Supporting Information

Synthesis of 1*H*-Isothiochromenes by Regioselective C–C and C–S Bonds Formation of Enaminothiones with Alkynes under Rhodium Catalysis

Kelu Yan,*,a Yuhang Sun,a Jiangwei Wen,a Qiuyun Li,b Xinming Yu,a Wenxu Shang,a and Xiu Wanga

^a Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China

^b Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China

E-mail: yankelu317@163.com

Contents

Table of Contents	S2
1. Experimental Section: General Considerations	S3
2. Optimization Studies	S3-S7
(a) Table S1. Optimization Studies	S3-S5
(b) Table S2. Optimization Studies Catalyzed by [(p-cymene)RuCl ₂] ₂	S5-S7
3. Synthetic Procedures	S7-S10
(a) General Procedure for the Preparation of 1	S7
(b) General Procedure for the Rh(III)-Catalyzed Preparation of 3	S7
(c) Gram-Scale Preparation of 3aa	S7-S8
(d) Condensation Reaction of 3aa for the Preparation of 5	S8
(e) Condensation Reaction of 3aa for the Preparation of 7	S8-S9
(f) Condensation Reaction of 3aa for the Preparation of 9	S9
(g) Condensation Reaction of 3aa for the Preparation of 11	S9-S10
4. Characterization of 3, 5, 7, 9 and 11	S10-S24
5. X-ray Crystallography of 3aa	S24-S25
6. Mechanism Research	S26-S30
(a) Competition KIE Experiments	S26-S27
(b) Parallel KIE Experiments	S27-S28
(c) Competition Experiment of 1b and 1h	S28-S29
(d) Competition Experiment of 2b and 2g	S29-S30
7. References	S31
8. NMR Spectra	S32-S73

1. Experimental Section:

General Considerations. All products were prepared under argon atmosphere using standard Schlenk technique. ¹H, ¹³C and ¹⁹F NMR data were recorded with Bruker Advance III (500 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. All chemical shifts are reported relative to tetramethylsilane and d-solvent peaks, respectively. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), and multiplet (m). Column chromatography was performed on silica gel 200-300 mesh. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm). High-resolution mass spectrometry (HRMS) were done on an electrospray ionization (ESI) Fourier transform mass spectrometer (FTMS, Thermo QExactive Focus). X-ray diffraction (XRD) patterns were recorded on a Rigaku smartlab system at 45 kV and 200 mA with Cu- $K\alpha$ radiation. $[Cp*MCl_2]_2$ (M = Rh/Ir) was prepared from MCl₃.xH₂O (M = Rh/Ir) following a literature procedure. Unless otherwise noted below, all other compounds have been reported in the literature or are commercially available from Aldrich, Acros, Alfa Aesar, and Energy Chemical Company and used as received without any further purification.

2. Optimization Studies

(a) Table S1. Optimization Studies^a

entry	catalyst	Ag salt	oxidant	additive	solvent	yield ^b
						(%)
1	$[Cp*RhCl_2]_2$	$AgSbF_6$	Cu(OAc) ₂	НОАс	DCE	74
2	$[Cp*RhCl_2]_2$	$AgBF_4$	$Cu(OAc)_2$	HOAc	DCE	48
3	$[Cp*RhCl_2]_2$	AgOTf	$Cu(OAc)_2$	HOAc	DCE	71

4	[Cp*RhCl ₂] ₂	AgNTf ₂	Cu(OAc) ₂	НОАс	DCE	65
5	$[Cp*RhCl_2]_2$	-	Cu(OAc) ₂	HOAc	DCE	0
6	$[Cp*RhCl_2]_2$	AgSbF ₆	AgOAc	HOAc	DCE	82
7	$[Cp*RhCl_2]_2$	$AgSbF_6$	$AgCO_3$	HOAc	DCE	61
8	$[Cp*RhCl_2]_2$	$AgSbF_6$	Ag_2O	HOAc	DCE	27
9	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	TFA	DCE	0
10	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	PivOH	DCE	74
11	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	MesCO ₂ H	DCE	61
12	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	1-	DCE	77
				$AdCO_2H$		
13	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	HOAc	DCM	70
14	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	HOAc	CHCl ₃	66
15	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	HOAc	МеОН	35
16	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	HOAc	toluene	42
17	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	HOAc	MeCN	17
18	[(<i>p</i> -	$AgSbF_6$	AgOAc	HOAc	DCE	55
	$cymene)RuCl_2]_2$					
19	$[Cp*IrCl_2]_2$	$AgSbF_6$	AgOAc	HOAc	DCE	0
20	$Cp*Co(CO)I_2$	$AgSbF_6$	AgOAc	HOAc	DCE	0
21	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	HOAc	DCE	71 ^c
22	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	HOAc	DCE	79^d
23	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	HOAc	DCE	74 ^e
24	$[Cp*RhCl_2]_2$	$AgSbF_6$	AgOAc	HOAc	DCE	81 ^f
25	$[Cp*RhCl_2]_2$	AgSbF ₆	AgOAc	НОАс	DCE	7 ^g

^a Reaction conditions: **1a** (0.2 mmol),**2a** (0.3 mmol), catalyst (5 mol%), Ag salt (20 mol%), oxidant (1.5 equiv), additive (3 equiv), H₂O (8 equiv), solvent (1.5 mL), 60 °C, 12 h, under N₂. ^b Isolated yields. ^c HOAc (2 equiv). ^d HOAc (4 equiv). ^e H₂O (6 equiv). ^f H₂O (10 equiv). ^g without H₂O.

Initially, (E)-3-(dimethylamino)-1-phenylprop-2-ene-1-thione (1a) (0.2 mmol, 1.0 equiv) was introduced to react with 1,2-diphenylethyne (2a) (0.3 mmol, 1.5 equiv)

accompanied by [Cp*RhCl₂]₂ (5 mol%) AgSbF₆ (20 mol%), Cu(OAc)₂ (1.5 equiv), HOAc (3 equiv), and H₂O (8 equiv) in 1,2-dichloroethane (DCE) at 60 °C under nitrogen atmosphere for 12 h. The target product (Z)-2-(3,4-diphenyl-1Hisothiochromen-1-ylidene)acetaldehyde (3aa) was achieved with a yield of 74% (Table S1, entry 1). Then, several other Ag salts including AgBF₄, AgOTf, and AgNTf₂ were tested, and generated 3aa in 48-71% yields (entries 2-4). The reaction without the participation of silver salt failed to generate product 3aa (entry 5). When the oxidant was replaced by AgOAc, AgCO₃, and Ag₂O, the product 3aa could be obtained in 27-82% yields (entries 6-8). The yields of **3aa** generated from reactions involving other additives such as 2,2,2-trifluoroacetic acid (TFA), PivOH, MesCO₂H, and 1-AdCO₂H were not higher than 77% (entries 9–12). Tests on solvents showed that DCE is more suitable for this transformation than dichloromethane (DCM), CHCl₃, MeOH, toluene, and MeCN (entries 6, 13-17). However, 3aa was obtained in 0-55% yields when other catalysts including [(p-cymene)RuCl₂]₂, [Cp*IrCl₂]₂, and Cp*Co(CO)I₂ were employed (entries 18-20). In addition, adjusting the amounts of HOAc and H₂O did not promote the occurrence of this conversion (entries 21-24). When no additional H₂O was added, only 13% yield of product **3aa** was given (entry 25). Therefore, the factors in entry 6 were selected as the standard reaction conditions.

(b) Table S2. Optimization Studies Catalyzed by [(p-cymene)RuCl₂]₂

entry	Ag salt	oxidant	additive	solvent	$yield^b$ (%)
1	AgSbF ₆	AgOAc	HOAc	DCE	55
2	$AgBF_4$	AgOAc	HOAc	DCE	32
3	AgOTf	AgOAc	HOAc	DCE	50
4	$AgNTf_2$	AgOAc	HOAc	DCE	25
5	-	AgOAc 2	HOAc	DCE	0

6	AgSbF ₆	Cu(OAc) ₂	НОАс	DCE	42
7	$AgSbF_6$	$AgCO_3$	HOAc	DCE	51
8	$AgSbF_6$	Ag_2O	HOAc	DCE	20
9	$AgSbF_6$	AgOAc	TFA	DCE	0
10	$AgSbF_6$	AgOAc	PivOH	DCE	48
11	$AgSbF_6$	AgOAc	MesCO ₂ H	DCE	35
12	$AgSbF_6$	AgOAc	1-AdCO ₂ H	DCE	52
13	$AgSbF_6$	AgOAc	HOAc	DCM	33
14	$AgSbF_6$	AgOAc	HOAc	CHCl ₃	30
15	$AgSbF_6$	AgOAc	HOAc	МеОН	25
16	$AgSbF_6$	AgOAc	HOAc	toluene	22
17	$AgSbF_6$	AgOAc	HOAc	MeCN	9
18	$AgSbF_6$	AgOAc	HOAc	DCE	42 ^c
19	$AgSbF_6$	AgOAc	HOAc	DCE	53^d
20	$AgSbF_6$	AgOAc	HOAc	DCE	46^e
21	$AgSbF_6$	AgOAc	НОАс	DCE	55 ^f
22	$AgSbF_6$	AgOAc	HOAc	DCE	0^g

^a Reaction conditions: **1a** (0.2 mmol),**2a** (0.3 mmol), [(*p*-cymene)RuCl₂]₂ (5 mol%), Ag salt (20 mol%), oxidant (1.5 equiv), additive (3 equiv), H₂O (8 equiv), solvent (1.5 mL), 60 °C, 12 h, under N₂. ^b Isolated yields. ^c HOAc (2 equiv). ^d HOAc (4 equiv). ^e H₂O (6 equiv). ^f H₂O (10 equiv). ^g without H₂O.

Optimization studies on the synthesis of 1*H*-isothiochromenes catalyzed by [(*p*-cymene)RuCl₂]₂ were carried out, and the results are summarized in Table S2. Initially, (*E*)-3-(dimethylamino)-1-phenylprop-2-ene-1-thione (**1a**) (0.2 mmol, 1.0 equiv) was introduced to react with 1,2-diphenylethyne (**2a**) (0.3 mmol, 1.5 equiv) accompanied by [(*p*-cymene)RuCl₂]₂ (5 mol%) AgSbF₆ (20 mol%), AgOAc (1.5 equiv), HOAc (3 equiv), and H₂O (8 equiv) in 1,2-dichloroethane (DCE) at 60 °C under nitrogen atmosphere for 12 h. The target product (*Z*)-2-(3,4-diphenyl-1H-isothiochromen-1-ylidene)acetaldehyde (**3aa**) was achieved with a yield of 55% (Table S2, entry 1). Then, a series of optimization studies on Ag salts, oxidants, additives, solvents as well

as the amount of HOAc and H_2O were carried out sequentially. However, these attempted reaction conditions did not provide product **3aa** with a yield higher than 55%. Therefore, the factors in entry 1 are currently the optimal conditions for synthesizing 1H-isothiochromenes catalyzed by $[(p\text{-cymene})RuCl_2]_2$.

3. Synthetic Procedures

(a) General Procedure for the Preparation of 1

Enaminothiones (1) was prepared according to the previous work of Jiang.² To a stirred solution of Lawesson's reagent (2 mmol, 1.0 equiv) in DCM (20 mL), the enaminone (2 mmol, 1.0 equiv) was added. The reaction mixture was stired at room temperature for 1 h. Then, the mixture was concentrated in vacuo and the resulting residue was purified by column chromatography on silica gel with EtOAc/petroleum ether.

(b) General Procedure for the Rh(III)-Catalyzed Preparation of 3

A mixture of substituted enaminothiones (1) (0.2 mmol, 1.0 equiv), alkynes (2) (0.3 mmol, 1.5 equiv), [(Cp*RhCl₂]₂ (0.01 mmol, 5 mol%), AgSbF₆ (0.04 mmol, 20 mol%), and AgOAc (0.3 mmol, 1.5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DCE (1.5 mL), HOAc (3 equiv), and H₂O (1.6 mmol, 8 equiv) were added and the mixture was stirred at 60 °C in a pre-heated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by column chromatography on silica gel with EtOAc/petroleum ether.

(c) Gram-Scale Preparation of 3aa

A mixture of (*E*)-3-(dimethylamino)-1-phenylprop-2-ene-1-thione (**1a**) (955.4 mg, 5.0 mmol, 1.0 equiv), 1,2-diphenylethyne (**2a**) (1335.6 mg, 7.5 mmol, 1.5 equiv), [(Cp*RhCl₂]₂ (0.01 mmol, 5 mol%), AgSbF₆ (0.04 mmol, 20 mol%), and AgOAc (0.3 mmol, 1.5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DCE (1.5 mL), HOAc (3 equiv), and H₂O (1.6 mmol, 8 equiv) were added and the mixture was stirred at 60 °C in a preheated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether, the product **3aa** was affored as a yellow solid in 66% yield (1.124 g, 3.3 mmol).

(d) Condensation Reaction of 3aa for the Preparation of 5

A mixture of (*Z*)-2-(3,4-diphenyl-1*H*-isothiochromen-1-ylidene)acetaldehyde (**3aa**) (0.2 mmol, 1.0 equiv), 2,2-dimethyl-1,3-dioxane-4,6-dione (**4**) (0.2 mmol, 1 equiv), and Al₂O₃ (1 mmol, 5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DCM (1 mL) was added and the mixture was stirred at 25 °C for 3 h. Afterwards, it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give olefination product **5** in 92% yield.

(e) Condensation Reaction of 3aa for the Preparation of 7

A mixture of (*Z*)-2-(3,4-diphenyl-1*H*-isothiochromen-1-ylidene)acetaldehyde (**3aa**) (0.2 mmol, 1.0 equiv), 5,5-dimethylcyclohexane-1,3-dione (**6**) (0.2 mmol, 1 equiv), and Al₂O₃ (1 mmol, 5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DCM (1 mL) was added and the mixture was stirred at 25 °C for 3 h. Afterwards, it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give olefination product **7** in 87% yield.

(f) Condensation Reaction of 3aa for the Preparation of 9

A mixture of (*Z*)-2-(3,4-diphenyl-1*H*-isothiochromen-1-ylidene)acetaldehyde (**3aa**) (0.2 mmol, 1.0 equiv), ethyl 2-cyanoacetate (**8**) (0.2 mmol, 1 equiv), and Al₂O₃ (1 mmol, 5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DCM (1 mL) was added and the mixture was stirred at 25 °C for 3 h. Afterwards, it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give olefination product **9** in 86% yield.

(g) Condensation Reaction of 3aa for the Preparation of 11

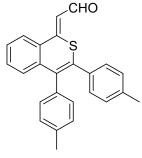
A mixture of (Z)-2-(3,4-diphenyl-1H-isothiochromen-1-ylidene)acetaldehyde (3aa) (0.2)mmol, 1.0 equiv), and aniline (10) (0.24 mmol, 1.2 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry MeOH (1 mL) was added and the mixture was stirred at 60 °C for 6 h. Afterwards, it was diluted with CH₂Cl₂ and transferred to a round bottom flask. Silica was added to the flask and volatiles were evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give olefination product 11 in 90% yield.

4. Characterization of 3, 5,7, 9, and 11

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a red solid in 84% yield (448.7 mg, 1.68 mmol). Mp: 96 – 97 °C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 8.38 (d, J = 11.0 Hz, 1H), 7.98 (d, J = 7.3 Hz, 2H), 7.71–7.65 (m, 4H), 7.47 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 6.73 (d, J =11.1 Hz, 1H), 3.30 (s, 3H), 3.08 (s, 3H). ¹³C NMR (DMSO- d_6 , 125 MHz): δ 208.7, 158.2, 146.1, 141.3, 139.4, 128.9, 127.7, 127.7, 126.6, 125.8, 110.3, 45.9, 38.4. **HRMS (ESI):** Calcd for C₁₇H₁₇NNaS [M+Na]⁺ 290.0974, found: 290.0976.

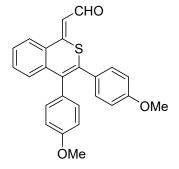
The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a red solid in 86% yield (352.8 mg, 1.72 mmol). Mp: 73 – 74 °C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 8.33 (d, J = 10.9 Hz, 1H), 7.66 - 7.62 (m, 2H), 7.27 - 7.19 (m, 2H), 6.64 (d, J = 11.2 Hz, 1H), 3.29(s, 3H), 3.06 (s, 3H), 2.34 (s, 3H). ¹³C NMR (DMSO- d_6 , 125 MHz): δ 210.1, 158.0, 147.5,

136.6, 130.2, 127.5, 127.4, 124.1, 110.4, 45.8, 38.4, 21.0. HRMS (ESI): Calcd for C₁₂H₁₅NNaS [M+Na]⁺ 228.0817, found: 228.0819.


(E)-3-(dimethylamino)-1-(pyridin-4-yl)prop-2-ene-1-thione (1p)

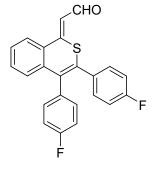
The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a red solid in 73% yield (280.4 mg, 1.46 mmol). Mp: 104 - 105 °C. ¹H NMR (CDCl₃, 500 MHz): $\delta 8.49 - 8.49$ (m, 2H), 8.33 (d, J = 11.2 Hz, 1H), 7.51 - 7.51 (m, 2H), 6.43 (d, J = 11.3 Hz, 1H), 3.23 (s, 3H), 2.98 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 210.5, 157.8, 154.3, 149.3, 120.4, 111.1, 46.2, 38.4. HRMS **(ESI):** Calcd for $C_{10}H_{12}N_2NaS$ [M+Na]⁺ 215.0613, found: 215.0612.

(Z)-2-(3,4-diphenyl-1*H*-isothiochromen-1-ylidene)acetaldehyde (3aa)


The title compound was isolated by column chromatography (eluent:

EtOAc/petroleum ether = 1/50) as a yellow solid in 82% yield (55.8 mg, 0.164 mmol). Mp: 148 – 149 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.98 (d, J = 3.9 Hz, 1H, 8.12 (d, J = 7.8 Hz, 1H), 7.55 - 7.47 (m, 2H), 7.32 - 7.28 (m, 4H), 7.24 - 7.19(m, 5H), 7.15 (d, J = 6.4 Hz, 2H), 6.98 (d, J = 4.0 Hz, 1H) ¹³C NMR (CDCl₃, 125 MHz): δ 186.4, 153.8, 137.4, 137.1, 135.4, 134.1, 132.5, 131.5, 131.1, 129.7, 129.3, 128.5, 128.2, 128.1, 128.0, 127.3, 126.1, 124.4, 113.3. **HRMS (ESI):** Calcd for C₂₃H₁₆NaOS [M+Na]⁺ 363.0814, found: 363.0812.

(Z)-2-(3,4-di-p-tolyl-1H-isothiochromen-1-ylidene)acetaldehyde (3ab)


The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 83% yield (61.1 mg, 0.166 mmol). Mp: 102 - 103 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.92 (d, J = 4.1 Hz, 1H), 8.03 (d, J = 7.6 Hz, 1H), 7.46 - 7.38 (m, 2H), 7.21 (d, J = 7.7 Hz, 1H), 7.09 - 7.01 (m, 4H), 7.01 - 6.93 (m, 4H), 6.88 (d, J = 4.2 Hz, 1H),2.32 (s, 3H), 2.26 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.4, 154.3, 137.9, 136.8, 135.8, 134.4, 134.2, 133.9, 132.2, 131.4, 130.9, 129.6, 129.2, 128.9, 128.8, 128.3, 126.1, 124.3, 113.3, 21.2. **HRMS (ESI):** Calcd for C₂₅H₂₀NaOS [M+Na]⁺ 391.1127, found: 391.1129.

(Z)-2-(3,4-bis(4-methoxyphenyl)-1*H*-isothiochromen-1-ylidene)acetaldehyde (3ac)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 77% yield (61.6 mg, 0.154 mmol). Mp: 90 - 91 °C. ¹H NMR (CDCl₃, **500 MHz):** δ 9.92 (d, J = 4.1 Hz, 1H), 8.03 (d, J = 9.5 Hz, 1H),


7.46 – 7.40 (m, 2H), 7.25 – 7.23 (m, 1H), 7.08 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 4.2 Hz, 1H), 6.80 (d, J = 8.7 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 3.75 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.4, 159.2, 158.6, 154.3, 135.9, 133.9, 132.7, 132.2, 132.0, 131.4, 131.1, 129.7, 129.2, 128.3, 126.1, 124.3, 113.7, 113.6, 113.3, 55.2, 55.2. HRMS (ESI): Calcd for $C_{25}H_{20}NaO_3S$ [M+Na]+ 423.1025, found: 423.1029.

(Z)-2-(3,4-bis(4-fluorophenyl)-1*H*-isothiochromen-1-ylidene)acetaldehyde (3ad)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 71% yield (53.4 mg, 0.142 mmol). Mp: 94 – 95 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.89 (d, J = 3.6 Hz, 1H), 8.06 (d, J = 7.7 Hz, 1H), 7.51 – 7.43 (m, 2H),

7.17 (d, J = 7.7 Hz, 1H), 7.13 – 7.08 (m, 2H), 7.05 – 7.03 (m, 2H), 6.98 – 6.94 (m, 3H), 6.88 (t, J = 8.6 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.3, 162.3 (d, J = 248.9 Hz), 161.9 (d, J = 247.7 Hz), 153.0, 135.1, 133.7, 133.1 (d, J = 3.7 Hz), 132.9 (d, J = 3.5 Hz), 132.6 (d, J = 8.0 Hz), 131.8, 131.6 (d, J = 8.1 Hz), 131.6, 129.0, 128.7, 126.0, 124.5, 115.4 (d, J = 21.6 Hz), 115.3 (d, J = 21.7 Hz), 113.2. ¹⁹F NMR (CDCl₃, 471 MHz): δ -112.4, -114.0. HRMS (ESI): Calcd for C₂₃H₁₄F₂NaOS [M+Na]⁺ 399.0626, found: 399.0629.

(Z)-2-(3,4-bis(4-chlorophenyl)-1*H*-isothiochromen-1-ylidene)acetaldehyde (3ae)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 74% yield (60.4 mg, 0.148 mmol). Mp: 97 – 98 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.89 (d, J = 3.6 Hz, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.50 – 7.43 (m, 2H), 7.27 – 7.25 (m, 2H), 7.18 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 7.9 Hz, 1H), 7.07 (d, J = 8.5 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 3.6 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.4, 152.7, 135.6, 135.3, 134.9, 134.5, 133.6, 133.4, 132.3, 131.6, 131.6, 131.0, 129.0, 128.9, 128.7, 128.6, 126.1, 124.6, 113.5. HRMS (ESI): Calcd for C₂₃H₁₄Cl₂NaOS [M+Na]⁺ 431.0035, found: 431.0032.

(Z)-2-(3,4-bis(4-bromophenyl)-1*H*-isothiochromen-1-ylidene)acetaldehyde (3af)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 72% yield (71.4 mg, 0.144 mmol). Mp: 118 - 119 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.88 (d, J = 3.5 Hz, 1H), δ 9.80 (d, δ 4 = 7.5 Hz, 1H), δ 9.80 (d, δ 5 = 7.5 Hz, 1H), δ 9.80 (d, δ 6 = 7.5 Hz, 1H), δ 9.80 (d, δ 7 = 7.5 Hz, 1H), δ 9.80 (d, δ 7 = 7.5 Hz, 1H), δ 9.80 (d, δ 8 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9.80 (d, δ 9 = 7.5 Hz, 1H), δ 9 (d, δ 9 = 7.5 Hz, 1H), δ 9 (d, δ 9 = 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H), δ 9 (d, δ 9 + 7.5 Hz, 1H)

4H), 7.34 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 7.9 Hz, 1H), 7.01 (d, J = 8.4 Hz, 2H), 6.96 – 6.93 (m, 3H). ¹³C **NMR** (CDCl₃, 125 MHz): δ 186.3, 152.6, 136.1, 135.7, 134.8, 133.4, 132.6, 131.7, 131.6, 131.5, 131.5, 131.2, 129.0, 128.9, 126.1, 124.6, 122.7, 121.8, 113.6. **HRMS** (ESI): Calcd for C₂₃H₁₄Br₂NaOS [M+Na]⁺ 520.9004 and 518.9024, found: 520.9002 and 518.9023.

(Z)-2-(3,4-bis(4-(trifluoromethyl)phenyl)-1*H*-isothiochromen-1-ylidene)acetaldehyde (3ag)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 67% yield (63.8 mg, 0.134 mmol). Mp: 120 - 121 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.89 (d, J = 3.3 Hz, 1H), 8.08 (d, J = 7.9 Hz, 1H),

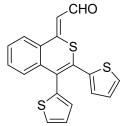
7.56 – 7.45 (m, 6H), 7.28– 7.23 (m, 4H), 7.07 (d, J = 8.0 Hz, 1H), 6.99 (d, J = 3.4 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.4, 152.0, 140.9, 140.3, 134.4, 133.5, 131.7, 131.7, 131.4, 130.5 (q, J = 32.8 Hz), 129.9 (q, J = 33.2 Hz), 129.3, 129.0, 126.1, 125.4 (q, J = 3.7 Hz), 125.3 (q, J = 3.9 Hz), 124.9, 124.7, 122.7, 122.6, 113.8. ¹⁹F NMR (CDCl₃, 471 MHz): δ - 62.7, -62.9. HRMS (ESI): Calcd for $C_{25}H_{14}F_6NaOS$ [M+Na]+ 499.0562, found: 499.0560.

dimethyl 4,4'-(1-(2-oxoethylidene)-1H-isothiochromene-3,4-diyl)(Z)-dibenzoate (3ah)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 70% yield (63.9 mg, 0.140 mmol). Mp: 102 - 103 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.89 (d, J = 3.5 Hz, 1H), 8.07 (d, J = 8.0

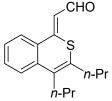
Hz, 1H), 7.92 (d, J = 8.2 Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H), 7.50 (t, J = 7.7 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.21 (d, J = 8.3 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 7.10 (d, J = 8.1 Hz, 1H), 6.97 (d, J = 3.6 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.4, 166.5, 166.3, 152.4, 142.1, 141.3, 134.5, 133.6, 132.0, 131.6, 131.1, 129.9, 129.8, 129.6, 129.5, 129.4, 129.1, 129.0, 126.1, 124.6, 113.6, 52.2. HRMS (ESI): Calcd for $C_{27}H_{20}NaO_5S$ [M+Na]⁺ 479.0924, found: 479.0928.

(Z)-2-(3,4-bis(2-fluorophenyl)-1*H*-isothiochromen-1-ylidene)acetaldehyde (3ai)


The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 47% yield (35.4 mg, 0.094 mmol). Mp: 150 - 151 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.88 (d,

J = 3.4 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.25 – 7.18 (m, 3H), 7.12 (d, J = 7.5 Hz, 2H), 7.02 – 6.98 (m, 4H), 6.89 (t, J = 8.9 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.3, 159.3 (d, J = 249.0 Hz), 152.9, 134.2, 132.1 (d, J = 9.3 Hz), 132.0 (d, J = 9.9 Hz), 131.7, 131.3, 130.9 (d, J = 8.0 Hz), 130.0 (d, J = 8.0 Hz), 129.9, 129.0, 128.4, 126.1, 124.7 (d, J = 16.7 Hz), 124.6, 124.3 (d, J = 15.7 Hz), 123.9, 115.5 (d, J = 21.1 Hz), 115.4 (d, J = 20.2 Hz), 113.2. ¹⁹F NMR (CDCl₃, 471 MHz): δ -112.5, -113.3. HRMS (ESI): Calcd for $C_{23}H_{14}F_{2}NaOS$ [M+Na]⁺ 399.0626, found: 399.0624.

(Z)-2-(3,4-di-m-tolyl-1H-isothiochromen-1-ylidene)acetaldehyde (3aj)


The title compound was isolated by column chromatography (eluent:

EtOAc/petroleum ether = 1/50) as a yellow solid in 79% yield (58.2) mg, 0.158 mmol). Mp: 130 - 131 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.92 (d, J = 4.0 Hz, 1H), 8.04 (d, J = 7.4 Hz, 1H), 7.48 - 7.41 (m, 2H), 7.22 (d, J = 7.5 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.05 - 6.87 (m, 8H), 2.26 (s, 3H), 2.22 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.3, 154.0, 137.7, 137.6, 137.3, 136.9, 135.6, 134.0, 132.4, 131.7, 131.4, 130.3, 129.3, 128.8, 128.4, 128.1, 128.0, 127.9, 127.8, 126.8, 126.0, 124.3, 113.2, 21.3, 21.2.. **HRMS (ESI):** Calcd for C₂₅H₂₀NaOS [M+Na]⁺ 391.1127, found: 391.1122.

(Z)-2-(3,4-di(thiophen-2-yl)-1H-isothiochromen-1vlidene)acetaldehyde (3ak)

EtOAc/petroleum ether = 1/50) as a vermeil solid in 72% yield (50.7 mg, 0.144 mmol). Mp: 155 – 156 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.99 (d, J = 4.2 Hz, 1H), 7.98 (d, J = 7.2 Hz, 1H), 7.48 -7.40 (m, 4H), 7.30 (d, J = 4.3 Hz, 2H), 7.12 (dd, J = 5.1, 3.5 Hz, 1H), 7.03 (d, J = 3.4 Hz, 1H), 6.96 - 6.92 (m, 1H), 6.89 (d, J = 4.2 Hz, 1Hz)1H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.8, 152.5, 138.2, 137.4, 135.7, 131.6, 130.8, 130.2, 129.5, 129.2, 129.1, 128.8, 127.8, 127.3, 126.5, 126.1, 124.4, 124.3, 114.8. **HRMS (ESI):** Calcd for C₁₉H₁₂NaOS₃ [M+Na]⁺ 374.9942, found: 374.9945.

(Z)-2-(3,4-dipropyl-1*H*-isothiochromen-1-ylidene)acetaldehyde (3al)

The title compound was isolated by column chromatography (eluent:

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 81% yield (44.1 mg, 0.162 mmol). Mp: 55 – 56 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.86 (d, J = 3.5 Hz, 1H, 7.96 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.57 (t, J = 7.7 Hz, 1H), 7.41(t, J = 7.6 Hz, 1H), 6.78 (d, J = 4.1 Hz, 1H), 2.77 - 2.70 (m, 2H), 2.61 - 2.54 (m, 2H), 1.74 -1.66 (m, 2H), 1.62 – 1.55 (m, 2H), 1.06 – 1.02 (m, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.3, 154.4, 134.7, 133.0, 131.5, 128.3, 127.5, 126.6, 125.7, 124.8, 113.4, 36.3, 30.9, 23.6, 23.0, 14.3, 14.0. **HRMS (ESI):** Calcd for C₁₇H₂₀NaOS [M+Na]⁺ 295.1127, found: 295.1130.

CHO (Z)-2-(4-methyl-3-phenyl-1*H*-isothiochromen-1-ylidene)acetaldehyde (3am) The title compound was isolated by column chromatography (eluent:

EtOAc/petroleum ether = 1/10) as a yellow solid in 82% yield (45.6 mg, 0.164 mmol). Mp: 111 – 112 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.90 (d, J = 4.1 Hz, 1H), 8.01 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.46 – 7.39 (m, 5H), 6.83 (d, J = 4.2 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.4, 153.8, 137.4, 135.5, 132.5, 131.7, 130.1, 128.8, 128.6, 128.3, 126.5, 126.2, 124.7, 113.6, 17.5. HRMS (ESI): Calcd for $C_{18}H_{14}NaOS$ [M+Na]⁺ 301.0658, found: 301.0654.

EtOAc/petroleum ether = 1/10) as a yellow solid in 23% yield (12.8 mg, 0.046 mmol). Mp: 106 - 107 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.87 (d, J = 3.0 Hz, 1H), 8.90 (s, 1H), 8.66 – 8.66 (m, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.39 – 7.39 (m, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.28 (s, 1H), 7.17 (s, 1H), 6.93 (d, J = 3.1 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.1, 152.4, 150.2, 147.6, 142.7, 134.4, 134.0, 133.2, 132.8, 131.0, 130.8, 124.1, 123.6, 123.0, 122.0, 112.6, 21.3. HRMS (ESI): Calcd for $C_{17}H_{13}NNaOS$ [M+Na]+ 302.0610, found: 302.0613.

The title compound was isolated by column chromatography (eluent:

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/10) as a orange red solid in 68% yield (47.1 mg, 0.136 mmol). ¹H NMR (CDCl₃, 400 MHz): δ 9.99 (d, J = 4.2 Hz, 1H), 9.91 (d, J = 3.9 Hz, 1H), 8.02 (t, J = 9.0 Hz, 2H), 7.50 – 7.40 (m, 9H), 7.25 – 7.14 (m, 10H), 6.93 – 6.90 (m, 3H), 6.87 (dd, J = 5.1, 3.7 Hz, 1H), 6.82 (d, J = 4.6 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 186.6, 186.5, 153.3, 152.9, 138.5, 137.6, 137.5, 137.4, 137.0, 135.6, 135.5, 132.3, 131.6, 131.4, 131.2, 129.8, 129.5, 129.3, 129.3, 128.9, 128.8, 128.7, 128.6, 128.5, 128.5, 128.2, 128.1, 126.7, 126.7, 126.4, 126.1, 126.0, 124.9, 124.3, 124.3, 114.3, 113.7. HRMS (ESI): Calcd for C₂₁H₁₄NaOS₂ [M+Na]⁺ 369.0378, found: 369.0375.

(Z)-2-(6-methyl-3,4-diphenyl-1*H*-isothiochromen-1-ylidene)acetaldehyde (3ba)

Ph The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 85% yield (60.2 mg, 0.170 mmol). Mp: 120 - 121 °C.¹H NMR (CDCl₃, 500 MHz): δ 9.92 (d, J = 3.9 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.35 – 7.27 (m, 4H), 7.19 – 7.19 (m, 5H), 7.12 (d, J = 6.5 Hz, 2H), 7.04 (s, 1H), 6.94 (d, J = 3.9 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.1, 154.0, 142.2, 137.4, 137.2, 135.4, 134.3, 132.4, 131.1, 129.8, 129.7, 129.4, 128.1, 128.0, 128.0, 127.2, 124.4, 123.7, 112.1, 21.6. HRMS (ESI): Calcd for $C_{24}H_{18}NaOS$ [M+Na]⁺ 377.0971, found: 377.0966.

(Z)-2-(6-methoxy-3,4-diphenyl-1*H*-isothiochromen-1-ylidene)acetaldehyde (3ca)

The title compound was isolated by column chromatography (eluent:

EtOAc/petroleum ether = 1/50) as a yellow solid in 81% yield (60.0 mg, 0.162 mmol). Mp: 130 – 131 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.88 (d, J = 3.8 Hz, 1H), 8.10 (d, J = 9.1 Hz, 1H), 7.34 – 7.26 (m, 3H), 7.21 – 7.21 (m, 5H), 7.14 (d, J = 6.7 Hz, 2H), 7.08 (dd, J = 9.1, 2.6 Hz, 1H), 6.88 (d, J = 3.9 Hz, 1H), 6.72 (d, J = 2.6 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 185.7, 162.0, 153.8, 137.5, 137.3, 137.1, 135.2, 132.2,

131.0, 129.7, 128.2, 128.0, 127.9, 127.3, 126.5, 119.4, 115.6, 112.8, 110.7, 55.2. **HRMS** (ESI): Calcd for C₂₄H₁₈NaO₂S [M+Na]⁺ 393.0920, found: 393.0919.

EtOAc/petroleum ether = 1/50) as a yellow solid in 75% yield (62.4 mg, 0.150 mmol). Mp: 106 - 107 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.90 (d, J = 3.7 Hz, 1H), 8.12 (d, J = 8.5 Hz, 1H), 7.69 (dd, J = 8.5, 1.7 Hz, 1H), 7.45 – 7.41 (m, 3H), 7.37 (t, J = 7.3 Hz, 2H), 7.33 (d, J = 7.0 Hz, 1H), 7.25 – 7.19 (m, 3H), 7.16 – 7.16 (m, 5H), 7.12 (d, J = 6.7 Hz, 2H), 6.94 (d, J = 3.8 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.2, 153.5, 143.9, 139.3, 137.2, 137.1, 135.9, 134.7, 132.5, 131.0, 129.7, 128.9, 128.2, 128.1, 128.0, 127.5, 127.4, 127.2, 127.0, 125.0, 125.0, 112.7. HRMS (ESI): Calcd for $C_{29}H_{20}NaOS$ [M+Na]+ 439.1127, found: 439.1129.

Ph The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a vermeil solid in 73% yield (52.3 mg, 0.146 mmol). Mp: 123 – 124 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.92 (d, J = 3.8 Hz, 1H), 8.10 (dd, J = 9.1, 5.7 Hz, 1H), 7.33 – 7.27 (m, 3H), 7.23 – 7.16 (m, 6H), 7.12 – 7.10 (m, 2H), 6.94 – 6.87 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.2, 164.4 (d, J = 252.5 Hz), 152.7, 138.2 (d, J = 8.9 Hz), 136.7 (d, J = 8.5 Hz), 136.0, 131.7 (d, J = 2.6 Hz), 130.9, 129.6, 128.4, 128.3, 128.1, 127.6, 127.1 (d, J = 9.1 Hz), 122.5 (d, J = 2.7 Hz), 116.4 (d, J = 22.7 Hz), 115.0 (d, J = 23.7 Hz), 112.9. ¹°F NMR (CDCl₃, 471 MHz): δ -106.9. HRMS (ESI): Calcd for $C_{23}H_{15}FNaOS$ [M+Na]⁺ 381.0720, found: 381.0716.

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 80% yield (59.8 mg, 0.160 mmol). Mp: 136 - 137 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.92 (d, J = 3.7 Hz, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.44 (dd, J = 8.8, 2.2 Hz, 1H), 7.31 – 7.27 (m, 3H), 7.20 – 7.14 (m, 6H), 7.10 – 7.08 (m, 2H), 6.91 (d, J = 3.8 Hz, 1H) ¹³C NMR (CDCl₃, 125 MHz): δ 186.3, 152.5, 138.0, 137.0, 136.7, 136.6, 136.0, 131.5, 131.0, 129.6, 128.7, 128.6, 128.4, 128.3, 128.1, 127.6, 126.0, 124.6, 113.4. HRMS (ESI): Calcd for $C_{23}H_{15}ClNaOS$ [M+Na]⁺ 397.0424, found: 397.0422.

CHO (Z)-2-(6-bromo-3,4-diphenyl-1*H*-isothiochromen-1-ylidene)acetaldehyde (3ga)

Ph The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 76% yield (63.5 mg, 0.152 mmol). Mp: 120 - 121 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.92 (d, J = 3.6 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.59 (dd, J = 8.7, 1.9 Hz, 1H), 7.35 (d, J = 1.9 Hz, 1H), 7.31 – 7.28 (m, 3H), 7.21 – 7.14 (m, 5H), 7.09 (d, J = 7.5 Hz, 2H), 6.91 (d, J = 3.7 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.3, 152.5, 137.2, 136.7, 136.6, 136.0, 131.6, 131.4, 131.0, 129.6, 128.4, 128.3, 128.1, 127.6, 126.5, 126.0, 124.9, 113.4. HRMS (ESI): Calcd for $C_{25}H_{15}BrNaOS$ [M+Na]⁺ 440.9919 and 442.9899, found: 440.9921 and 442.9896.

CHO
(Z)-2-(3,4-diphenyl-6-(trifluoromethyl)-1H-isothiochromen-1ylidene)acetaldehyde (3ha)

The title compound was isolated by column chromatography (eluent:

EtOAc/petroleum ether = 1/50) as a yellow solid in 71% yield (57.9)

mg, 0.142 mmol). Mp: 113 – 114 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.96 (d, J = 3.7 Hz, 1H), 8.14 (d, J = 8.5 Hz, 1H), 7.68 (d, J = 8.1 Hz, 1H), 7.46 (s, 1H), 7.31 – 7.27 (m, 3H), 7.21 – 7.15 (m, 5H), 7.09 (d, J = 7.5 Hz, 2H), 6.96 (d, J = 3.7 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.5, 151.7, 136.6, 136.3, 136.1, 135.9, 132.7, 131.9, 130.9, 129.6, 128.7, 128.5, 128.4, 128.2, 127.8, 125.8 (q, J = 4.3 Hz), 125.3, 124.7 (q, J = 3.4 Hz), 115.1. ¹°F NMR (CDCl₃, 471 MHz): δ -63.3. HRMS (ESI): Calcd for $C_{24}H_{15}F_{3}NaOS$ [M+Na]⁺ 431.0688, found: 431.0686.

(Z)-2-(6-nitro-3,4-diphenyl-1*H*-isothiochromen-1-vlidene)acetaldehyde (3ia)

Ph The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 67% yield (51.6 mg, 0.134 mmol). Mp: 152 – 153 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.96 (d, J = 3.6 Hz, 1H), 8.21 (dd, J = 9.0, 2.4 Hz, 1H), 8.14 (d, J = 9.0 Hz, 1H), 8.04 (d, J = 2.3 Hz, 1H), 7.32 – 7.27 (m, 3H), 7.21 – 7.17 (m, 3H), 7.16 – 7.13 (m, 2H), 7.10 – 7.07 (m, 2H), 6.97 (d, J = 3.6 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.5, 150.6, 149.1, 137.1, 136.8, 136.3, 135.9, 131.6, 130.9, 130.8, 129.5, 128.7, 128.6, 128.2, 128.1, 126.1, 123.7, 122.4, 116.3. HRMS (ESI): Calcd for C₂₃H₁₅NNaO₃S [M+Na]⁺ 408.0665, found: 408.0663.

(Z)-1-(2-oxoethylidene)-3,4-diphenyl-1*H*-isothiochromene-6-carbonitrile (3ja)

Ph The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 68% yield (49.7 mg, 0.136 mmol). Mp: 91 - 92 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.95 (d, J = 3.6 Hz, 1H), 8.08 (d, J = 8.5 Hz, 1H), 7.66 (dd, J = 8.5, 1.7 Hz, 1H), 7.47 (d, J = 1.6 Hz, 1H), 7.31 – 7.26 (m, 3H), 7.21 – 7.17 (m, 3H), 7.15 – 7.12 (m, 2H), 7.07 – 7.04 (m, 2H), 6.92 (d, J = 3.6 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.5, 150.9, 136.8, 136.3, 136.2, 136.0, 133.0, 131.1, 130.9, 130.6, 129.5, 129.4, 128.7, 128.6, 128.2, 128.0, 125.5, 117.9, 115.7, 114.8. HRMS (ESI): Calcd for C₂₄H₁₅NNaOS [M+Na]⁺ 388.0767, found: 388.0763.

methyl (Z)-1-(2-oxoethylidene)-3,4-diphenyl-1*H*-isothiochromene-6-carboxylate (3ka)

The title compound was isolated by column chromatography

Ph (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 74% yield (58.9 mg, 0.148 mmol). Mp: 118 – 119 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.97 (d, J = 3.8 Hz, 1H), 8.12 – 8.06 (m, 2H), 7.91 (d, J = 1.4 Hz, 1H), 7.32 – 7.27 (m, 3H), 7.21 – 7.16 (m, 5H), 7.12 – 7.10 (m, 2H), 6.99 (d, J = 3.8 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.5, 165.9, 152.2, 136.8, 136.7, 135.5, 135.1, 132.4, 132.3, 131.0, 130.4, 129.7,

129.5, 128.7, 128.4, 128.3, 128.1, 127.6, 124.7, 114.9, 52.4. **HRMS (ESI):** Calcd for $C_{25}H_{18}NaO_3S$ [M+Na]⁺ 421.0869, found: 421.0865.

CHO (Z)-2-(7-methyl-3,4-diphenyl-1*H*-isothiochromen-1-ylidene)acetaldehyde (3la)

Ph The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 81% yield (57.4 mg, 0.162 mmol). Mp: 164 - 165 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.91 (d, J = 4.0 Hz, 1H), 7.87 (s, 1H), 7.27 – 7.21 (m, 4H), 7.19 – 7.12 (m, 5H), 7.12 – 7.06 (m, 3H), 6.93 (d, J = 4.0 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.3, 154.0, 138.6, 137.5, 137.1, 133.1, 132.9, 132.7, 132.4, 131.1, 129.8, 129.3, 128.1, 128.0, 127.2, 125.9, 124.4, 112.8, 21.4. HRMS (ESI): Calcd for $C_{24}H_{18}NaOS$ [M+Na]⁺ 377.0971, found: 377.0972.

CHO (Z)-2-(3,4-diphenyl-1*H*-benzo[g]isothiochromen-1-ylidene)acetaldehyde (3ma)

Ph The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 70% yield (54.6 mg, 0.140 mmol). Mp: 141 - 142 °C. ¹H NMR (CDCl₃, 500 MHz): δ 10.07 (d, J = 4.8 Hz, 1H), 8.53 (s, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.59 (s, 1H), 7.53 – 7.48 (m, 2H), 7.31 – 7.28 (m, 3H), 7.20 – 7.14 (m, 7H), 7.07 (d, J = 4.8 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 187.1, 153.7, 137.7, 137.4, 134.4, 132.5, 132.4, 132.1, 131.7, 131.3, 129.7, 128.6, 128.4, 128.2, 128.2, 128.1, 128.1, 128.0, 127.3, 127.2, 125.2, 124.7, 116.4. HRMS (ESI): Calcd for C₂₇H₁₈NaOS [M+Na]⁺ 413.0971, found: 413.0972.

CHO (Z)-2-(4,5-diphenyl-7H-thiopyrano[3,4-b]furan-7-ylidene)acetaldehyde (3na)

Ph The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 77% yield (50.8 mg, 0.154 mmol). Mp: 219 – 220 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.66 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 1.9 Hz, 1H), 7.26 – 7.19 (m, 8H), 7.13 – 7.11 (m, 2H), 6.72 (d, J = 2.0 Hz, 1H), 6.49 (d, J = 1.9 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 185.1, 146.2, 145.3, 142.8, 137.4,

136.4, 135.7, 131.2, 130.5, 129.9, 129.2, 128.5, 128.3, 128.2, 127.6, 110.6, 103.2. **HRMS (ESI):** Calcd for $C_{21}H_{14}NaO_2S$ [M+Na]⁺ 353.0607, found: 353.0609.

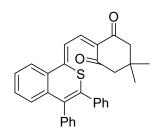
CHO

(Z)-2-(4,5-diphenyl-7H-thieno[2,3-c]thiopyran-7-ylidene)acetaldehyde (30a)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 84% yield (58.1 mg, 0.168 mmol). Mp: 234 - 235 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.64 (d, J = 2.5 Hz, 1H), 7.49 (d, J = 5.4 Hz, 1H), 7.27 - 7.25 (m, 3H), 7.19 - 7.19 (m, 5H), 7.14 - 7.12 (m, 2H), 6.92(d, J = 5.4 Hz, 1H), 6.56 (d, J = 2.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 184.8, 149.5, 143.3, 137.5, 137.3, 136.0, 132.3, 130.8, 130.3, 130.3, 129.1, 128.9, 128.4, 128.2, 128.1, 127.5, 107.1. **HRMS (ESI):** Calcd for $C_{21}H_{14}NaOS_2$ [M+Na]⁺ 369.0378, found: 369.0375.

(Z)-2-(3,4-diphenyl-1H-thiopyrano[4,3-c]pyridin-1ylidene)acetaldehyde (3pa)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 61% yield (41.6 mg, 0.122 mmol). Mp: 81 - 82 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.92 (d, J = 3.0 Hz, 1H), 8.59 (d, J = 49.9 Hz, 2H), 7.77 (s, 1H), 7.25 - 7.22 (m, 3H), 7.18 - 7.11 (m, 5H), 7.08 (d, J = 6.5 (d))Hz, 2H), 7.00 (d, J = 3.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 186.5, 151.6, 150.4, 148.3, 136.3, 136.3, 135.6, 131.6, 130.9, 130.3, 129.6, 128.8, 128.5, 128.2, 127.8, 116.4, 114.4. **HRMS (ESI):** Calcd for C₂₂H₁₆NOS [M+H]⁺ 342.0947, found: 342.0943.


(Z)-2-(4,5,6-triphenyl-2H-thiopyran-2-ylidene)acetaldehyde (3qa)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid in 65% yield (47.6 mg, 0.30 mmol). Mp: 57 – 58 °C. ¹H NMR (CDCl₃, 500 MHz): δ 9.54 (d, J = 1.6 Hz, 1H), 7.19 - 7.12 (m, 8H), 7.03 - 6.99 (m, 2H), 6.96 - 6.90 (m, 4H), 6.75 - 6.70 (m, 2H), 6.23(s, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 185.0, 153.2, 149.3, 143.7, 140.4, 137.0, 136.9, 134.0, 131.0, 129.8, 128.7, 128.4, 128.0, 127.7, 127.5, 127.4, 126.6, 126.5, 111.2. **HRMS (ESI):** Calcd for C₂₅H₁₈NaOS [M+Na]⁺ 389.0971, found: 389.0974.

(Z)-5-(2-(3,4-diphenyl-1*H*-isothiochromen-1-ylidene)ethylidene)-**2,2-dimethyl-1,3-dioxane-4,6-dione (5)**

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a purple solid in 92% yield (85.8

mg, 0.184 mmol). Mp: 159 – 160 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.77 (d, J = 12.9 Hz, 1H), 8.49 (d, J = 12.9 Hz, 1H), 8.29 (d, J = 8.2 Hz, 1H), 7.57 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 7.6 Hz, 1H), 7.30 - 7.28 (m, 4H), 7.25 - 7.21 (m, 3H), 7.19 - 7.17 (m, 2H), 7.13 (d, J = 6.8Hz, 2H), 1.79 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 164.1, 162.3, 160.5, 149.0, 136.8, 136.2, 136.1, 134.3, 134.0, 132.5, 131.0, 129.6, 129.2, 128.6, 128.3, 128.3, 127.8, 127.6, 125.1, 115.2, 105.1, 104.1, 27.5. **HRMS (ESI):** Calcd for C₂₉H₂₂NaO₄S [M+Na]⁺ 489.1131, found: 489.1137.

(Z)-2-(2-(3,4-diphenyl-1*H*-isothiochromen-1-ylidene)ethylidene)-5,5-dimethylcyclohexane-1,3-dione (7)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a purple solid in 87% yield (80.4)

mg, 0.174 mmol). Mp: 168 - 169 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.64 (d, J = 12.8 Hz, 1H), 8.45 (d, J = 12.8 Hz, 1H), 8.20 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.41 (t, J =8.3 Hz, 1H), 7.26 - 7.22 (m, 3H), 7.20 - 7.13 (m, 6H), 7.09 - 7.07 (m, 2H), 2.54 (s, 2H), 2.51 (m, 2H)(s, 2H), 1.09 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz): δ 199.4, 197.8, 158.9, 143.4, 137.1, 136.6, 135.8, 134.3, 133.5, 131.8, 131.1, 129.6, 129.3, 129.0, 128.3, 128.3, 128.2, 127.4, 125.0, 124.6, 116.8, 54.0, 52.2, 28.59. **HRMS (ESI):** Calcd for C₃₁H₂₆NaO₂S [M+Na]⁺ 485.1546, found: 485.1549.

ethyl (Z)-2-cyano-4-((Z)-3,4-diphenyl-1H-isothiochromen-1ylidene)but-2-enoate (9)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a red solid in 86% yield (74.8 mg, 0.172 mmol). Mp: 172 - 173 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.46 (d, J = 12.5 Hz, 1H), 8.03 (d, J = 7.5 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.40 (t, J = 7.1 Hz, 1H), 7.27 – 7.23 (m, 3H), 7.20 – 7.18 (m, 4H), 7.16 – 7.13 (m, 3H), 7.09 – 7.08 (m, 2H), 4.32 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 163.3, 152.5, 148.2, 137.0, 136.6, 135.6, 133.0, 133.0, 131.6, 131.0, 129.4, 129.3, 129.1, 128.3, 128.3, 128.2, 127.5, 127.4, 124.4, 115.9, 113.7, 100.2, 61.9, 14.2. HRMS (ESI): Calcd for $C_{28}H_{21}NNaO_2S$ [M+Na]⁺ 458.1185, found: 458.1187.

S Ph

(E)-2-((Z)-3,4-diphenyl-1*H*-isothiochromen-1-ylidene)-*N*-phenylethan-1-imine (11)

The title compound was isolated by column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a red solid in 90% yield (74.7 mg, 0.180 mmol). Mp: 111 – 112 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.75 (d, J = 9.2 Hz, 1H), 7.87 (d, J = 7.5 Hz, 1H), 7.42 – 7.34 (m, 3H), 7.30 (t, J = 7.7 Hz, 1H), 7.24 – 7.14 (m, 11H), 7.10 – 7.08 (m, 2H), 7.04 (d, J = 8.0 Hz, 1H), 6.99 (d, J = 9.2 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 156.5, 152.0, 144.5, 137.7, 137.4, 134.9, 132.3, 132.3, 131.1, 130.0, 129.2, 129.1, 128.7, 128.7, 128.6, 128.1, 128.1, 127.9, 127.1, 125.9, 124.3, 121.1, 120.2. HRMS (ESI): Calcd for C₂₉H₂₁NNaS [M+Na]+ 438.1287, found: 438.1285.

5. X-ray Crystallography of 3aa

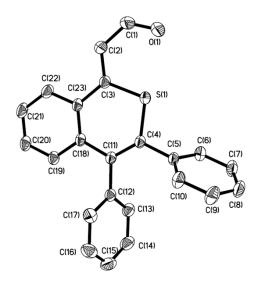


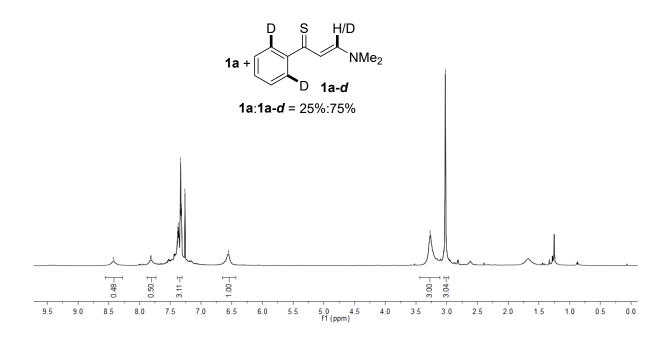
Figure S1. The molecular structure of 3aa

Crystal preparation of compound 3aa.

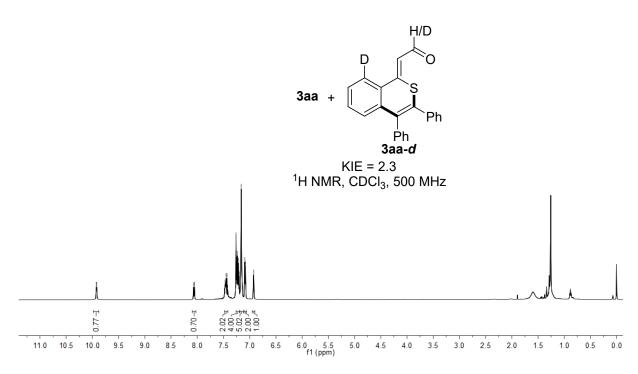
Compound 3aa (25 mg) was dissolved in 5 mL of dichloromethane/n-hexane (v1/v2 = 1:1), and it was crystallized to give crystal as colorless prisms after the solvent was slowly

volatilized in 4 days at room temperature (~ 25 °C).

CCDC-2308326 (3aa), contain the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/). Thermal ellipsoids are shown at the 30% level. Hydrogen atoms have been omitted for clarity. X-ray crystallographic data for 3aa is available as Figure S1.

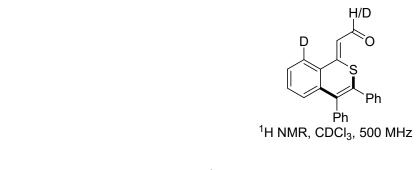

Table S3. Crystal Data and Summary of X-ray Data Collection for 3aa

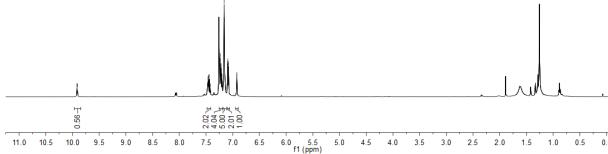
·	·
Empirical formula	C23 H16 O S
Formula weight	340.42
Temperature	273.15 K
Wavelength	0.71073 A
Crystal system, space group	monoclinic, P2 ₁ /n
Unit cell dimensions	a = 12.7462(15) A alpha = 90 deg.
	b = 9.1384(10) A beta = $95.183(4) deg$.
	c = 15.0589(17) A gamma = 90 deg.
Volume	1746.9(3) A^3
Z, Calculated density	4, 1.294 Mg/m^3
Absorption coefficient	0.192 mm^-1
F(000)	712.0
Theta range for data collection	4.388 to 61.354 deg.
Limiting indices	-18<=h<=18, -10<=k<=13, -21<=l<=21
Reflections collected / unique	28047 / 2820 [R(int) = 0.0262]
Max. and min. transmission	0.6687 and 0.7461
Data / restraints / parameters	5329 / 6 / 226
Goodness-of-fit on F^2	1.045
Final R indices [I>2sigma(I)]	R1 = 0.0403, $wR2 = 0.1094$
R indices (all data)	R1 = 0.0529, $wR2 = 0.1182$
Largest diff. peak and hole	0.27 and -0.26 e.A^-3


6. Mechanism Research

(a) Competition KIE Experiments

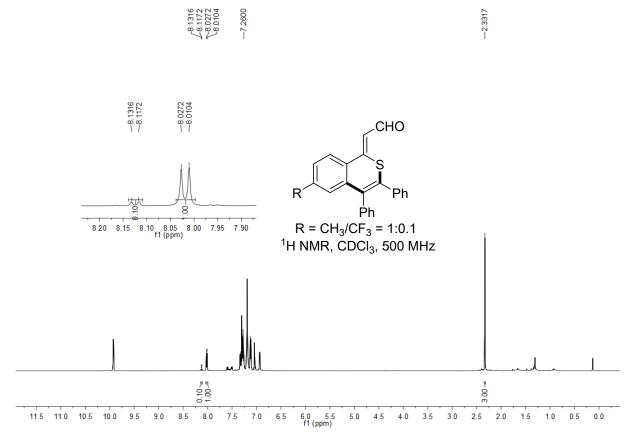
A mixture of (*E*)-3-(dimethylamino)-1-phenylprop-2-en-1-one (175.1 mg, 1 mmol, 1.0 equiv), [(Cp*RhCl₂]₂ (0.05 mmol, 5 mol%) and AgSbF₆ (0.2 mmol, 20 mol%) were weighted in a Schlenk tube equipped with a stir bar. Dry DCM (5 mL), HOAc (2 mmol, 2 equiv), and D_2O (20 mmol, 10 equiv) were added and the mixture was stirred at 85 °C in a pre-heated oil bath for 20 h under N_2 atmosphere. Then, deuterated enaminone was obtained by column chromatography on silica gel with EtOAc/petroleum ether, and treated by Lawesson's Reagent (1 equiv) in DCM (10 mL) at room temperature for 1 h. Finally, a mixture (71% yield) of **1a** and **1a-d** was presented by column chromatography on silica gel with EtOAc/petroleum ether with 25%:75%.




A mixture of (E)-3-(dimethylamino)-1-phenylprop-2-ene-1-thione (1a) (38.2 mg, 0.2 mmol, 1.0 equiv), 1a-d (38.6 mg, 0.2 mmol, 1.0 equiv), 2a (35.6 mg, 0.2 mmol, 1.0 equiv), [(Cp*RhCl₂]₂ (0.01 mmol, 5 mol%), AgSbF₆ (0.04 mmol, 20 mol%), and AgOAc (0.3 mmol, 1.5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DCE (1.5 mL), HOAc (3 equiv), and H₂O (1.6 mmol, 8 equiv) were added and the mixture was stirred at 60 °C in a pre-heated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether. The KIE value was determined to be $k_{\rm H}/k_{\rm D} = 2.3$ on the basis of ¹H NMR analysis.

(b) Parallel KIE Experiments

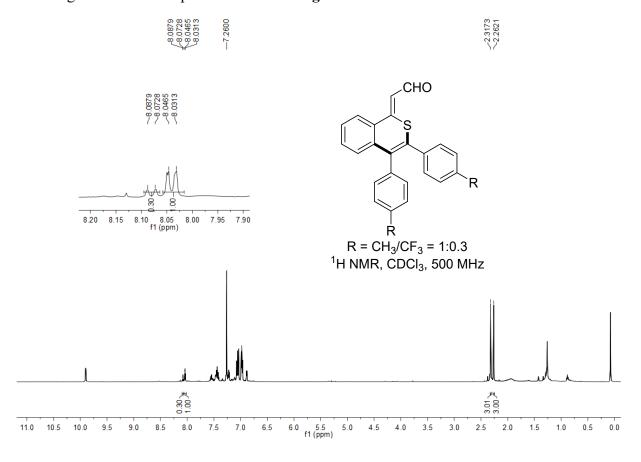
A mixture of **2a** (53.4 mg, 0.3 mmol, 1.5 equiv), $[(Cp*RhCl_2]_2 (0.01 \text{ mmol}, 5 \text{ mol}\%)$, AgSbF₆ (0.04 mmol, 20 mol%), and AgOAc (0.3 mmol, 1.5 equiv) were weighted in each of two Schlenk tube equipped with a stir bar. To the parallel tubes was then separately introduced **1a** (38.2 mg, 0.2 mmol, 1.0 equiv) and **1a-d** (38.6 mg, 0.2 mmol, 1.0 equiv). Dry DCE (1.5 mL), HOAc (3 equiv), and H₂O (1.6 mmol, 8 equiv) were added and the mixture was stirred at 60 °C in a pre-heated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give the desired product **3aa** in 21.6% yield (14.7 mg, 0.0432 mmol) or **3aa-d** in 10.3% yield (7.0 mg, 0.0205 mmol). The KIE value was calculated to be $k_H/k_D = 2.0$ according to isolated yields of **3aa** and **3aa-d**.



(c) Competition Experiment of 1b and 1h

$$R = CH_{3}/CF_{3} = 1:1$$

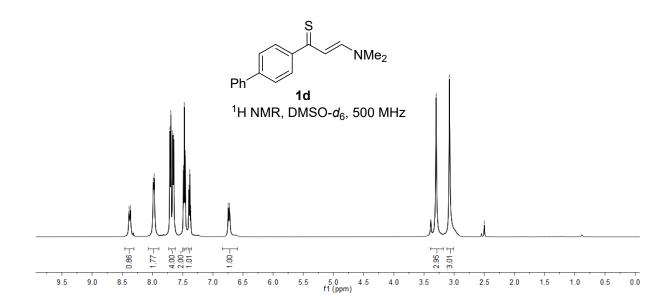
$$Ph \qquad Ph \qquad AgSbF_{6} (20 \text{ mol}\%) \\ Ph \qquad AgOAc (1.5 \text{ equiv}) \\ Ph \qquad H_{2}O (8 \text{ equiv}) \\ DCE, 60 °C, 12 h \qquad R = CH_{3}/CF_{3} = 1:0.1$$

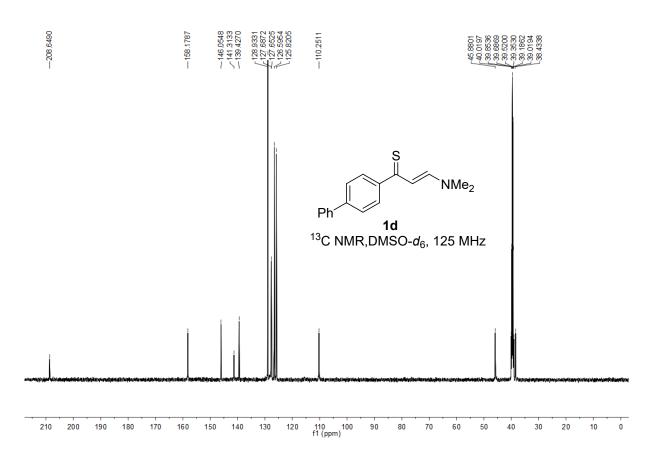

A mixture of (*E*)-3-(dimethylamino)-1-(*p*-tolyl)prop-2-ene-1-thione (**1b**) (41.0 mg, 0.2 mmol, 1.0 equiv), (*E*)-3-(dimethylamino)-1-(4-(trifluoromethyl)phenyl)prop-2-ene-1-thione (**1h**) (51.8 mg, 0.2 mmol, 1.0 equiv), 1,2-diphenylethyne (**2a**) (35.6 mg, 0.2 mmol, 1.0 equiv), [(Cp*RhCl₂]₂ (0.01 mmol, 5 mol%), AgSbF₆ (0.04 mmol, 20 mol%), and AgOAc (0.3 mmol, 1.5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DCE (1.5 mL), HOAc (3 equiv), and H₂O (1.6 mmol, 8 equiv) were added and the mixture was stirred at 60 °C in a pre-heated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give a mixture of products **3ba** and **3ha** at a ratio of 1:0.1.

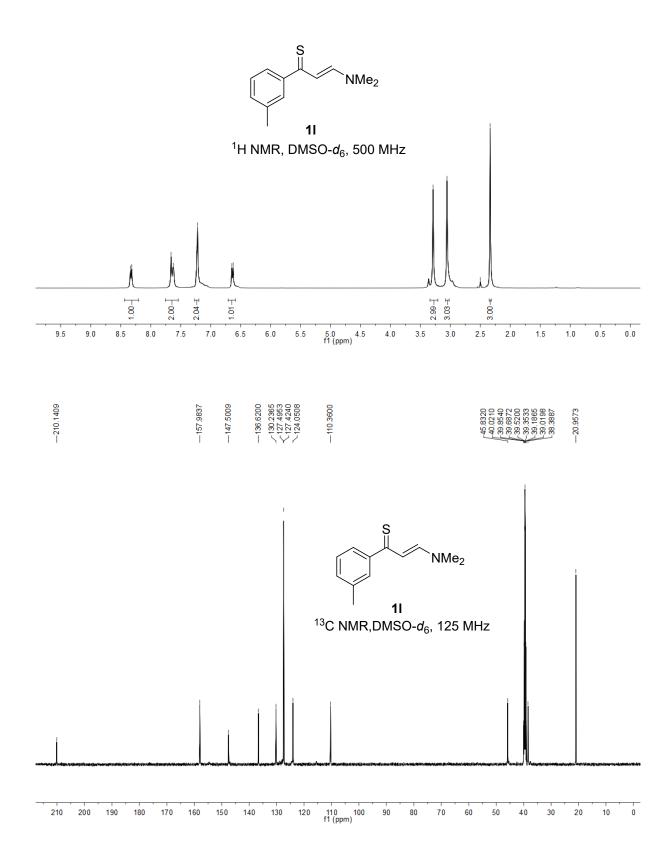
(d) Competition Experiment of 2b and 2g

R [Cp*RhCl₂]₂ (5 mol%) AgSbF₆ (20 mol%) AgOAc (1.5 equiv) HOAc (3 equiv)
$$H_2O$$
 (8 equiv) DCE, 60 °C, 12 h R R = CH₃/CF₃ = 1:0.3

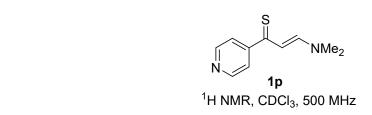
A mixture of (*E*)-3-(dimethylamino)-1-phenylprop-2-ene-1-thione (**1a**) (38.2 mg, 0.2 mmol, 1.0 equiv), (51.8 mg, 0.2 mmol, 1.0 equiv), 1,2-di-p-tolylethyne (**2b**) (41.2 mg, 0.2 mmol, 1.0 equiv), (51.8 mg, 0.2 mmol, 1.0 equiv), 1,2-bis(4-(trifluoromethyl)phenyl)ethyne (**2g**) (62.8 mg, 0.2 mmol, 1.0 equiv), [(Cp*RhCl₂]₂ (0.01 mmol, 5 mol%), AgSbF₆ (0.04 mmol, 20 mol%), and AgOAc (0.3 mmol, 1.5 equiv) were weighted in a Schlenk tube equipped with a stir bar. Dry DCE (1.5 mL), HOAc (3 equiv), and H₂O (1.6 mmol, 8 equiv) were added and the mixture was stirred at 60 °C in a pre-heated oil bath for 12 h under N₂ atmosphere. Then, the mixture was cooled to room temperature and concentrated in vacuo and the resulting residue was purified by flash column chromatography on silica gel with EtOAc/petroleum ether to give a mixture of products **3ab** and **3ag** at a ratio of 1:0.3.

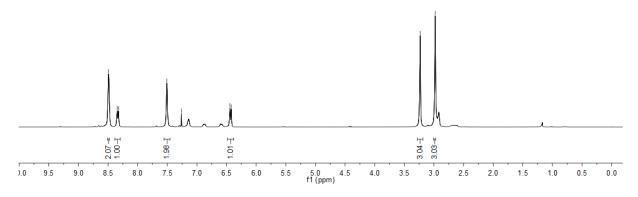


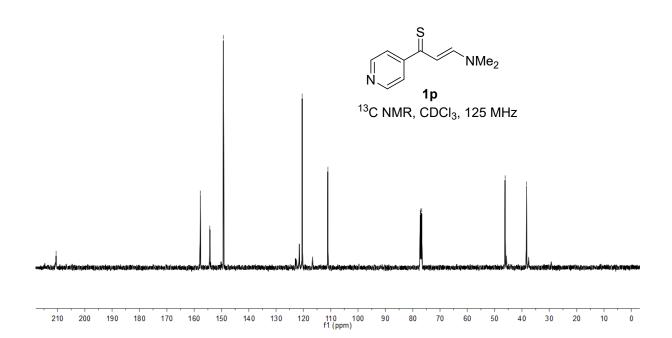

7. References:

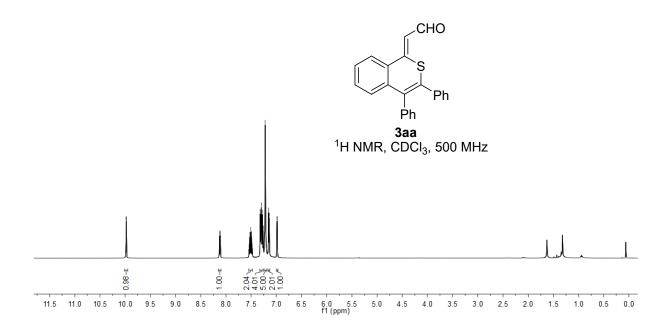

- (1) White, C.; Yates, A.; Maitlis, P. M. Inorg. Synth. 1992, 29, 228–234.
- (2) Zhang, X.; Zhang, J.; Chen, J.; Zhou, B.; Zhang, J.; Chen, S.; Wu, J.; Jiang, Y. *Org. Biomol. Chem.* **2023**, *21*, 3345–3349.

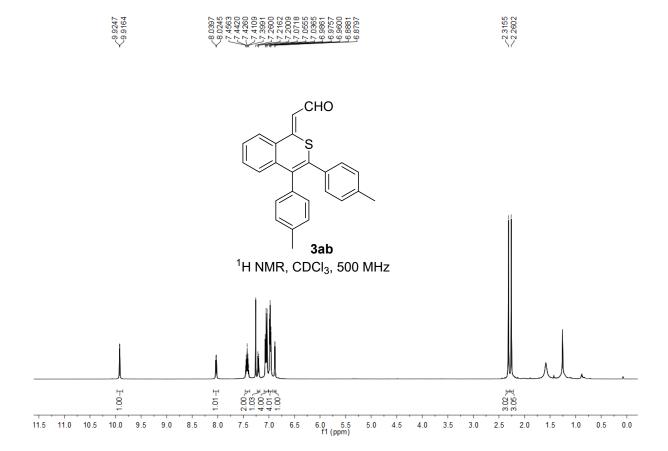

8. NMR Spectra

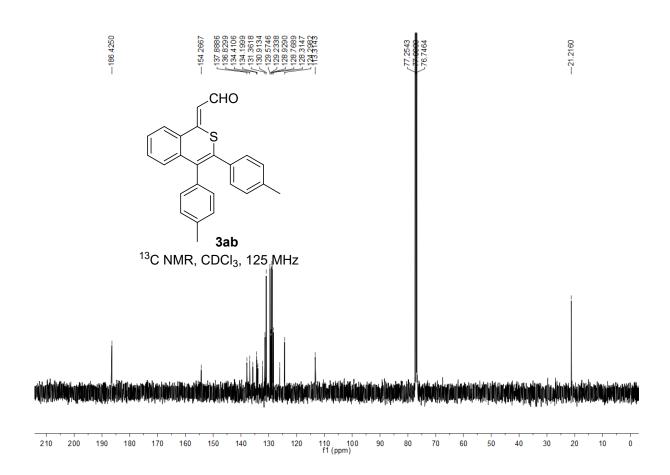


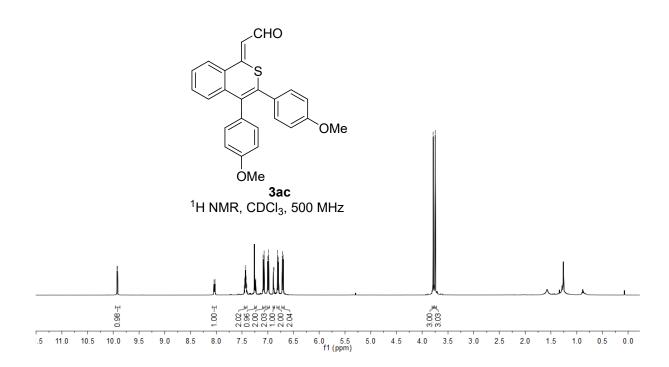


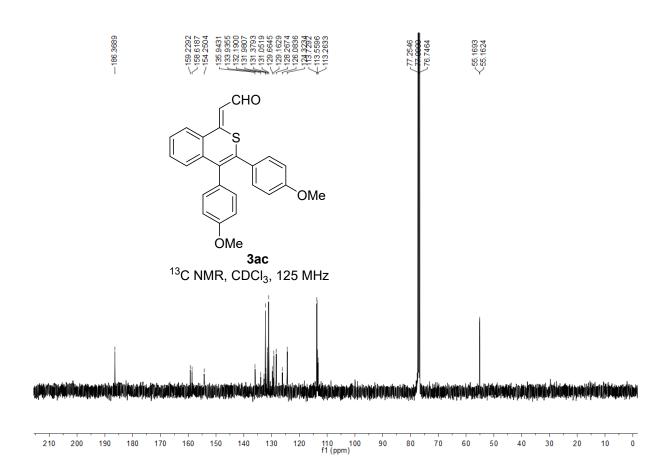


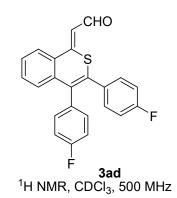


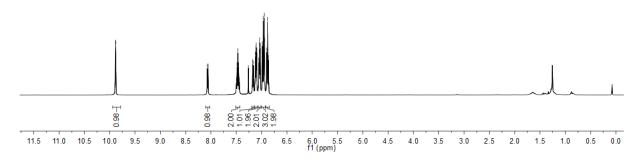


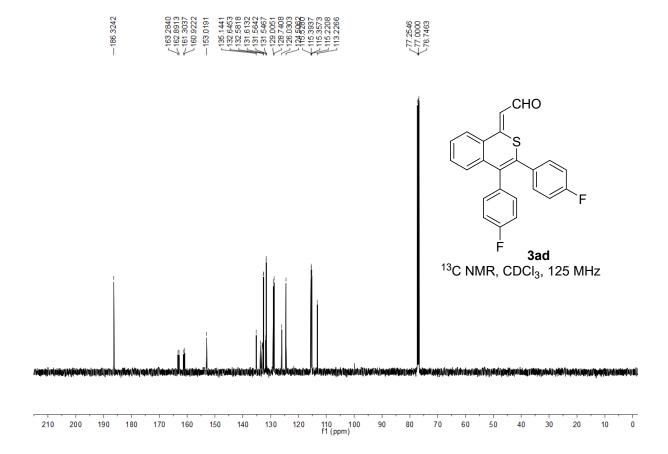


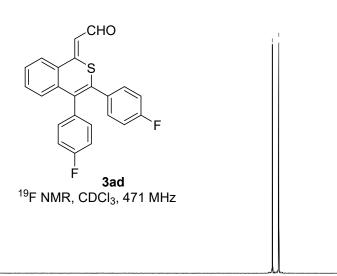


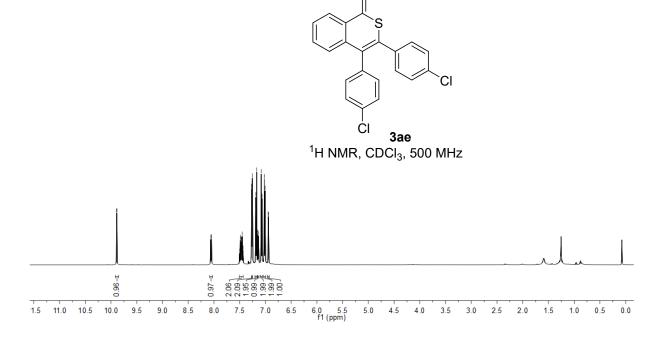


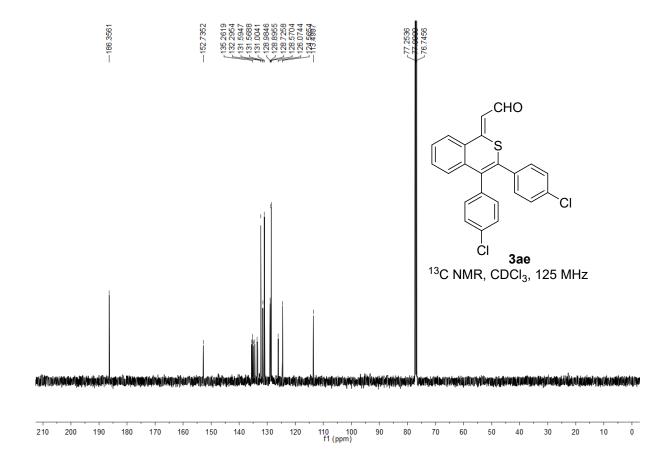


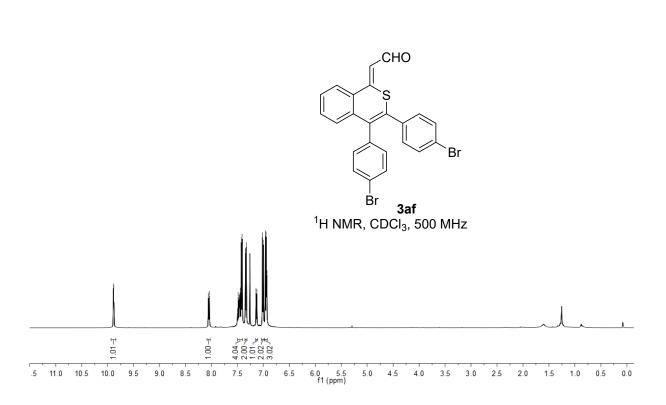






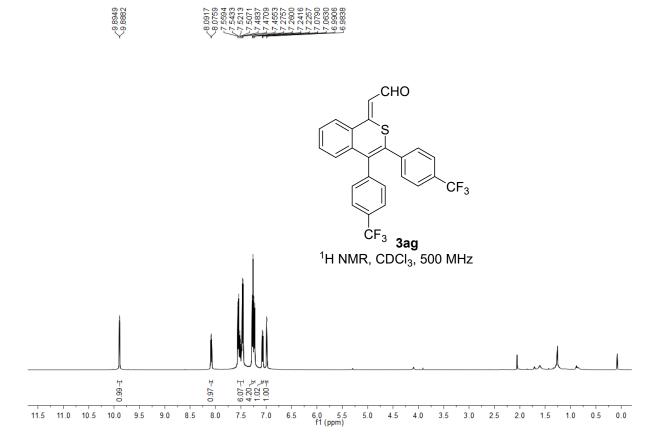


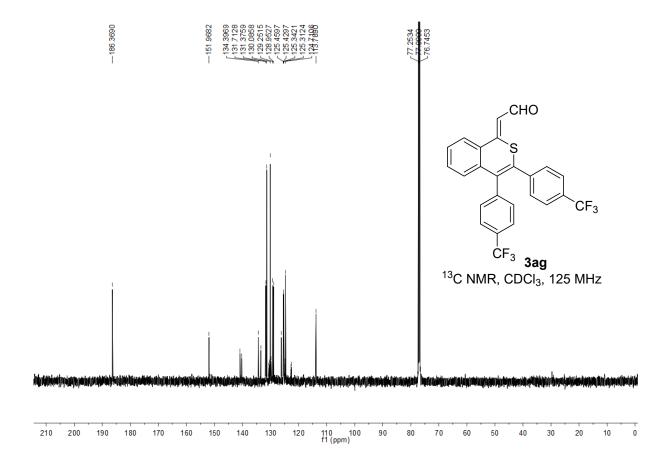


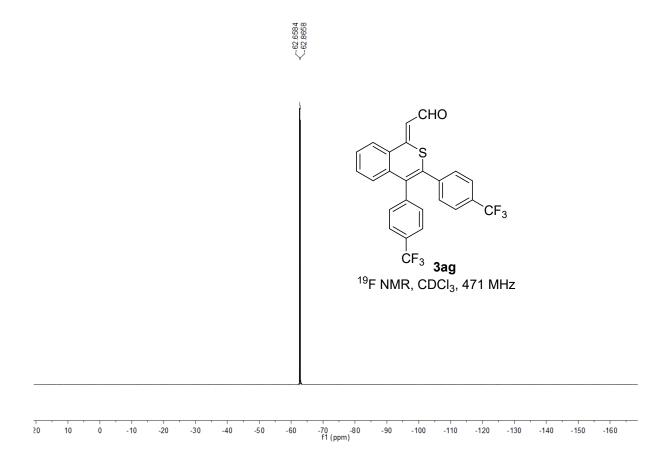

9 8821 8 0631 8 0631 7 4 883 7 7 4 883 7 7 2 687 7 7 2 687 7 7 1501 7 7 1501 7 7 1003 7 7 0063 7 7 0063 7 7 0063 7 7 0063

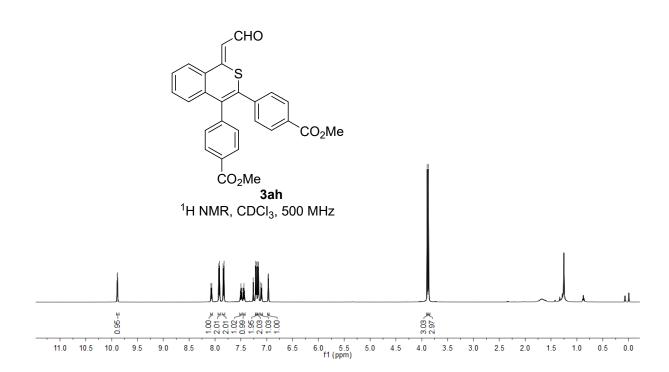
-30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -110 f1 (ppm)

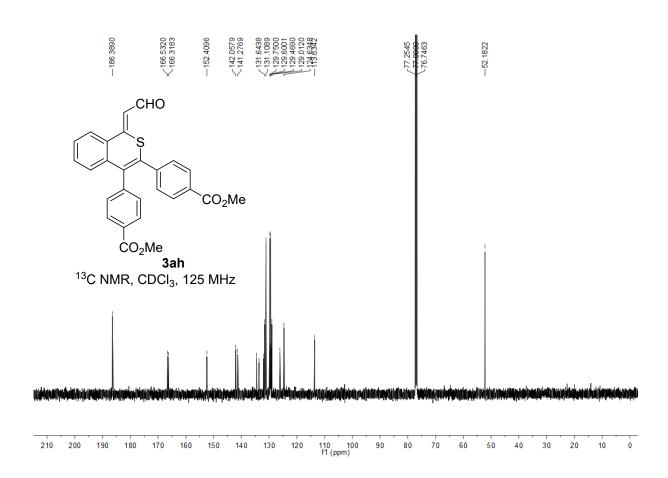


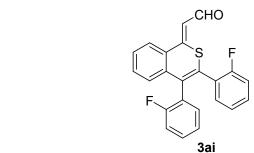

СНО

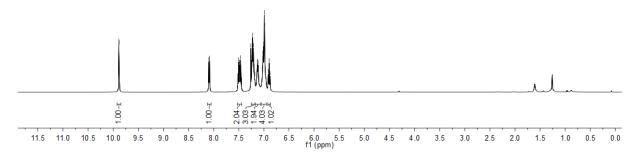


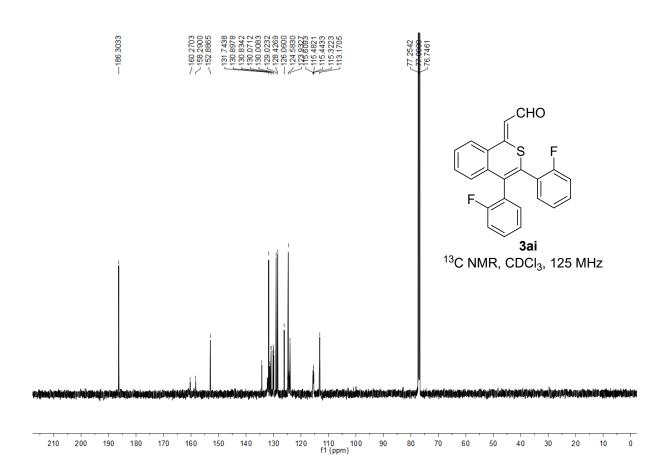


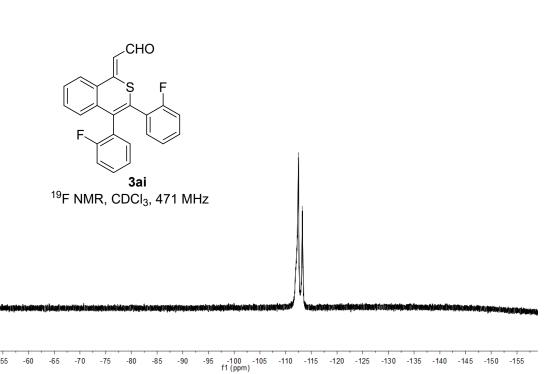

10565 3.0415 3.0415 7.4843 7.4867 7.4867 7.4261 7.3450 7.3450 7.3450 7.3450 7.3450 7.3450 7.3450 7.3450 7.3450 7.3450 7.3450 6.9625 6.9625 6.9458 6.9458

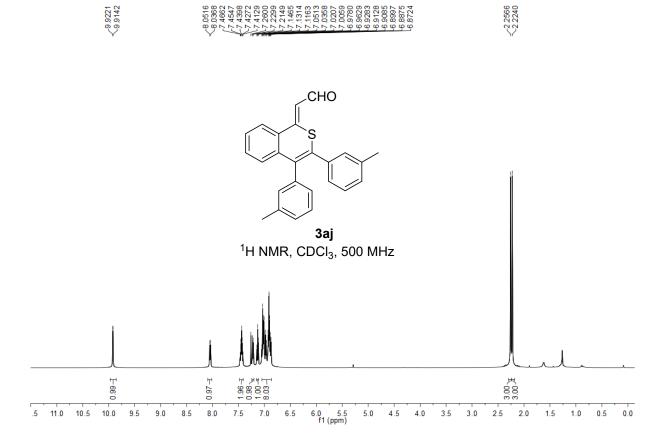


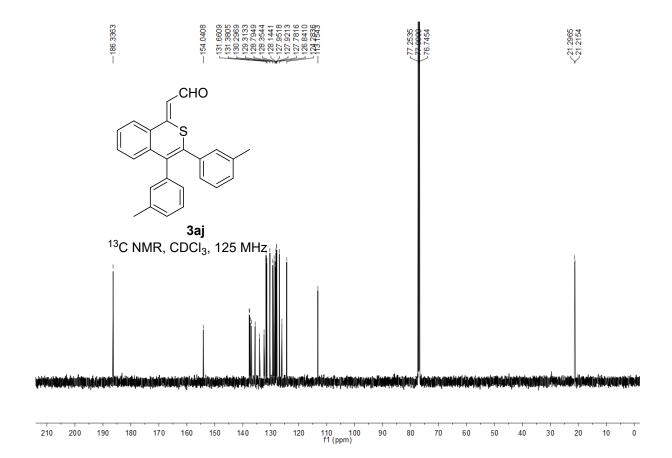


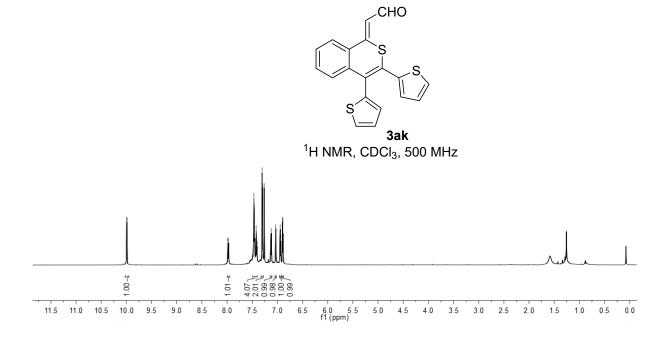


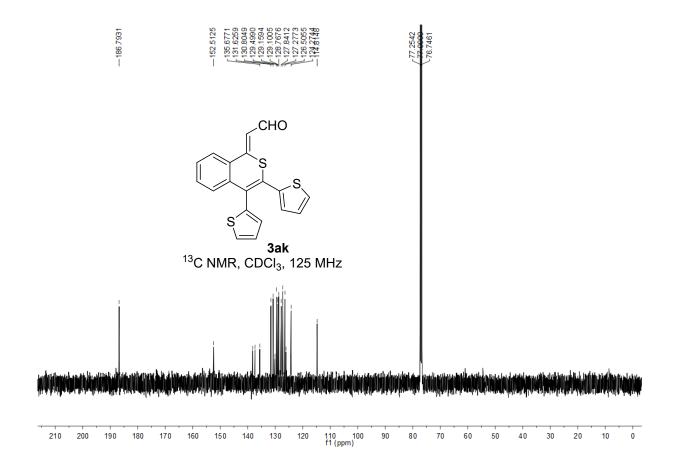


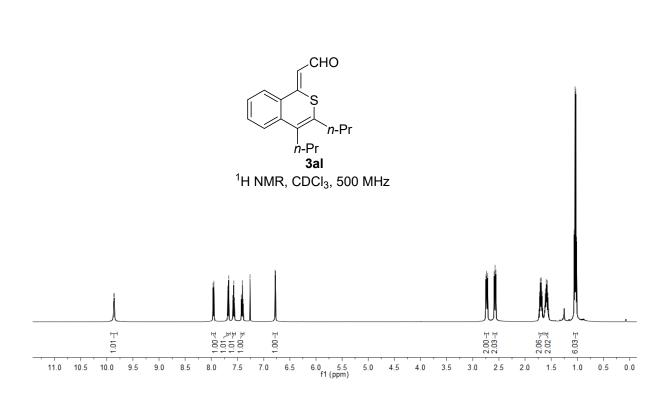


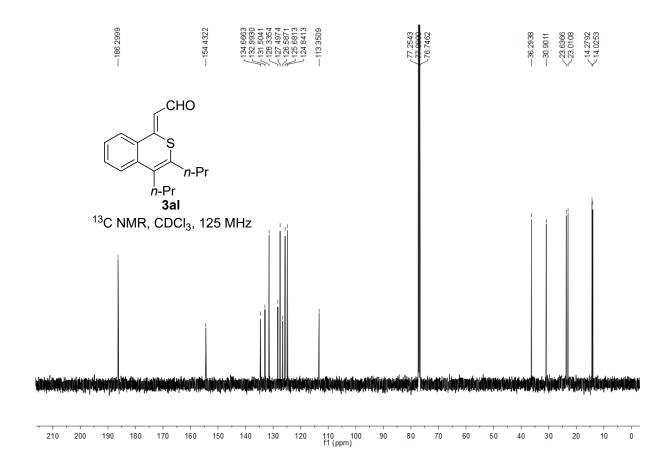

¹H NMR, CDCl₃, 500 MHz

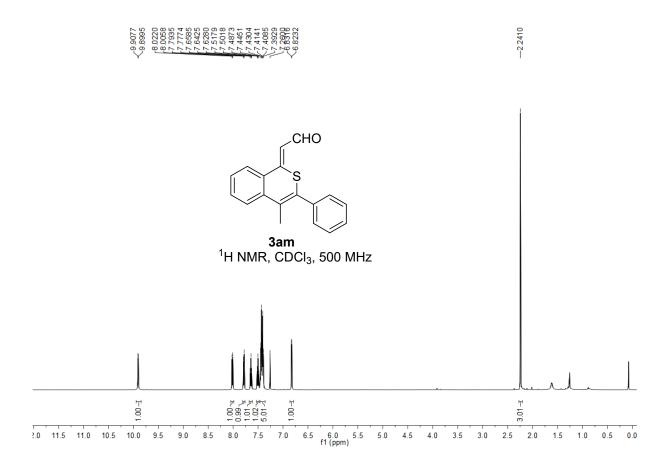


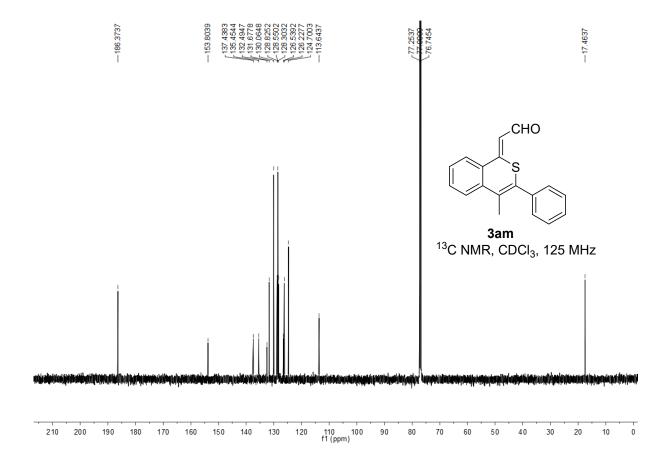


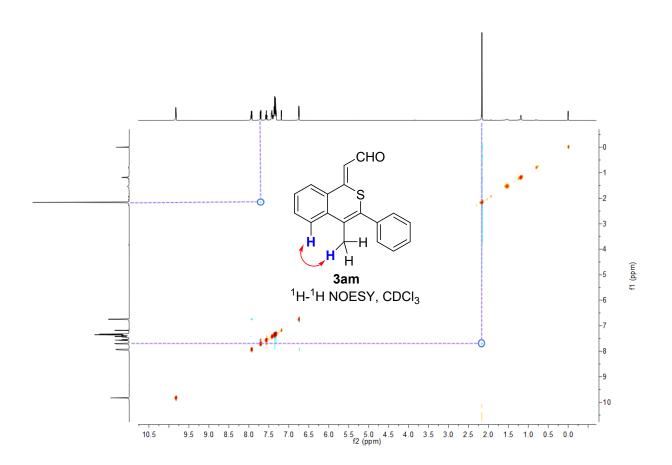




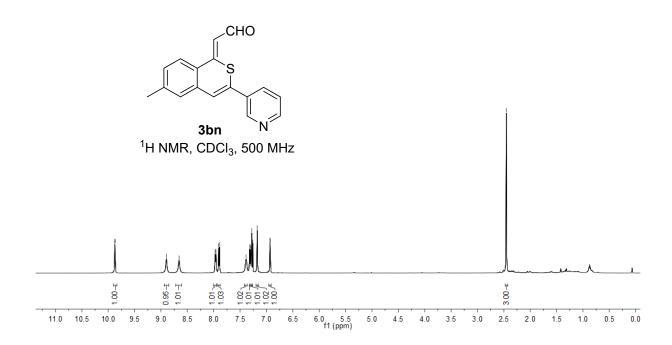




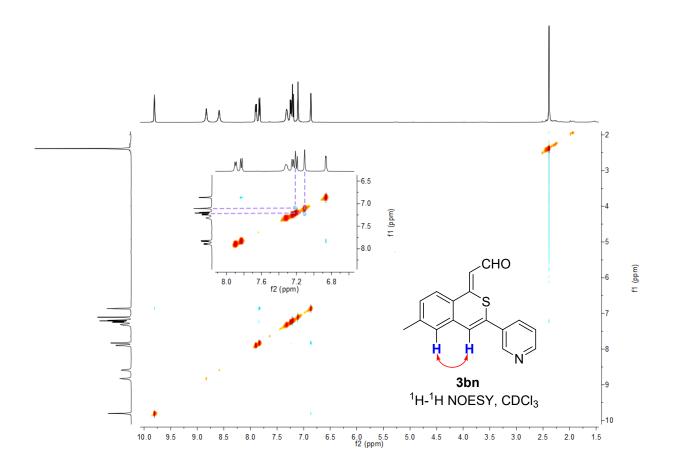


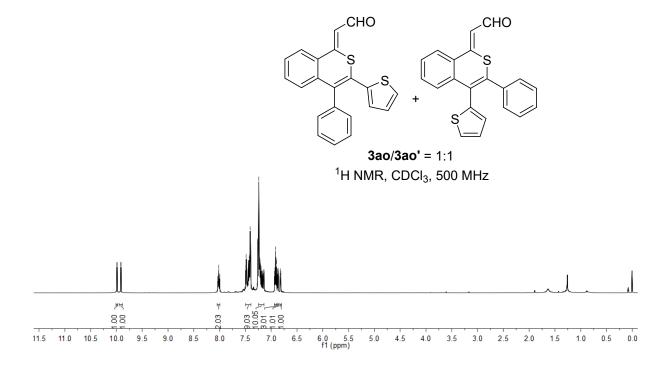


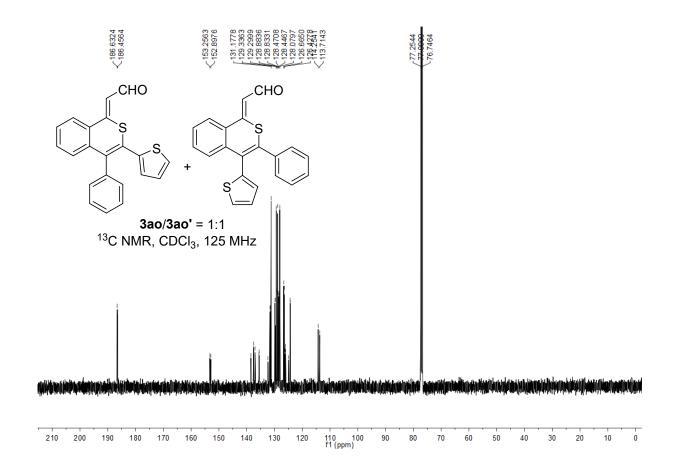
7.9671 7.9607 7.6695 7.5860 7.586 7.4245 7.425 1.7063 1.6903 1.6944 1.5944 1.0453 1.0154

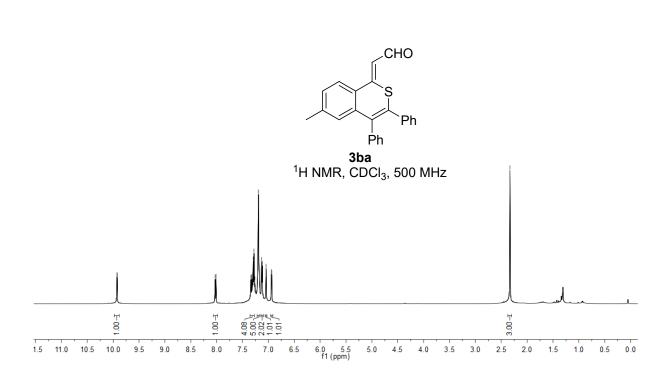


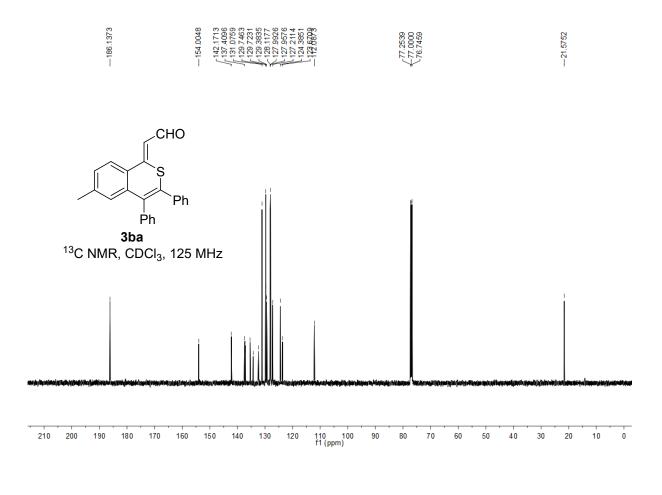


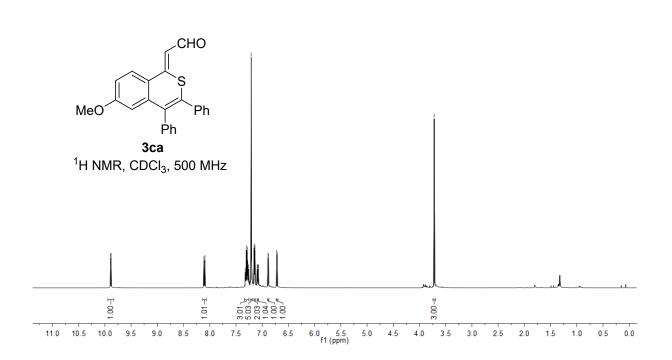


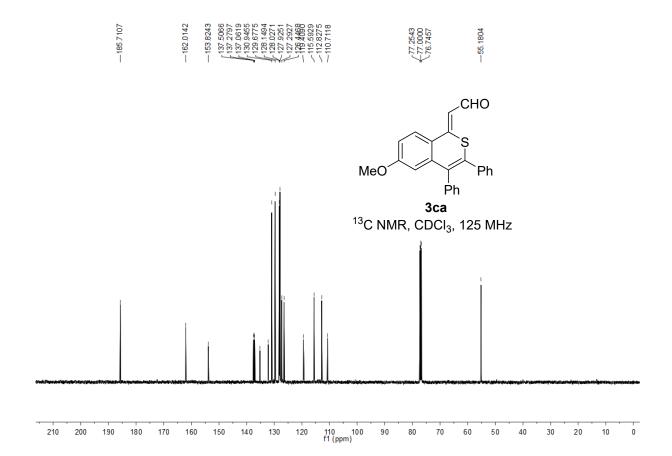




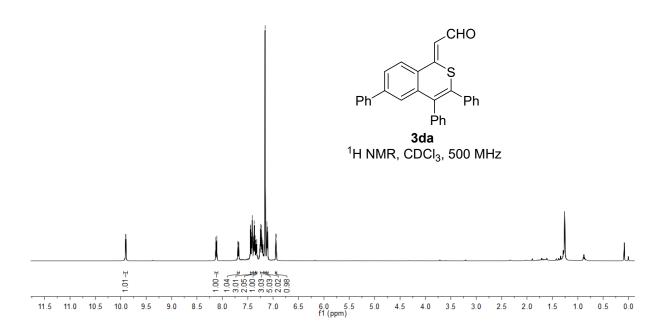


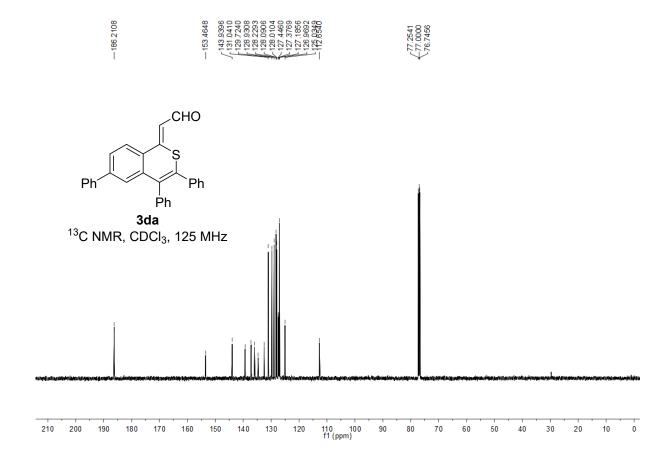




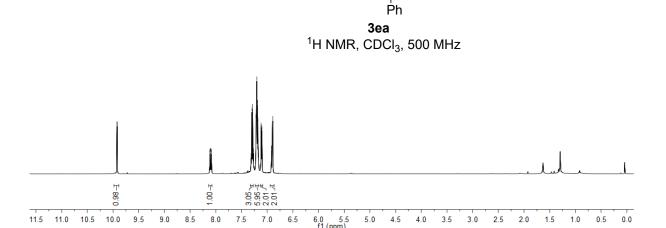


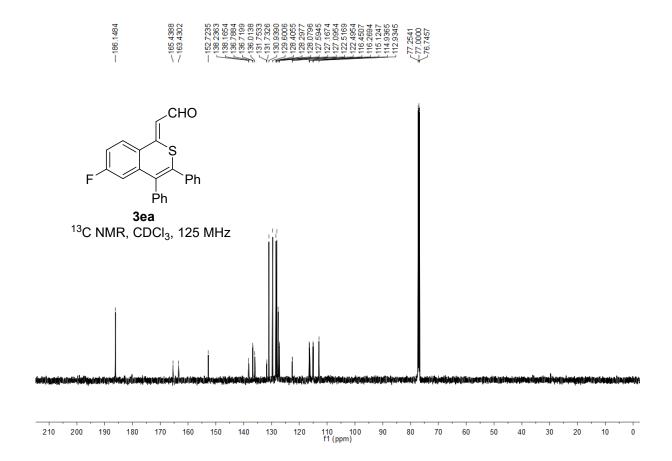
8.0285 8.0118 8.0118 7.3220 7.3231 7.7293 7.7293 7.7293 7.7293 7.7293 7.7164 6.9417 6.9340

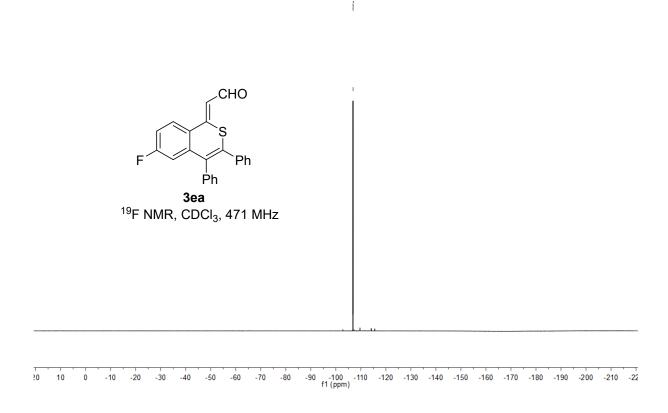


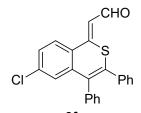


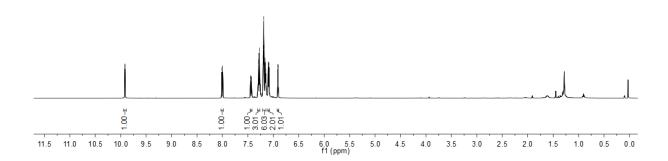
8.1101 8.0918 7.31291 7.2394 7.2896 7.2896 7.2897 7.0991 7.099

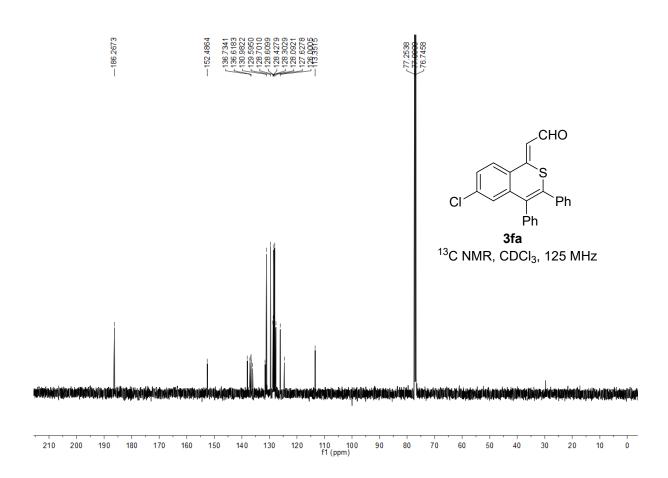


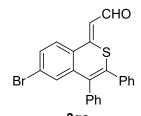




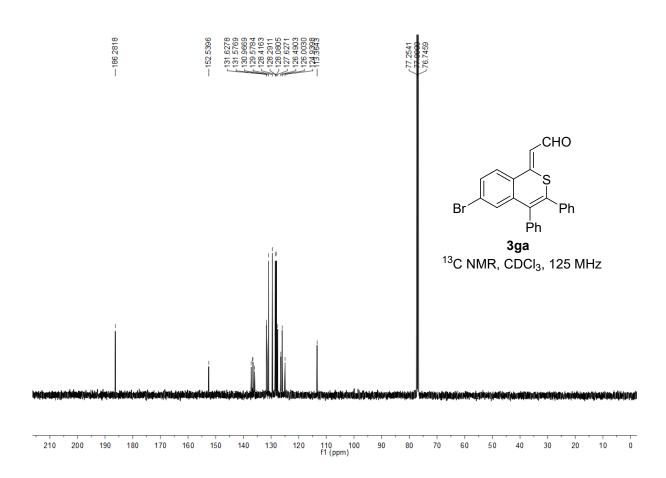


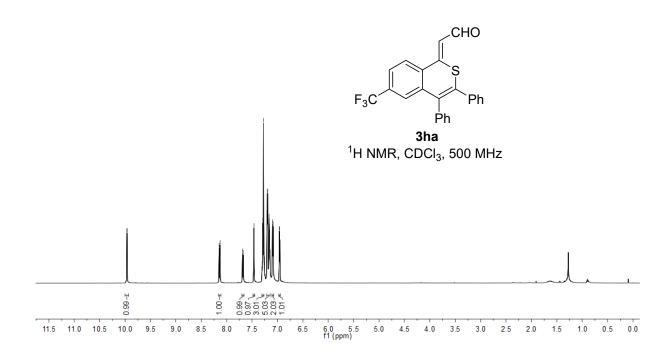

CHO

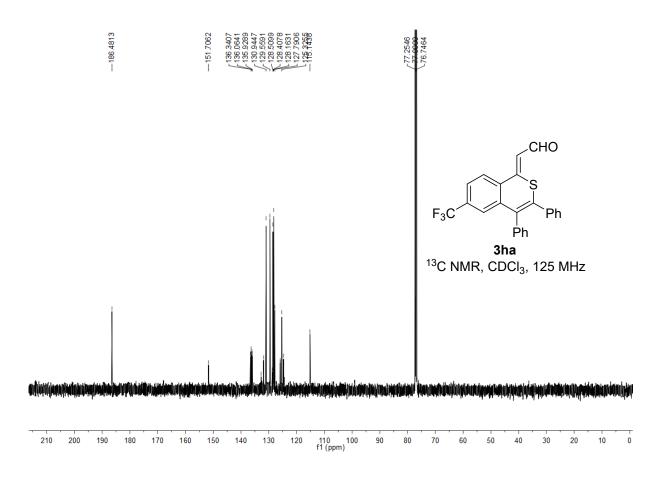




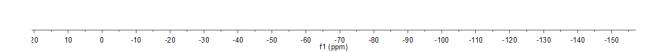
 $\begin{array}{c} \textbf{3fa} \\ ^{1}\text{H NMR, CDCI}_{3}, 500 \text{ MHz} \end{array}$

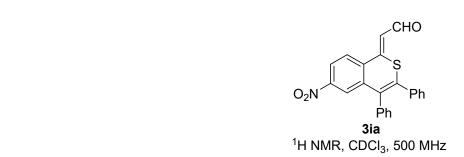


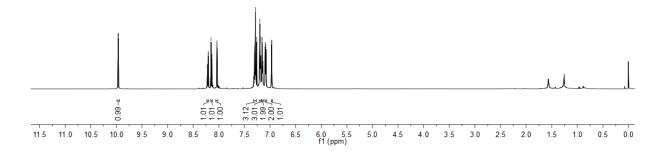


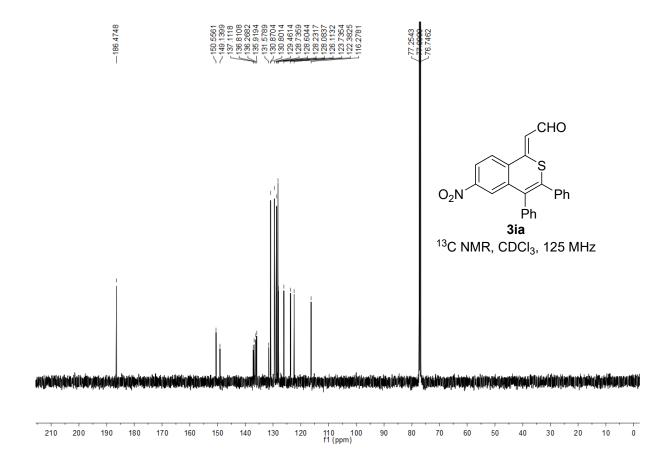


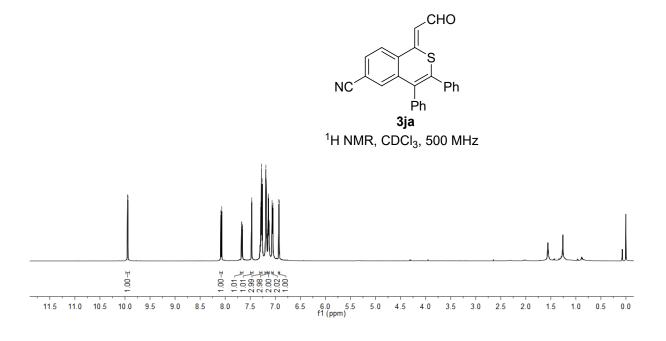
3ga ¹H NMR, CDCl₃, 500 MHz

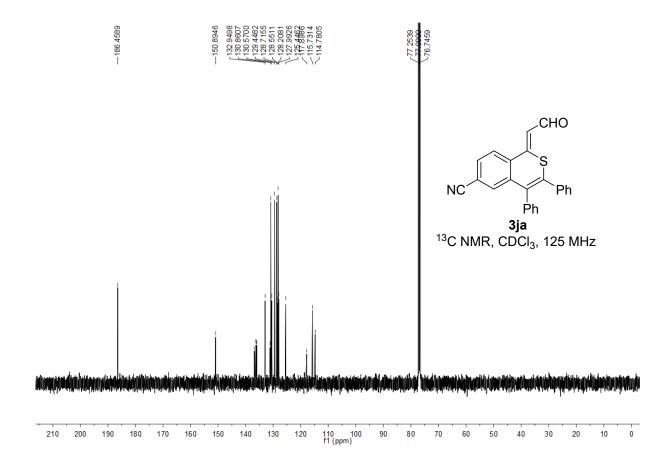


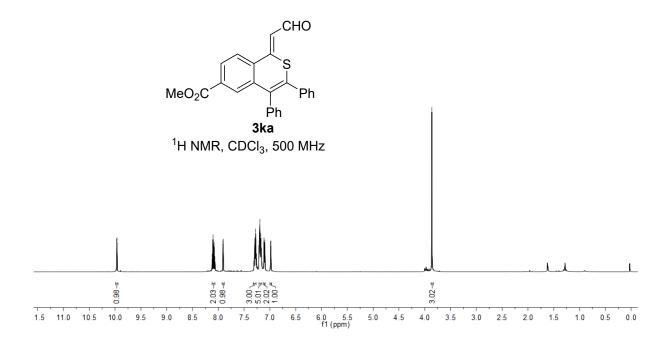


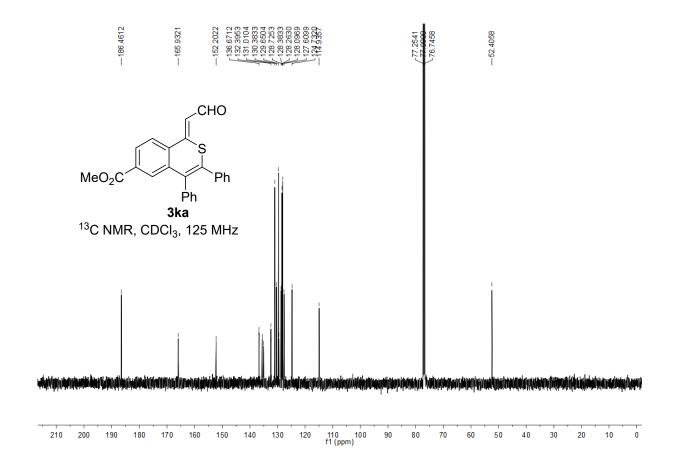


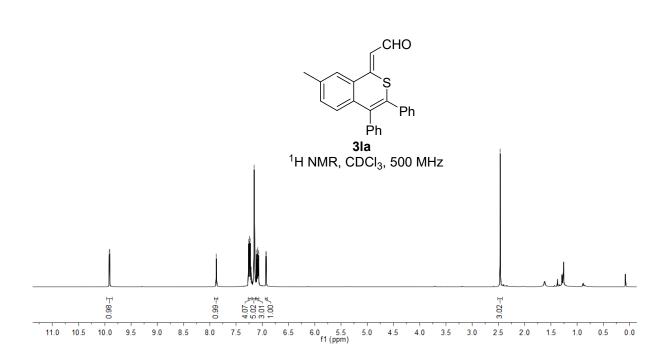

¹⁹F NMR, CDCl₃, 471 MHz


9 9 9 6 6 1 8 2 2 5 5 6 1 8 2 2 6 6 1 8 2 2 6 6 1 8 2 3 3 4 1 8 3 3 3 4 1 7 3 1 3

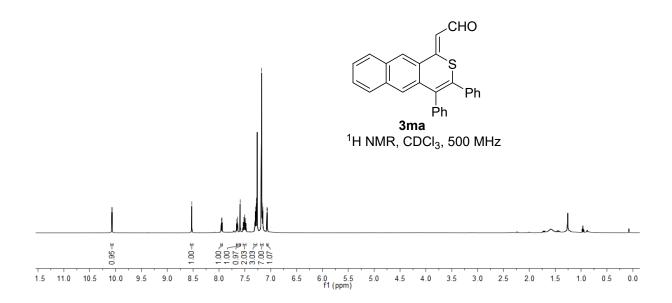


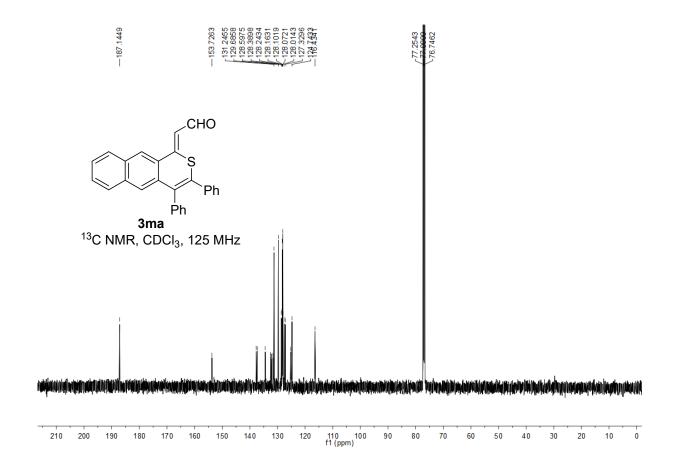


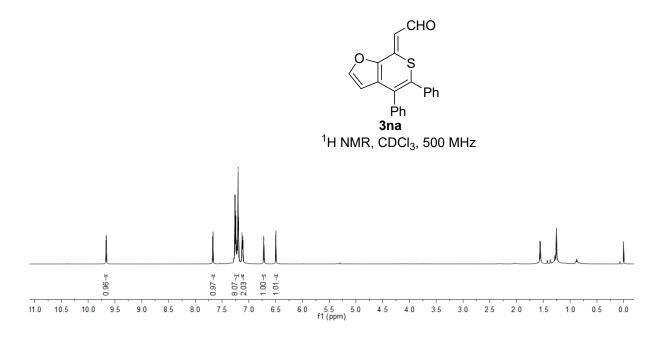


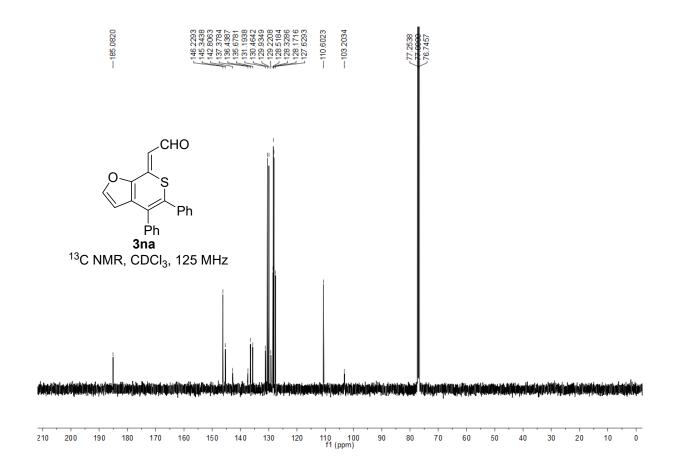


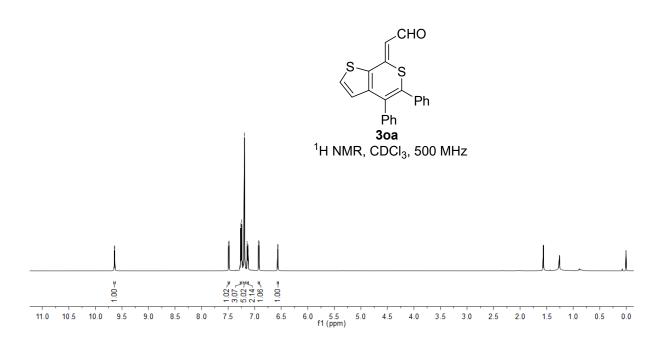


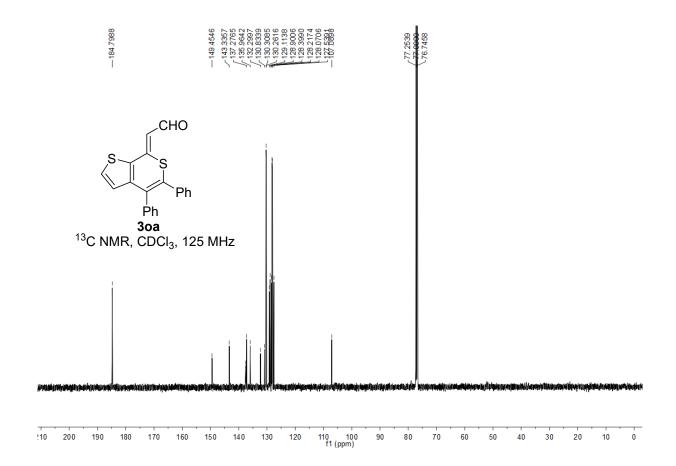


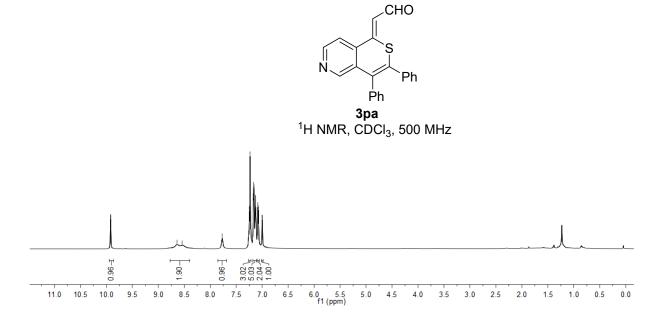


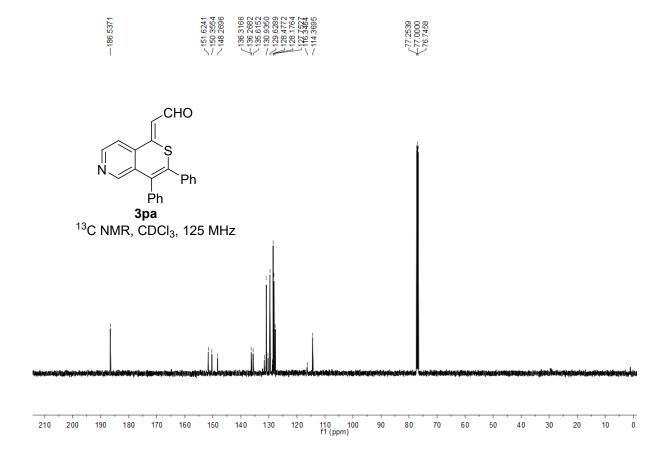


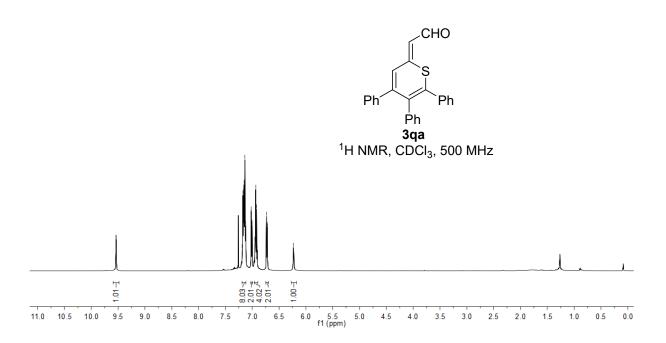


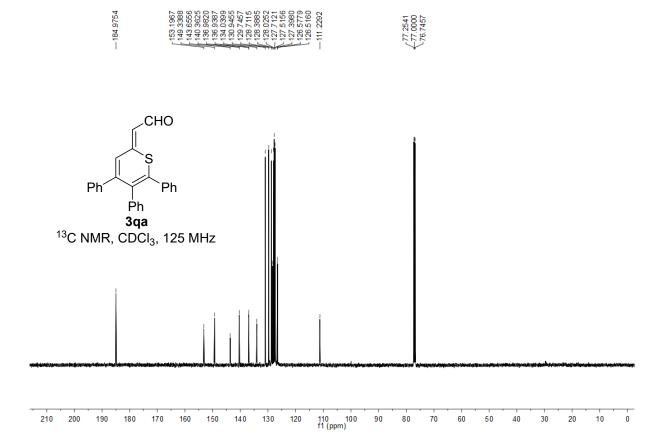


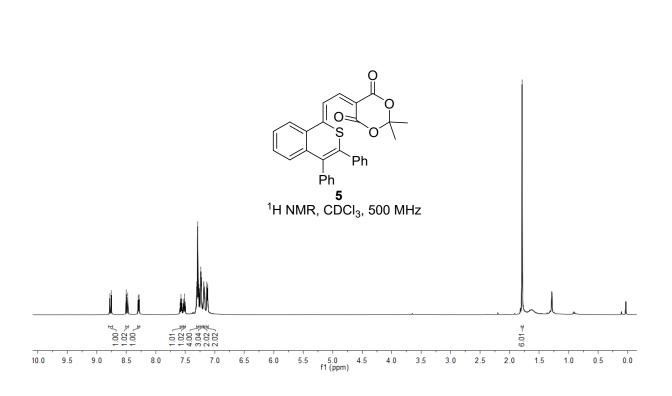


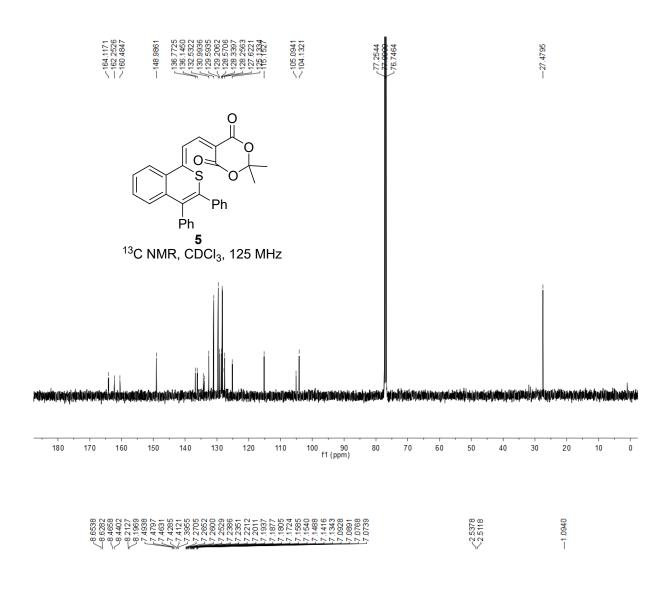


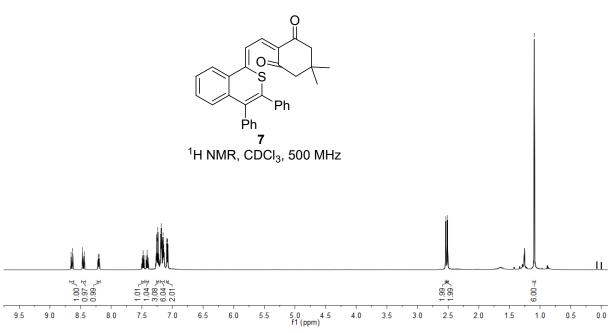


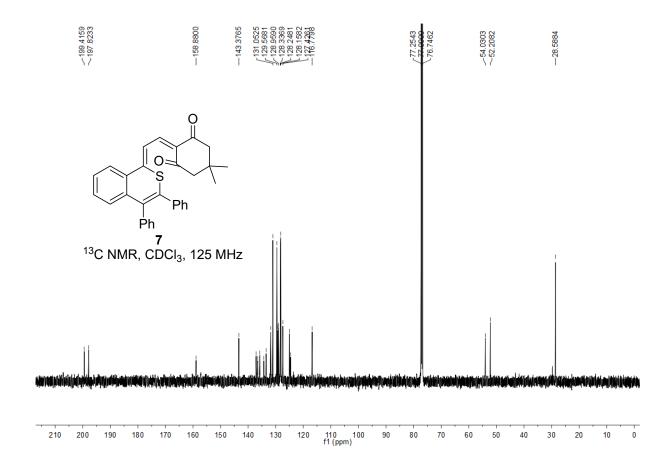












-1.7883

