹)].

The mol/s Fe²⁺ was calculated by the slope of the plotted line to 6.32×10^{-7} mol·s⁻¹.

The photon flux (I) was calculated using:

$$I = \frac{mol/s \ Fe^{2+}}{\Phi_{Fe}(1 - 10^{-A_{450} \ nm})}$$

[Φ_{Fe} : quantum yield of the ferrioxalate actinometer for 0.15 M solution at 458 nm (0.845), $A_{450 nm}$: absorbance of the ferrioxalate solution at 450 nm (2.01)]

$$I = \frac{6.32 \times 10^{-7}}{0.845 \times (1 - 10^{-2.01})} = 7.55 \times 10^{-7} \ [mol \cdot s^{-1}]$$

4-1-2. Calculation of quantum yield

The reaction was performed according to Procedure I to give **3a** (1.4 mg, 0.0080 mmol) in 8.0% yield. The quantum yield (Φ) was calculated using:

$$\Phi = \frac{mol \, \mathbf{3a}}{l \cdot t \cdot (1 - 10^{-A})}$$

[*I*: photon flux of blue LED $(7.55 \times 10^{-7} \text{ mol} \cdot \text{s}^{-1})$, *t*: reaction time (86400 s), *A*: absorbance of reaction mixture at 450 nm (0.0634)]

$$\Phi = \frac{0.1 \times 0.080 \times 10^{-3}}{7.55 \times 10^{-7} \cdot 86400 \cdot (1 - 10^{-0.0634})} = 0.000196$$

Figure S1. UV–Vis spectrum of reaction mixture.

4-2. UV–Vis spectra

In quartz cell (l = 1 cm), **3a** (22.9 mg, 0.01 mmol), **2a** (93.0 µL, 0.3 mmol) and KI (99.6 mg, 0.6 mmol) was dissolved in DMF (3 mL). UV–Vis spectra were measured by V-670 UV–VIS–NIR spectrometer (JASCO Co., Ltd.).

4-3. Emission spectra and Stern-Volmer plot

Figure S3. Fluorescence quenching experiments of 1a-LiI. (a) Fluorescence spectra of 1a-KI. (b) Stern-Volmer quenching experiment of 1a-KI

In quartz cell (l = 1 cm), various ratio of **2a** was added to DMF (2 mL) solution of **1a** (22.9 mg, 0.10 mmol) and KI (99.6 mg, 0.60 mmol). Then emission spectra were measured by irradiation at 390 nm.

4-4. Cyclic Voltammetry

Figure S4. Cyclic voltammetry of 3a

All voltammograms were measured by IUPAC convention at room temperature using Ag/AgNO₃ reference electrode, a platinum (Pt) counter and working electrode (polishing 3 times by 1 μ m diamond and 0.05 μ m alumina). The conditions of the experiments were as follows: a CH₃CN (degassed by nitrogen bubbling) solution of 100 mM tetrabutylammonium hexafluorophosphate (Bu₄NPF₆), initial potential at 0 V, switching potential at 1.0–1.5 V, direction of initial scan to anodic sweep (oxidative), and a scan rate of 50 mV/s. The potentials of **2b** with **1a** and **2b** with **1a** were taken at half-height of the peak (E_{P/2}) since the reduction were non-reversible. In order to convert the potentials from Ag/AgNO₃ to Fc/Fc⁺ reference, ferrocene was measured under the above conditions in a CH₃CN solution, and –0.44 V was subtracted from the measured values. To convert the potentials from Fc/Fc⁺ to SCE reference, +0.38 V was added from the values according to the literature.^{S3}

4-5. Detection of iodide

4-5-1. Iodine-starch reaction

reaction mixture after photoirradiation

no color change

Figure S5. Iodine-starch reaction of reaction mixture

4-5-2.¹²⁷I NMR and UV–Vis spectra

Figure S6. (a) ¹²⁷I NMR of the reaction mixture after photoirradiation. (b) UV–Vis spectra of the reaction mixture after photoirradiation.

According to these experiments, iodine was not generated in the reaction.

4-6. Determination of the Sn residue after reaction

Figure S7. ¹¹⁹Sn NMR of the reaction mixture after light irradiation.

Only unreacted **2a** was observed by ¹¹⁹Sn NMR (–18 ppm, Figure S7). According to ¹¹⁹Sn NMR, Sn residue was determined to be Bu₃SnF as precipitate of reaction mixture. Other plausible species (Bu₃Sn-SnBu₃, Bu₃SnI) should be dissolved in DMF and observed by ¹¹⁹Sn NMR.

4-7. DFT calculation

All calculations were performed with Gaussian 16 program using M062x method with basis set of SDD for I and 6-31G(d,p) for other atoms.^{S4}

Figure S8. DFT calculation of the EDA complex.

Calculating the conformation and Gibbs free energy of the EDA complex revealed a converged structure of **1a** and potassium iodide, the energy of which was 2.08 kcal/mol. Although formation reaction is endergonic, the Gibbs free energy was sufficiently low to form the EDA complex. In this converged structure, iodide interacted with the aromatic moiety of **1a**, and the potassium cation interacted with two fluorine atoms of the pentafluorosulfanyl group. Therefore, the formation of the EDA complex of acceptor **1a** and donor iodide was verified.

We also investigated the excitation of the EDA complex through TD-DFT calculations. The absorption wavelength, derived from the electronic transition from the iodide into the aromatic moiety of **1a**, was consistent with the observed UV–vis spectra (Figure 3a). Thus, we confirmed that the single-electron transfer occurred during EDA complex excitation.

Figure S9. DFT calculation of the energy of tetrafluorosulfanyl radical or anion.

Radical anion species $1a^{-}$ was generated through the single-electron reduction of 1a. We calculated two pathways: the elimination of fluoride and the elimination of fluorine radical. DFT calculations indicated that the latter was favorable ($\Delta\Delta G = 58.1$ kcal/mol).

· Comparing the reduction energy of fluorosulfanyl compounds

ArSF _n	+e ⁻ -• → ArSF _n
n	$\Delta\Delta G/ \text{ kcal} \cdot \text{mol}^{-1}$
5	0
3	-8.86
1	-2.89

Figure S10. Reduction energy of fluorosulfanyl compounds.

We calculated the single-electron reduction of $ArSF_5$ (1a), $ArSF_3$, and ArSF, and from the ΔG values, confirmed that $ArSF_5$ reduction required the highest energy. We supposed that the generated $ArSF_3$ and ArSF underwent immediate reduction to give thiyl radical (ArS^{\bullet}), which reacted with allyl radicals to furnish sulfides.

	G (hartree)	G (kcal/mol)
1a	-1220.7777	-766050.20
KI	-611.35055	-383628.58
1a-KI (EDA)	-1832.1250	-1149676.80
1a'-	-1220.8082	-766069.36
ArSF4	-1120.9409	-703401.65
F [−]	-99.737509	-62586.284
ArSF4 ⁻	-1121.0738	-703485.02
F	-99.697268	-62561.033
ArSF3	-1021.1979	-640811.92
ArSF3	-1021.2426	-640839.94
ArSF	-821.62968	-515580.84
ArSF	-821.66482	-515602.89

Table S2. Sum of electronic and thermal free energies

TD-DFT calculation of 1a-KI

Table S3. Result of TD-DFT.

Excitation energies and oscillator strengths:

$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
Excited State 70 -> 71	2:	Singlet-A 0.70442	0.2397 eV	5172.29 nm	f=0.0000	<s**2>=0.000</s**2>		
Excited State 68 -> 71	3:	Singlet-A 0.70309	0.6461 eV	1918.96 nm	f=0.0112	<s**2>=0.000</s**2>		
Excited State 69 -> 72 69 -> 73	4:	Singlet-A 0.68801 0.13896	2.6119 eV	474.68 nm	f=0.0006	<s**2>=0.000</s**2>		
Excited State 70 -> 72 70 -> 73	5:	Singlet-A 0.69049 0.13324	2.6937 eV	460.28 nm	f=0.0000	<s**2>=0.000</s**2>		
Excited State 68 -> 72 68 -> 73	6:	Singlet-A 0.69399 0.12305	3.0075 eV	412.25 nm	f=0.0106	<s**2>=0.000</s**2>		

No.	orbital	picture	energy/ eV	No.	orbital	picture	energy/ eV
70	НОМО	•••	-5.93	73	LUMO+2	0	-1.22
69	HOMO-1		-5.94	72	LUMO+1		-1.36
68	HOMO-2	••*******	-6.25	71	LUMO		-3.89
67	НОМО–3		-9.39				

Cartesian Coordinates

1a

Charge = 0 Multiplicity = 1

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.116916	1.208126	-0.000284
2	6	0	0.721756	1.208038	-0.000783
3	6	0	0.024294	0.000243	-0.000289
4	6	0	0.722024	-1.208223	-0.000494
5	6	0	2.116849	-1.208057	-0.000474
6	6	0	2.814374	0.000194	0.000028
7	1	0	2.666615	2.160478	-0.000223
8	1	0	0.172188	2.160517	-0.000251
9	1	0	0.171884	-2.160400	-0.000164
10	1	0	2.667032	-2.160304	-0.000643
11	6	0	4.354374	0.000034	0.000327
12	7	0	5.500974	-0.000082	0.000551
13	16	0	-1.755706	0.000002	0.000100
14	9	0	-1.755308	-1.124235	1.124463
15	9	0	-1.755613	1.124364	1.124337
16	9	0	-1.756104	1.124239	-1.124262
17	9	0	-1.755799	-1.124361	-1.124137
18	9	0	-3.345706	-0.000214	0.000448

KI

Charge = 0 Multiplicity = 1

Center Atomic Atomic Coordinates (roms)
Number	Number	Туре	Х	Y	Z
1	53	0	0.000000	0.000000	0.886667
2	19	0	0.000000	0.000000	-2.473333

1a-KI

Charge = 0 Multiplicity = 1

Atomic	Atomic	Coordinates (Angstroms)			
Number	Туре	Х	Y	Z	
6	0	-2.259630	-0.933912	1.224899	
6	0	-0.886056	-0.732145	1.227492	
6	0	-0.224907	-0.670417	0.006518	
6	0	-0.879056	-0.801776	-1.212729	
6	0	-2.252654	-1.003288	-1.206504	
6	0	-2.938908	-1.068828	0.010101	
1	0	-2.807431	-0.987319	2.158432	
1	0	-0.348816	-0.626197	2.162118	
1	0	-0.336455	-0.749211	-2.148783	
1	0	-2.795107	-1.109931	-2.138596	
	Atomic Number 6 6 6 6 6 6 1 1 1 1 1	Atomic Atomic Number Type 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 1 0 1 0 1 0 1 0 1 0	Atomic Atomic Coorr Number Type X 6 0 -2.259630 6 0 -0.886056 6 0 -0.224907 6 0 -0.279056 6 0 -2.252654 6 0 -2.938908 1 0 -2.807431 1 0 -0.336455 1 0 -2.795107	Atomic Atomic Coordinates (Angs Number Number Type X Y 6 0 -2.259630 -0.933912 6 0 -0.886056 -0.732145 6 0 -0.224907 -0.670417 6 0 -0.225654 -1.003288 6 0 -2.252654 -1.003288 6 0 -2.807431 -0.987319 1 0 -0.348816 -0.626197 1 0 -0.336455 -0.749211 1 0 -2.795107 -1.109931	

11	6	0	-4.363575	-1.277963	0.011977
12	7	0	-5.507393	-1.445872	0.013523
13	16	0	1.548574	-0.410082	0.004226
14	9	0	1.507673	0.689168	-1.157807
15	9	0	1.501103	0.753522	1.101536
16	9	0	1.828229	-1.474296	1.165923
17	9	0	1.834793	-1.538560	-1.093467
18	9	0	3.205195	-0.166831	0.002032
19	19	0	5.666645	0.194822	-0.001330
20	53	0	-1.767323	1.339932	-0.013295

1a⁻⁻

Charge = -1 Multiplicity = 2

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6		-2 146769	. 1.215091	-0.000043
2	6	0	-0.758349	1.216803	-0.000001
3	6	0	-0.087937	0.000019	0.000001
4	6	0	-0.758330	-1.216776	-0.000040
5	6	0	-2.146750	-1.215092	-0.000082
6	6	0	-2.838102	-0.000007	-0.000085
7	1	0	-2.697223	2.148692	-0.000044
8	1	0	-0.207979	2.149578	0.000035
9	1	0	-0.207944	-2.149543	-0.000034
10	1	0	-2.697188	-2.148702	-0.000113
11	6	0	-4.278436	-0.000021	-0.000131
12	7	0	-5.435004	-0.000014	-0.000167
13	16	0	1.717759	0.000030	0.000068
14	9	0	1.787902	-1.137492	-1.133802
15	9	0	1.787932	1.137555	-1.133812
16	9	0	1.787860	1.137542	1.133974
17	9	0	1.787830	-1.137571	1.133872
18	9	0	3.343949	-0.000089	0.000052

ArSF₄

Charge = 0 Multiplicity = 2

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	1.857241	1.214708	-0.000004
2	6	0	0.468706	1.215810	-0.000012
3	6	0	-0.203723	0.000016	-0.000005
4	6	0	0.468737	-1.215797	-0.000007
5	6	0	1.857242	-1.214671	-0.000009
6	6	0	2.549119	0.000038	0.000002
7	1	0	2.407014	2.148773	0.000000
8	1	0	-0.081236	2.148777	-0.000008
9	1	0	-0.081224	-2.148752	-0.000003
10	1	0	2.407074	-2.148704	-0.000005
11	6	0	3.989371	0.000009	0.000005
12	7	0	5.146008	-0.000036	0.000009
13	16	0	-2.011370	-0.000009	0.000001

14	9	0	-2.066977	-1.136941	1.133551
15	9	0	-2.067013	1.136893	1.133578
16	9	0	-2.067019	1.136920	-1.133547
17	9	0	-2.066979	-1.136914	-1.133574
				-	

ArSF₄⁻

Charge = -1 Multiplicity = 1

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number Type		Х	Y	Z		
	·····	 	1.057017		0.000004		
1	6	0	-1.85/91/	1.216166	-0.000004		
2	6	0	-0.469878	1.218336	-0.000004		
3	6	0	0.196470	0.000001	0.000000		
4	6	0	-0.469880	-1.218334	0.000004		
5	6	0	-1.857917	-1.216163	0.000003		
6	6	0	-2.548183	0.000003	0.000000		
7	1	0	-2.409506	2.149023	-0.000007		
8	1	0	0.087456	2.146857	-0.000007		
9	1	0	0.087455	-2.146855	0.000007		
10	1	0	-2.409509	-2.149018	0.000006		
11	6	0	-3.988578	-0.000000	-0.000001		
12	7	0	-5.145179	-0.000002	-0.000001		
13	16	0	1.980011	-0.000001	0.000000		
14	9	0	2.082096	-1.170960	-1.160019		
15	9	0	2.082098	1.170947	-1.160030		
16	9	0	2.082098	1.170959	1.160020		
17	9	0	2.082096	-1.170948	1.160031		

ArSF₃

Charge = 0 Multiplicity = 1

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	X Y		Z	
1	6	0	-2.485167	0.000158	-0.000052	
2	6	0	-1.787452	-1.208008	-0.000488	
3	6	0	-0.392740	-1.208062	-0.000062	
4	6	0	0.304898	0.000457	-0.000399	
5	6	0	-0.392717	1.208294	-0.000442	
6	6	0	-1.787855	1.208175	0.000128	
7	1	0	-2.337492	-2.160214	0.000147	
8	1	0	0.157276	-2.160311	0.000228	
9	1	0	0.156815	2.160916	-0.000715	
10	1	0	-2.337605	2.160490	0.000292	
11	6	0	-4.025167	-0.000089	0.000108	
12	7	0	-5.171767	-0.000273	0.000227	
13	16	0	2.084897	-0.000017	0.000049	
14	9	0	2.614511	-0.033102	1.498887	
15	9	0	2.614752	-1.281601	-0.777701	
16	9	0	2.615429	1.314230	-0.720639	

ArSF₃⁻⁻

Charge = -1 Multiplicity = 2

Center	Atomic	Atomic	Coordinates (Angstroms)					
Number Number		Туре	X Y		Z			
	·····		2 4051 67		0.000050			
1	6	0	-2.48516/	0.000158	-0.000052			
2	6	0	-1.787452	-1.208008	-0.000488			
3	6	0	-0.392740	-1.208062	-0.000062			
4	6	0	0.304898	0.000457	-0.000399			
5	6	0	-0.392717	1.208294	-0.000442			
6	6	0	-1.787855	1.208175	0.000128			
7	1	0	-2.337492	-2.160214	0.000147			
8	1	0	0.157276	-2.160311	0.000228			
9	1	0	0.156815	2.160916	-0.000715			
10	1	0	-2.337605	2.160490	0.000292			
11	6	0	-4.025167	-0.000089	0.000108			
12	7	0	-5.171767	-0.000273	0.000227			
13	16	0	2.084897	-0.000017	0.000049			
14	9	0	2.614511	-0.033102	1.498887			
15	9	0	2.614752	-1.281601	-0.777701			
16	9	0	2.615429	1.314230	-0.720639			

ArSF

Charge = 0 Multiplicity = 1

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)			
Number	Number	Type	Х	Y	Z		
1	6	0	-1.877118	-0.011756	0.001536		
2	6	0	-1.246689	1.231214	0.099694		
3	6	0	0.136340	1.311292	0.005154		
4	6	0	0.870209	0.146851	-0.213064		
5	6	0	0.250624	-1.096528	-0.325264		
6	6	0	-1.129234	-1.175465	-0.203181		
7	1	0	-1.838276	2.125080	0.259991		
8	1	0	0.639333	2.262646	0.111068		
9	1	0	0.842180	-1.982699	-0.509010		
10	1	0	-1.631741	-2.133323	-0.272700		
11	6	0	-3.310922	-0.095187	0.111057		
12	7	0	-4.462327	-0.162002	0.198467		
13	16	0	2.659707	0.272054	-0.359079		
14	9	0	3.167802	-0.594788	0.879006		

ArSF⁻⁻

Charge = -1 Multiplicity = 2

Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number	Туре	e X		Z			
			1 077110	0.011756	0.001526			
1	6	0	-1.8//118	-0.011/56	0.001536			
2	6	0	-1.246689	1.231214	0.099694			
3	6	0	0.136340	1.311292	0.005154			
4	6	0	0.870209	0.146851	-0.213064			
5	6	0	0.250624	-1.096528	-0.325264			
6	6	0	-1.129234	-1.175465	-0.203181			

7	1	0	-1.838276	2.125080	0.259991	12	7	0	-4.462327	-0.162002	0.198467
8	1	0	0.639333	2.262646	0.111068	13	16	0	2.659707	0.272054	-0.359079
9	1	0	0.842180	-1.982699	-0.509010	14	9	0	3.167802	-0.594788	0.879006
10	1	0	-1.631741	-2.133323	-0.272700						
11	6	0	-3.310922	-0.095187	0.111057						

5. References

- S1) Y. Wang, L. Deng, X. Wang, Z. Wu, Y. Wang, Y. Pan, Y. ACS Catal., 2019, 9, 1630–1634.
- S2) T. Uchikura, N. Kamiyama, T. Mouri, T. Akiyama, ACS Catal., 2022, 12, 5209-5216.
- S3) V. V. Pavlishchuk, A. W. Addison, Inorganica Chim. Acta, 2000, 298, 97–102.
- S4) Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. and Fox, Gaussian, Inc., Wallingford CT, 2019.

6. NMR spectra

3a

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃) 4 100 4 100 4 110 4 110 4 104 4 104 7 200 7 200 7 200 02N 3b 6.0 5.5 5.9 5.7 5.6 5.4 5.3 5.1 5.2
HT
HT< 2.0 1.5 1.0 0.5 0.0 ¹³C{¹H} NMR (101 MHz, CDCl₃) 146.791 30 130 120 110 160 150 90 ppm 170 140 100 80 70 60 50 40 30 20 10 ò

3b

3c

3d ¹H NMR (400 MHz, CDCl₃)

4c

4d ¹H NMR (400 MHz, CDCl₃)

