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Experimental Section

General information

All commercially available reagents were used as received without further purification.

'"H NMR spectra were recorded at 600 MHz using a Bruker 600 MHz spectrometer. '3C spectra were
respectively recorded at 600 MHz on a Bruker 600 MHz system. Mass spectra were obtained using a
Thermo Fisher LTQ XL and a Thermo Fisher Q Exactive. The PXRD spectra were recorded on Rigaku
Miniflex600. XtaLAB Synergy Custom was used for the single crystal X-ray diffractometer. The
parylene C coating is plated on the substrate using an mqg-parylene MQP-3001. The thickness was
measured using a JS10A step meter. Film surface folds were imaged using a 3D microscope (Olympus
DSX10-SZH). The BFA, coating was prepared using the airbrushing technique. UV absorption spectra
were obtained with Shimadzu UV-3600. Fluorescence spectra were obtained with an Edinburgh FLS980.
Electron microscope HITACHI SU8010 obtained the film cross sections.

General procedures for the synthesis of 10-(4-substituted-phenyl)acridin-9(10H)-one
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Scheme S1: 1-bromo(4-substituted)benzenes (1.5 eq.), acridin-9(10H)-one (acridone, 1 eq.), K,CO; (2
eq.), Cul (0.1 eq.), 2,2,6,6- tetramethyl-3,5-heptane-dione (0.2 eq.) were dissolved in anhydrous DMF (6
mL/mmol of acridone) into a round-bottom flask. The mixture was degassed and refluxed under a
nitrogen atmosphere for 24 hours. After cooling to room temperature, the reaction mixture was
evaporated by a high-boiling-point rotary evaporator. Then, the crude product was purified by flash
chromatography on silica gel. The chromatographic purification (eluent: dichloromethane/petroleum
ether = 2:1) provided compound N-aryl acridone (Ca. 80% yield). TLC: Ry = 0.5 in dichloromethane:
petroleum ether (2:1).

Synthesis of 1a

Acridone (1.00 g, 5.13 mmol) and bromobenzene (812 pL, 7.69 mmol) were synthesized according
to the above scheme to give compound 1a (1.15 g, 83%). 'H NMR (400 MHz, CDCls) $ 8.60 (dd, J =
8.0, 1.7 Hz, 2H), 7.74 — 7.63 (m, 3H), 7.50 (ddd, J=8.6, 7.0, 1.6 Hz, 2H), 7.37 (dd, /= 7.2, 1.7 Hz, 2H),
7.30 — 7.25 (m, 2H), 6.76 (d, J = 8.7 Hz, 2H).



Synthesis of 1b

Acridone (1.00 g, 5.13 mmol) and 4-bromobiphenyl (1.79 g, 7.69 mmol) were synthesized
according to the above scheme to give compound 1b (1.56 g, 87% yield). '"H NMR (400 MHz, CDCls) &
8.61 (d, J=8.0 Hz, 2H), 7.92 (dd, J=8.2, 1.4 Hz, 2H), 7.75 - 7.71 (m, 2H), 7.57 — 7.50 (m, 4H), 7.48 —
7.42 (m, 3H), 7.30 (t, /= 7.5 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H).

Synthesis of 1¢

Acridone (1.00 g, 5.13 mmol) and p-nitro bromobenzene (1.55 g, 7.69 mmol) were synthesized
according to the above scheme to give compound 1¢ (1.18 g, 73% yield). 'H NMR (400 MHz, CDCl) &
8.60 (dd, J=17.9, 2.0 Hz, 4H), 7.63 (dd, J = 8.8, 2.0 Hz, 2H), 7.53 (ddt, /= 8.7, 7.0, 1.8 Hz, 2H), 7.35 —
7.29 (m, 2H), 6.65 (dd, J= 8.6, 1.9 Hz, 2H).

Synthesis of 1d

Acridone (1.00 g, 5.13 mmol) and p-bromobenzene (1.81 g, 7.69 mmol) were synthesized according
to the above scheme to give compound 1d (1.36 g, 76% yield). '"H NMR (400 MHz, CDCls) & 8.60 (dq,
J=28.0,2.0 Hz, 4H), 7.64 (dd, J= 8.8, 2.0 Hz, 2H), 7.53 (ddt, J= 8.7, 7.0, 1.8 Hz, 2H), 7.37 — 7.29 (m,
2H), 6.66 (dd, J= 8.5, 1.9 Hz, 2H).

General procedures for the synthesis of 10-(4-substituted-phenyl)acridine-9(10H)-thione
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Scheme S2: In a round-bottom flask, 10-arylacridin-9(10H)-one (1 eq.) and Lawesson's reagent (1 eq.)
were stirred and heated up to reflux under a nitrogen atmosphere for 1 h in a round-bottom flask. After
evaporating, a sticky brown crude product was obtained to purify silica gel column chromatography. The
chromatographic purification (dichloromethane: petroleum ether = 1:1) provided the compound

thioacridone (Ca. 83% yield). TLC: R¢= 0.5 in dichloromethane: petroleum ether (1:1).

Synthesis of 2a

1a (1.70 g, 6.27 mmol) and Lawesson’s reagent (1.52 g, 3.76 mmol) were synthesized according to
the protocol described above to give compound 2a (0.67 g, 37% yield). '"H NMR (400 MHz, CDCls) &
9.21 (dd, J= 8.4, 1.6 Hz, 2H), 7.76 — 7.66 (m, 3H), 7.53 (ddd, J = 8.6, 6.8, 1.6 Hz, 2H), 7.40 — 7.30 (m,
4H), 6.81 (dd, J= 8.6, 1.1 Hz, 2H).



Synthesis of 2b

1b (0.60 g, 2.88 mmol) and Lawesson’s reagent (0.42 g, 1.04 mmol) were synthesized according to
the protocol described above to give compound 2b (0.35g, 56% yield). '"H NMR (400 MHz, CDCls)
9.24 (dd,J=8.4, 1.6 Hz, 2H), 7.97 - 7.91 (m, 2H), 7.77 - 7.71 (m, 2H), 7.56 (dddd, /=9.7,7.9, 6.6, 1.6
Hz, 4H), 7.49 — 7.42 (m, 3H), 7.36 (ddd, /= 8.2, 6.9, 1.1 Hz, 2H), 6.93 (dd, /= 8.7, 1.1 Hz, 2H).

Synthesis of 2¢

1c (4.14 g, 13.10 mmol) and Lawesson’s reagent (0.42 g, 1.04 mmol) were synthesized according
to the protocol described above to give compound 2¢ (1.34 g, 31% yield). 'H NMR (400 MHz, CDCls)
89.19 (dd, J = 8.3, 1.6 Hz, 2H), 8.64 — 8.59 (m, 2H), 7.65 — 7.61 (m, 2H), 7.56 (ddd, J = 8.6, 6.9, 1.6
Hz, 2H), 7.37 (ddd, /= 8.2, 6.9, 1.1 Hz, 2H), 6.71 — 6.66 (m, 2H).

Synthesis of 2d

1d (0.30 g, 1.72 mmol) and Lawesson’s reagent (0.21 g, 0.52 mmol) were synthesized according to
the protocol described above to give compound 2d (0.13 g, 41% yield). 'H NMR (400 MHz, CDCls) &
9.23 (t, J=9.6 Hz, 2H), 7.90 (d, J= 8.1 Hz, 1H), 7.74 (dt, J = 12.4, 7.0 Hz, 1H), 7.57 (q, J = 7.4 Hz,
2H), 7.43 — 7.28 (m, 4H), 6.83 (dd, /= 8.8, 5.1 Hz, 2H)

Synthesis of (11H-benzo[b]fluoren-11-ylidene)hydrazine
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Scheme S3: 11H-benzo[b]fluoren-11-one (2.50 g, 10.87 mmol) and hydrazine monohydrate (4.21 mL,
ca. 8 eq.) were dissolved in ethanol (110 mL). The reaction mixture was degassed, refluxed, and stirred
for 9 h. After cooling the solution to room temperature, the solvent was evaporated to obtain light orange

solids (2.30 g, ca. 87% yield) pure enough for the following reaction without further processing.

Synthesis of 11-diazo-11H-benzo[b]fluorene
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Scheme S4: (11H-benzo[b]fluoren-11-ylidene)hydrazine (2.30 g, 9.42 mmol) and an excess amount of
magnesium sulfate (1.70 g, 14.13 mmol) were put in a round-bottom flask. Dichloromethane (96 mL)
was added to the flask and cooled to 0 °C with an ice bath. After adding silver oxide (1.1 eq.), it was
stirred for 5 min, warmed to room temperature, and stirred for 1 h. The filtrate was evaporated for the

next reaction without further purification (2.26 g, 99% yield). '"H NMR (400 MHz, CDCls) & 8.38 (s,



1H), 8.06 (d, J= 7.6 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.88 (d, J= 9.0 Hz, 2H), 7.47 (tdd, J= 11.9, 7.4,
2.9 Hz, 4H), 7.39 — 7.34 (m, 1H).

Synthesis of (9H-fluorene-9-ylidene)hydrazine
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Scheme S5: 9H-fluoren-9-one (1.00 g, 5.56 mmol) and hydrazine monohydrate (2.15 mL, ca. 8 eq.) were

dissolved in ethanol (55 mL). The reaction mixture was degassed, refluxed, and stirred for 12 h. After
cooling the solution to room temperature, the solvent was evaporated to obtain pale yellow solids (ca.

99% yield) pure enough to be used for the next reaction without further processing.
Synthesis of (9H-fluorene-9-ylidene)hydrazine
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Scheme S6: (9H-fluoren-9-ylidene)hydrazine (1.00 g, 5.15 mmol) and an excess amount of magnesium

sulfate (0.93 g, 7.73 mmol) were put in a round-bottom flask. Dichloromethane (44 mL) was added to
the flask and cooled to 0 °C with an ice bath. After silver oxide (1.1 eq.) was added and stirred for 5 min,
it was warmed to room temperature and stirred for 1 h. The filtrate was evaporated for the following
reaction without further purification (ca. 94% yield). 'H NMR (400 MHz, CDCl;) 6 8.42 (d, J= 7.8 Hz,
2H), 7.73 (d, J = 7.5 Hz, 2H), 7.36 (t, J= 7.4 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H).

General procedures for the synthesis of 9-(11H-benzo[b]fluoren-11-ylidene)-10-(4-substituted-
phenyl)-9,10-dihydroacridine
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Scheme S7: Into a round-bottom flask, 10-(4-arylphenyl)acridine-9(10H)-thione (1 eq.),
triphenylphosphine (PPh;, 2 eq.) and 11-diazo-11H-benzo[b]fluorine(2 eq.) were added to the mixed

xylene solution(1 mL anhydrous xylene/0.25 mmol of thiones). We filled the whole unit with N, at room



temperature. The mixture was degassed and refluxed for 4 h. After removing the solvent by reduced
pressure distillation, the target product was separated by a chromatographic column (Petroleum

ether/ethyl acetate: 30/1).

Synthesis of BFA,

Thione derivatives 2a (0.05 g, 0.17 mmol), PPh; (0.09 g, 0.34 mmol), and 4 (0.08 g, 0.34 mmol)
were added to a round-bottom flask and dissolved with 2 mL xylene. The crude product was separated
and purified by column chromatography (petroleum ether/ethyl acetate: 30/1) to obtain BFA, (0.01g,
12% yield). 'H NMR (400 MHz, Acetone-dg) 6 8.24 (s, 1H), 8.18 (s, 1H), 7.99 (d, J = 3.4 Hz, 1H), 7.94
(dd, J=17.8, 4.3 Hz, 2H), 7.89 (d, J = 7.6 Hz, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 6.6 Hz, 1H),
7.59 (d, J=8.1 Hz, 1H), 7.55 (s, 1H), 7.49 (dd, J=10.6, 7.3 Hz, 3H), 7.40 (d, /= 7.4 Hz, 3H), 7.32 (t,
J=17.3 Hz, 2H), 7.20 (q, J = 7.5 Hz, 5H). HR ESI MS of BFA,. m/z = 469.18271.

Synthesis of BFA,

Thione derivatives 2b (0.05 g, 0.14 mmol), PPh; (0.09 g, 0.28 mmol), and 4 (0.08 g, 0.28 mmol)
were added to a round-bottom flask and dissolved with 2 mL xylene. The crude product was separated
and purified by column chromatography (petroleum ether/ethyl acetate: 30/1) to obtain BFA, (0.01g,
13% yield). '"H NMR (600 MHz, Acetone-ds) 8 8.10 (d, /= 7.9 Hz, 3H), 7.89 — 7.86 (m, 3H), 7.67 — 7.63
(m, 4H), 7.57 (t, J = 7.7 Hz, 4H), 7.47 (dd, J = 8.5, 6.6 Hz, 3H), 7.36 (t, J = 7.9 Hz, 4H), 7.10 (s, 3H),
6.83 (d, J= 8.5 Hz, 3H). HR ESI MS of BFA,. m/z = 545.2138.

Synthesis of BFA,

Thione derivatives 2¢ (0.05 g, 0.15 mmol), PPh; (0.08 g, 0.30 mmol), and 4 (0.07 g, 0.30 mmol)
were added to a round-bottom flask and dissolved with 2 mL xylene. The crude product was separated
and purified by column chromatography (petroleum ether/ethyl acetate: 30/1) to obtain BFA, (0.01g,
13% yield). '"H NMR (600 MHz, Acetone-de) & 8.45 — 8.42 (m, 2H), 8.33 (s, 1H), 8.29 (s, 1H), 8.26 (d,
J=179Hz, 1H), 8.07 (d, /= 7.8 Hz, 1H), 8.01 (d, /= 7.6 Hz, 1H), 7.92 (d, /= 8.1 Hz, 1H), 7.82 - 7.78
(m, 3H), 7.60 (d, J = 8.1 Hz, 1H), 7.47 — 7.41 (m, 3H), 7.40 — 7.37 (m, 1H), 7.34 (t,J= 7.4 Hz, 1H), 7.31
(t, J=7.5Hz, 1H), 7.27 — 7.23 (m, 2H), 7.20 (d, J = 8.3 Hz, 1H), 7.12 (t,J = 7.7 Hz, 1H). HR ESI MS
of BFA.. m/z = 514.1676.

Synthesis of BFA

Thione derivatives 2d (0.05 g, 0.14 mmol), PPh; (0.07 g, 0.28 mmol), and 4 (0.07 g, 0.28 mmol)
were added to a round-bottom flask and dissolved with 2 mL xylene. The crude product was separated
and purified by column chromatography (petroleum ether/ethyl acetate: 30/1) to obtain BFA4 (0.01g,
13% yield). 'TH NMR (600 MHz, Acetone-ds) & 8.38 (s, 2H), 8.24 — 8.20 (m, 2H), 8.05 — 8.01 (m, 4H),
7.62 —7.57 (m, 4H), 7.46 — 7.43 (m, 2H), 7.40 (s, 3H), 7.17 (s, 4H), 6.82 (s, 2H). HR ESI MS of BFA,.
m/z = 548.0961.



Synthesis of 9-(9H-fluoren-9-ylidene)-10-(4-nitrophenyl)-9,10-dihydroacridine
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Scheme S8: Into a round-bottom flask, 10-(4-nitrophenyl)acridine-9(10H)-thione (1 eq.),
triphenylphosphine (2 eq.) and 11-diazo-11H-benzo[b]fluorene (2 eq.) were added to the mixed xylene
solution (1 mL anhydrous xylene/0.25 mmol of thiones). We filled the whole unit with N, at room
temperature. The mixture was degassed and refluxed for 4 h. After removing the solvent by reduced
pressure distillation, the target product was separated by a chromatographic column (Petroleum

ether/ethyl acetate: 30/1).
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Fig. S1 'H NMR (400 MHz) of 1a in CDCl,.
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Fig. S15 HR ESI MS of BFA,. m/z = 545.2138.
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Fig. S17 HR ESI MS of BFA4. m/z = 548.0961.
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Fig. S18 Solid-state UV-vis diffuse reflectance spectra comparison.
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Fig. S19 Gibbs free energy of single molecules in two configurations for four BFAs.
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Fig. $20 Standard curve depicting the relationship between absorbance and concentration of (a) BFA;
(b) FA-NO, dissolved in methanol. (a) A mean absorbance value of 0.31538 (The yellow dot in Fig. S20a)
was obtained for the four-fold diluted saturated solution of FA-NO,. Based on the fitted line, the
saturated mass concentration of FA-NO, in methanol was calculated to be 138.60 ug-mL2. (b) A mean
absorbance value of 0.10687 (The yellow dot in Fig. S20a) was obtained for the four-fold diluted

saturated solution of BFA.. Based on the fitted line, the saturated mass concentration of BFA. in

methanol was calculated to be 136.70ug-mL™2.

Fig. S21 Recovery of mechanochromic BFA.. Scale bar, 1 cm.
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Proton-induced discoloration
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Fig. S22 The BFAs solution was gradually acidified and reneutralized. Acetic acid was added gradually
to a 1.0 x 1073 mol-L™ ethyl acetate solution of BFAs. Upon the subsequent addition of triethylamine,
the solution returned to its original green color as the protons were neutralized, indicating that a

proton-induced color change is reversible. Scale bar, 1 cm.
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Fig. S23 The BFAs’ solution was gradually acidified, and the standard curve of color difference UV-vis

was created. The area intercepted by the color difference was 1 cm x 1 cm. Scale bar, 1 cm.
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Fig. S24 The proton-induced color difference is not indicative of a transition between the two
configurations. Upon the addition of acetic acid, the primary UV-vis peak at approximately 655 nm,
corresponding to the twisted configuration, disappeared. Simultaneously, the prominent absorption
peak near 420 nm, associated with the folded conformation, also diminished, suggesting a distinct
interaction mechanism rather than a simple conformational shift. Normalized UV-vis absorption spectra
of (a) BFA,-H*. (b) BFA,-H*. (c) BFA.-H*. (d) BFA4-H*. Adding an excess amount of acetic acid to the
solution led to the disappearance of the primary ultraviolet (UV) absorption peak at approximately 655
nm. This observation indicated that the prominent absorption peak of the twisted conformation occurs
around 655 nm, while the prominent absorption peak at around 420 nm is associated with the folded
conformation. Concurrently, a new absorption peak at 350 nm emerged and intensified, suggesting the
transformation of BFA. into a different species. Nuclear Magnetic Resonance (NMR) analysis confirmed

this transformation (Fig. S22).
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Fig. S25 'H NMR (600 MHz) of BFA_-H*. Nuclear magnetic resonance (NMR) analysis confirmed the

appearance of a new hydrogen atom signal at 8H 5.45 ppm accompanied by shifts in existing proton

peaks compared to S8.
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Fig. $26 Schematic of BFAs protonation.



Photochromic
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Fig. S27 Photochromic of (a) BFA,. (b) BFA,. (c) BFA.. (d) BFA4. The dosage of UV irradiation was
systematically adjusted for each sample by gradually increasing the exposure time until complete color
change was achieved, creating a gradient of color change. This approach enabled a semi-quantitative

assessment of UV irradiation dosage. Scale bar, 2 mm.
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Fig. S28 Photochromic standard curve of CIELAB color difference-irradiation dose. (a) BFA,. (b) BFA,. (c)
BFA.. (d) BFA4. The color difference is the difference of color before and after irradiation, using the

CIELAB color difference formula mentioned in the main text.



Calculated energy

All calculations were performed on Materials Studio 2020.

1 Hartree =2625.5 kJ-mol! =27.21 eV=627.51 kcal-mol-..

Geometric optimization Settings for single molecules: Task: Geometry Optimization; Quality: Medium;
Functional: GGA-PBE; Max. iterations: 1000; Integration accuracy: Medium; SCF tolerance: Medium,;
Core treatment: All Electron; Basisi set: DND; Basis file: 4.4; Max. SCF cycles:1000; Multipolar
expansion: Hexadecapole; Use DIIS: 6; Use smearing: 0.01 Ha; Properties: Frequency. The other
parameters were used by default, and the Gibbs free energy was selected for the corresponding value at

298.15 K.

The two configurations transition state finding Settings: Task: TS Search; Quality: Fine; Functional:
GGA-PBE; Search protocol: Complete LST/QST; Max. number QST steps: 20; Integration accuracy:
Fine; SCF tolerance: Fine; Core treatment: All Electron; Basisi set: DND; Basis file: 4.4; Max. SCF
cycles:1000; Multipolar expansion: Hexadecapole; Use DIIS: 6; Use smearing: 0.01 Ha; Properties:

Frequency. The other parameters were used by default.

Table S1 Energy in Hartree.

Gibbs free energy ~ HOMO-1 HOMO LUMO  LUMO+1 LUMO-HOMO LUMO-HOMO
(kcal-mol!) (au.) (a.u.) (a.u) (a.u) (a.u) (kcal-mol ")
FA-NO, Folded / -0.193208  -0.181373  _0.13323  -0.101208 0.048143 30.21021
FA-NO, Twisted / -0.189991  -0.162126  _0.133104  -0.119009 0.029022 18.2116
BFA,_Folded 260.792 -0.182713  -0.165291  .0.092096  -0.069595 0.073195 45.93059
BFA, Twisted 256.964 -0.179447  -0.146461  _0.105626  -0.066097 0.040835 25.62437
BFA,_Folded 305.930 -0.182285 -0.165088  _0.091107 -0.078178 0.073981 46.42382
BFA,,_Twisted 304.071 -0.178621  -0.145483  _0.105485  -0.087862 0.039998 25.09914
BFA, Folded 258.335 -0.19556  -0.178637  _0.123737  -0.105103 0.054900 34.4503
BFA, Twisted 258.229 -0.195955  -0.160537  _0.125593  -0.121381 0.034944 21.92771
BFAy Folded 251.085 -0.188337  -0.171323 0096878  -0.074912 0.074445 46.71498
BFA, Twisted 249813 -0.184175  -0.151372  0.111339  -0.079016 0.040033 25.12111




Table S2 The energy barrier of the two configurations transforms.

FA-NO, BFA, BFA, BFA, BFA4
(kcal-mol ") (kcal-mol ) (kcal-mol) (kcal-mol ") (kcal-mol!)
TtoF 11.055 11.621 0.345 7.101 5.976
FtoT 4.180 0.870 1.069 2.064 2.250
Table S3 The energy barrier of the two configurations transforms.
BFA, BFA, BFA, BFA,
(kcal-mol!) (kcal-mol ™) (kcal'mol ") (kcal'mol ™)
TtoF 11.621 0.345 7.101 5.976
T to T-H* 27.614 40.831 46.517 48.937




