Growth Kinetics Controlling of CsPbX₃ Nanocrystals through Spatial Confinement Effect

Wanying Zhang^{a,b}, Zhiqing Wang^c, Fen Li^a, Zixin Gu^a, Keqiang Chen^{a,b*}, Guogang Li^{a,*}

¹Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan

430074, China

²Shenzhen Research Institute, China University of Geosciences, Shenzhen 518052, China

³State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and

Engineering, Wuhan University of Technology, Wuhan 430070, China

[*] Corresponding authors:

Prof. Keqiang Chen E-mail: chenkeqiang@cug.edu.cn Prof. Guogang Li E-mail: ggli@cug.edu.cn

Experimental Section

<u>Materials</u>: Cesium acetate (CsAc, C₂H₃CsO₂, 99.9% metals basis), lead acetate trihydrate (PbAc₂·3H₂O, C₄H₆O₄Pb·3H₂O, 99.99%), magnesium iodide hydrate (MgI₂·xH₂O, 98%), magnesium bromide (MgBr₂, 98%), hydroiodic acid (HI, 55-58%), hydrobromic acid (HBr, 48 wt. % in H₂O, 99.99%) oleic acid (OA, C₁₈H₃₄O₂, AR), oleylamine (OAm, C₁₈H₃₇N, 80-90%), acetonitrile (C₂H₃N, HPLC), n-hexane (C₆H₁₄, 98%). The above chemicals are all purchased from Aladdin and can be used directly without any purification.

<u>Preparation of Cs/Pb-OA precursor solution</u>: CsAc (0.5 mmol) and PbAc₂ (0.5 mmol) were added into oleic acid (1 mL). The mixture was then stirred and heated at 120 °C for 30 min to dissolve the salts.

<u>Synthesis of CsPbBr₃ or CsPbI₃ NCs</u>: MgX₂-HX solution (100 μ L, 2 M or 1 M for CsPbBr₃ or CsPbI₃, respectively) was mixed with acetonitrile (5 mL) to receive the solution **A**. OAm (100 μ L) and Cs/Pb-OA (100 μ L) were added into 10 mL of hexane to get the solution **B**. Under continuing stirring, a certain amount of solution **B** was injected into solution **A**, the reaction was stopped after 1 min. Then, the crude solution was centrifugated at 9000 rpm for 5 min, and the NCs dispersed in the upper layer (hexane) was collected. More details can be found in **Table S2**.

<u>Characterization:</u> Powder XRD patterns were recorded using a Bruker D8 Advance X-ray diffractometer (Cu Ka, 1 = 1.5406 Å). TEM analysis was carried out with an FEI Talos F200X microscope at an operating voltage of 200 kV. UV-vis absorption spectra were obtained using a Specord 200 Plus spectrophotometer. PL and PL lifetimes were obtained by using an EI-FLS1000 fluorescence spectrometer (Edinburgh Instruments) equipped with an integrating sphere. By using atomic forcemicroscopy in ScanAsyst-Air mode (AFM, Multi Mode 8, Bruker).

Computational methods: Density-functional theory (DFT) calculations were

performed using the Device studio program (from HZWTECH). The generalized gradient approximation with the Perdew–Burke–Ernzerhof functional was employed for geometric optimization. A grid with $3 \times 3 \times 1$ k-points was used for Brillouinzone integration. In addition, the inner electrons of Cs, Pb, and I atoms were kept frozen and substituted by effective core potentials; this approximation was not applied to the other atoms during these calculations. A Fermi smearing of 0.005 Hartree was used to accelerate convergence, and the real-space cutoff was set to 6.2 Å in order to improve the computational performance. In addition, the tolerances on energy, force, and displacement convergence were set to 1×10^{-5} Hartree, 2×10^{-3} Hartree Å⁻¹, and 5×10^{-3} Å, respectively.

Figure S1. HAADF-STEM and STEM-EDX images of CsPbBr₃ NCs.

Figure S2. HAADF-STEM and STEM-EDX images of CsPbI₃ NCs.

Figure S3. PL spectra of CsPbBr₃ NCs protected from light (a) or under UV lamp irradiation (b).

Figure S4. PL spectra of CsPbX₃ NCs ultra-wide spectral ranges.

Figure S5. TEM and HRTEM image of CsPbBr₃ (a,b) and CsPbI₃ (c,d) NCs

Figure S6. PL spectra of perovskite quantum dots from different batches (a) CsPbBr₃, (b) CsPbI₃.

Samp	le	τ_1 (ns)	A_1 (%)	τ_2 (ns)	A ₂ (%)	τ_{ave} (ns)
	n=1	5.9	46.2	14.5	46.4	9.4
CsPbBr ₃	n=2	7.4	18.8	14.2	10.4	11.0
	n=3	6.3	35.7	19.2	50.1	14.5
CsPbI ₃	n=1	4.5	32.2	14.1	13.1	13.6
	n=2	11.3	22.3	20.2	22.1	14.9
	n=3	12.2	0.02	43.4	0.01	16.5

Table S1. PL lifetimes of the different samples.

OAm	Cs/Pb-OA	MgX ₂ -HI	Temperature	PL peaks
(µL)	(µL)	(µL)	(°C)	(nm)
160	80	100	0	435
160	80	150	0	459
160	80	200	0	480
160	80	100	60	519
120	80	100	0	541
120	80	150	0	580
120	80	200	20	620
120	80	100	60	662

Table S2. Detailed information for the synthesis of $CsPbX_3$ NCs.

Table S3. PLQY of CsPbX₃ NCs.

San	nple	PL peaks (nm)	PLQY (%)
	n=1	435	52
	n=2	459	72
CSP6Br ₃	n=3	480	85
	n=∞	519	95
	n=1	541	55
	n=2	580	70
CSPDI ₃	n=3	620	72
	n=∞	662	95