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Experimental Section

Preparation of Li1.3Al0.3Ti1.7(PO4)3 (LATP) Ceramic Pellets

The LATP powder (Shenzhen Kejing Star Technology Co., Ltd., 99.9%, 300 nm) was 
weighed 200 mg, placed into a 10 mm diameter cylindrical tablet press mold, and 
pressed into round tablets under a uniaxial pressure of 3 tons (≈ 400 MPa) for 5 mins. 
The tablets were sintered in a muffle furnace (KSL-1100X, Hefei Kejing Materials 
Technology Co., Ltd., China) for 12 h at 850 °C, 900 °C, 950 °C, 1000 °C, and 1050 °C, 
respectively. To prevent the formation of byproducts on the surface of LATP ceramic 
pellets at high temperatures, a small amount of pristine powder was applied to cover 
the surface of the pellets during sintering.1 After sintering, the surfaces of the LATP 
were polished, cleaned with anhydrous ethanol, and dried in an oven to yield final 
LATP ceramic pellets.

Materials Characterization

X-ray diffraction (XRD) patterns of LATP powder and pellets were obtained to 
characterize the crystal structures and analyze the crystallinity. XRD patterns were 
performed on an Empyrean diffractometer from Malvern Panalytical using Cu Kα (λ = 
1.5406 Å) at 45 kV and 40 mA in the range of 10° to 60°. The morphology and energy 
disperse spectrum mapping were obtained using SEM (JSM-7610Fplus, JEOL Ltd., 
Japan). Grain size analysis of sintered LATP was performed using Nano Measurer 
software. X-ray computed tomography (XCT, nanoVoxel-3000, Sanying Precision 
Instruments Co., Ltd, China) was employed to analyze the three-dimensional 
morphology of the sintered LATP ceramic pellets. The reconstructed XCT data were 
imported into Volume Graphics software, for 3D visualization and porosity analysis.

Electrochemical Tests and Analysis

Ionic conductivity was measured by Electrochemical impedance spectroscopy (EIS) 
tests. 10 mV AC voltage (0.1 Hz to 7 MHz) was applied at room temperature using a 
BioLogic SP-300 potentiostat workstation. The top and bottom surfaces of the LATP 
ceramic pellets were sputter coated with Au as blocking electrode layers. Moreover, 
the Nyquist curves were fitted by equivalent circuit to obtain the resistance of LATP 
ceramic pellets. The EIS data were mathematically processed to generate Distribution 
of relaxation time (DRT) spectra using DRTtools on MATLAB 2018a.2-4 The Gaussian 
process was applied for DRT deconvolution, with the analysis based on the combined 
real and imaginary components of the EIS data.



Supporting Figures

Fig. S1 Nyquist plots of the LATP ceramic pellets sintered at 850 ℃. The EIS curves were collected at 25 
℃, 50 ℃, 75 ℃ and 100 ℃.

Fig. S2 Nyquist plots of the LATP ceramic pellets sintered at 900 ℃. The EIS curves were collected at 25 
℃, 50 ℃, 75 ℃ and 100 ℃.



Fig. S3 Nyquist plots of the LATP ceramic pellets sintered at 950 ℃. The EIS curves were collected at 25 
℃, 50 ℃, 75 ℃ and 100 ℃.

Fig. S4 Nyquist plots of the LATP ceramic pellets sintered at 1000 ℃. The EIS curves were collected at 
25 ℃, 50 ℃, 75 ℃ and 100 ℃.



Fig. S5 Nyquist plots of the LATP ceramic pellets sintered at 1050 ℃. The EIS curves were collected at 
25 ℃, 50 ℃, 75 ℃ and 100 ℃.
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