† Electronic Supplementary Information (ESI)

Covalent Organic-Inorganic Layered 2D CdCl₂(n-hexylamine)₂ and Not Cd₂S₂(n-hexylamine)

Pavithra Parthiban,^a Urmila Makhija,^a Rachit Pratham,^a Diptikanta Swain,^b Angshuman Nag*^a

^aDepartment of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India.

^bInstitute of Chemical Technology - IndianOil Odisha Campus, Bhubaneswar 751013, India.

*Corresponding author email: angshuman@iiserpune.ac.in

Table S1: Attempts to synthesize Cd_2S_2 (n-hexylamine) lead to formation of Product 1-6. Detailed synthesis of Product-1 is discussed in the manuscript. Product 2-6 are prepared with the same precursor concentrations as in Product-1, but with difference either in reaction apparatus, or in heating time, or in cooling rate, as tabulated below.

Name	Apparatus	Heating time	Cooling rate	
Product-1	Glass vessel in oil bath	30 minute	natural cooling	
Product-2	Glass vessel in oil bath	30 minute	slow cooling ~ 2 °C/ hr	
Product-3	Glass vessel in oil bath	6 hour	natural cooling	
Product-4	Glass vessel in oil bath	48 hour	natural cooling	
Product-5	Acid-digestion bomb in oven	48 hour	natural cooling	
Product-6	Acid-digestion bomb in oven	48 hour	slow cooling ~ 2 °C/ hr	

Fig. S1: Characterization of synthesized products 1-5 (see Table S1) by (a) Powder XRD and (b) optical absorption and PL spectra ($\lambda_{ex} = 405$ nm laser diode).

Fig. S2: Powder XRD of the Product-1 compared with that of the sulphur precursor.

Fig. S3: Size distribution plot of CdS NCs separated from Product-1

Fig. S4: UV-visible absorption spectrum of colloidal CdS NCs is compared with its PL excitation spectra measured at 480 nm (excitonic) and 600 nm (defect-related) emissions.

Empirical formula	$(C_6H_{13}NH_2)_2CdCl_2$		
Formula weight (g/mol)	385.68		
Temperature (K)	100(2)		
Wavelength (Å)	0.71073		
Crystal System	Monoclinic		
Space group	$P2_{1}/c$		
Unit call dimensions	a = 19.6125(16) Å, $b = 5.5243(4)$ Å,		
	$c = 8.0101(7) \text{ Å}, \beta = 90.068(3)^{\circ}$		
Volume (Å ³)	867.86(12)		
Ζ	2		
Calculated density (g/cm ³)	1.476		
F(000)	396		
Crystal size	$0.157 \times 0.136 \times 0.104 \text{ mm}^3$		
$\theta_{\min,\max}$	2.077, 28.384		
h _{min,max}	-26, 26		
k _{min,max}	-7, 5		
l _{min,max}	-10, 10		
Absorption coefficient (mm ⁻¹)	1.551		
Reflections collected	17561		
Unique reflections/ No. parameters	2170/81		
Goodness-of-fit	1.047		
Final R indices (I> 2σ (I))	$R_{obs} = 0.0417, wR_{obs} = 0.0939$		
CCDC Number	2356630		

Table S2: Crystallographic data for CdCl₂(n-hexylamine)₂ obtained from single crystal XRD data collected at 100 K.

Table S3: Bond lengths and angles involved in the hydrogen-bonding network of CdCl₂(n-hexylamine)₂.

Sl. No	D-H -A	D - H(Å)	HA(Å)	DA(Å)	∠D - HA/°
1	N1-H1A-Cl1	0.910	2.512	3.315	147.37
2	N1-H1B-Cl1	0.910	2.460	3.351	166.39

Covalent organic-inorganic PbI₂(4,4'-bipyridyl). The synthesis protocol is adapted based on ref 41 of the manuscript, after minor modifications. A solution of PbI₂ was made by adding 230 mg (0.5 mmol) PbI₂ in 1 mL dimethylformamide followed by sonication for 10 minutes. In a different vial, 78 mg (0.5 mmol) 4,4'-bipyridine was dissolved in 1 mL methanol. Then, the methanol solution of 4,4'-bipyridine was slowly injected to the PbI₂ solution along the walls

of the vial. A light yellow colored product precipitated out immediately, which was washed with ethanol three times and then with acetone.

Structure and properties of Pbl₂(4,4'-bipy)

Fig. S5: (a) Packing diagram of $PbI_2(4,4'-bipyridyl)$ as shown by single crystal XRD data reported in ref 41 of the manuscript. (b) Comparison of experimental powder XRD data of $PbI_2(4,4'-bipyridyl)$ with the simulated pattern from reference data (ICSD 154548). Also, the powder XRD pattern of the sample remains unchanged after immersing the sample under water for 4 days. (c) UV-visible absorption and PL spectra of $PbI_2(4,4'-bipyridyl)$ in the powder form. The absorption spectrum is obtained from the measured diffused reflectance spectrum by using Kubelka-Munk equation (see Experimental Section), where α is the absorption coefficient, and *S* is the scattering factor.

Synthesis of PbI₂(ethylenediamine)₂. Lead iodide (0.9 mmol, 414.9 mg,) was dissolved in 1.5 mL of ethylenediamine (solvent as well as reactant) by heating to ~70 °C rendering a transparent solution. The reaction mixture was then left to cool naturally to room temperature, resulting into the formation of a white precipitate. The precipitate was washed with ethanol and acetone, followed by drying in vacuum. The synthesized compound is confirmed to be $PbI_2(ethylenediamine)_2$ on comparison of the powder XRD pattern (Fig. S5) with that in prior literature (Ref. 43 of manuscript).

Fig. S6: (a) Packing diagram of PbI₂(ethylenediamine)₂ obtained from the single crystal XRD data reported in ref 43 of the manuscript. Pb is coordinated with two I and four N atoms. (b) Powder XRD patterns of PbI₂(ethylenediamine)₂ measured at room temperature compared to the simulated reference (ICSD 673646) pattern of the same compound at 123 K. (b) Optical absorption spectrum of PbI₂(ethylenediamine)₂ at room temperature. Experimentally measured diffused reflectance spectrum was converted to the absorption spectrum by using the Kubelka-Munk equation, where α is the absorption coefficient, and *S* is the scattering factor.