A luminescent coordination polymer constructed from fluorene-

based bifunctional ligands for the selective detection of tetracyclines

and 2,4,6-trinitrophenol

Guiling Wu,^a Chuanzong Dong,^b Pinzhen Liu^a and Chunyang Zheng*^b

^a College of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duvun 558000, PR China

^b Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China. * E-mail: cyzheng@hbnu.edu.cn

CONTENTS

Materials, physical measurement	S3
Fluorescence measurements	S3
Table S1. SHAPE analysis of the Cd^{II} and Pb^{II} ions in CP-Cd and CP-Pb	S4
Table S2 Structure of 9 antibiotics	S5
Table S3 Structure of 8 phenols	S6
Table S4 Comparison of CP-Cd with recent CPs luminescent sensors for TN and CT	TC S7
Table S5 Comparison of CP-Cd with recent CPs luminescent sensors for TNP	S8
Fig. S1 ¹ H NMR of 1 in CDCl ₃	S9
Fig. S2 ¹ H NMR of 2 in CDCl ₃	S9
Fig. S3 ¹³ C NMR of 2 in CDCl ₃	S9
Fig. S4 ¹ H NMR of 3 in CDCl ₃	S10
Fig. S5 ¹ H NMR of 3 in CDCl ₃	S10
Fig. S6 ¹ H NMR of 3 in DMSO- d_6	S10
Fig. S7 ¹ H NMR spectra of H ₂ L in DMSO-d ₆	S11
Fig. S8 ¹³ C NMR spectra of H_2L in DMSO-d ₆	S11
Fig. S9 Molecular structure of 3	S12
Fig. S10 Coordination environment of Pb ²⁺ in CP-Pb and 2D network of CP-Pb	S12
Fig. S11 2D Fingerprint plot of H ₂ L	S12
Fig. S12 2D Fingerprint plot of CP-Cd	S12
Fig. S13 The fluorescence quenching efficiency in 8 different phenols	
Fig. S14 IR spectra of CP-Cd after sensing different analyte	S13
Fig. S15 PXRD patterns of CP-Cd after the detection of analytes	S13
Fig. S16 Overlap between the UV of phenols and the EX or EM spectrum of CP-Cd	
Fig. S17 The TG curve for CP-Cd under N ₂ atmosphere	S14

Materials, physical measurement

all solvents and materials are purchased from Energy Chemical Reagent Co., Ltd. and can be used without any purification. The Single-crystal diffraction data **3**, **H**₂**L** and **CP-Cd** were collected on a Rigaku Corporation XtaLAB Synergy-I with Cu-K α radiation (λ =1.54184 Å) and Bruker APEX-II CCD with Mo-K α radiation (λ =0.71073 Å) for **CP-Pb**. Powder X-ray diffraction (PXRD) measurements were carried out on Bruker D2 Phaser diffractometer with Cu-K α radiation (λ =1.54186 Å). Thermo gravimetric analysis (TGA) was carried out with a NETZSCH STA 449F5 (TG/DTA) thermal analyzer in temperature region of 25–800 °C with heating rate of 10 °C·min⁻¹ under nitrogen flow. IR spectra of the two compounds were performed on a Bruker AXS TENSOR-27 FT-IR spectrometer (FTIR) with pressed KBr pellets in the range of 4000–400 cm⁻¹. Fluorescence measurements were carried out on an F4700 (Hitachi) fluorescence spectrophotometer at room temperature. UV-vis absorption analysis was performed on a U-3010 spectrophotometer at room temperature. The ¹H and ¹³C NMR spectra were recorded on Bruker AV 300 MHz.

Fluorescence measurements

Well-ground powder of **CP-Cd** (2 mg) was suspended in deionized H_2O (2 mL) using ultrasound for 30 min. For each sensing experiment, a 0.2 mM aqueous solution of antibiotics or phenols solutions were prepared and titrated into the suspension of **CP-Cd** at ambient temperature. Then, the fluorescence emission intensities of different metal ions in the mixed solvent system were measured. The anti-jamming capability of **CP-Cd** was verified by competitive experiments by adding various other analytes (0.2 mM) into **CP-Cd** (2 mg) with a TNP or two tetracyclines (0.2 mM) suspension in 2 mL H₂O after sonication.

name	label	shape	symmetry	distortion(τ)
	HP-6	Hexagon	D_{6h}	33.327
CP-Cd	PPY-6	Pentagonal pyramid	$C_{5\mathrm{v}}$	13.399
	OC-6	Octahedron	$O_{ m h}$	10.307
	TPR-6	Trigonal prism	D_{3h}	7.791
	JPPY-6	Johnson pentagonal pyramid J2	$C_{5\mathrm{v}}$	17.817
	HP-6	Hexagon	D_{6h}	22.437
CP-Pb	PPY-6	Pentagonal pyramid	$C_{5\mathrm{v}}$	18.514
	OC-6	Octahedron	$O_{ m h}$	18.211
	TPR-6	Trigonal prism	D_{3h}	15.990
	JPPY-6	Johnson pentagonal pyramid J2	$C_{5\mathrm{v}}$	18.612

Table S1. SHAPE analysis of the Cd $^{\rm II}$ and Pb $^{\rm II}$ ions in CP-Cd and CP-Pb

Name	Structure	Name	Structure
Sulfadiazine SDZ	the p	Dimetridazole DTZ	and a
Ciprofloxacin CPF	and a standard and a Standard and a standard and a standard Standard and a standard	Ornidazole ODZ	
Chloramphenicol CAP	No and a second	Sulfamethazine SMZ	A Ar
Metronidazole MDZ	2. 2. 2. 2. 4.	Tetracycline TC	
Chlortetracycline CTC	A Contraction		

 Table S2 Structure of 9 antibiotics

Name	Structure	Name	Structure
phenol PO	OH	m-dihydroxybenzene m-DHB	PH H
p-dihydroxybenzene p-DHB	OH OH OH	2-nitrophenol 2-NP	OH NO ₂
3-nitrophenol 3-NP		4-nitrophenol 4-NP	OH NO ₂
2,4,6-Trinitrophenol TNP		2,4-dinitrophenol DNP	

 Table S2 Structure of 8 phenols

LCPs-based chemosensor	Analyst	<i>K</i> sv / M ⁻¹	LOD	Medium	Ref.
$ \{ [Cd(BrBDC)_2(DABCO)_2(DM F)] \cdot 0.5DMF \} n $	TC	9.87 × 103	2.7 μM	H ₂ O	S1
[Ni(bim) ₂ (H ₂ O) ₄](1,5-nds)· (H ₂ O) _{0.5}	TC	4.1×10 ⁴	0.82 ppm	H ₂ O	S2
${[Zn(2,6-NBC)(H_2O)]}$ 0.5(H ₂ O)} _n	TC	3.15×10 ⁴	70 nM	H ₂ O	S3
${[Cd(HL)(tpytz)(H_2O)]}_n$	TC	2.776×10 ⁵	0.18 µM	H ₂ O	S4
$ \{ [Zn(L)_{0.5}(bpy)_{0.5}(H_2O)] \cdot H_2O \cdot \\ DMF \} n $	TC	6.90×10 ⁴	0.552 μM	H ₂ O	S5
$\{[Tb(\mu_6\text{-Hcaa})(H_2O)]Cl\}_n$	TC	7.12×10 ⁴	0.25 μΜ	H ₂ O	5(
	CTC	7.51×10 ⁴	0.24 μM	H ₂ O	50
CP-Cd	ТС	3.24×10 ⁴	0.103 μM	H ₂ O	this
	СТС	4.91×10 ⁴	0.098 µM	H ₂ O	work

Table S4 Comparison of CP-Cd with recent LCPs-based luminescent sensors for CTC and TC

- S1. A1. S. Datta, P. Ghorai, M. K. Chattopadhyay, N. C. Jana, P. Banerjee, M. H. Mir, Cryst. Growth Des., 2024, 24, 8645-8654.
- S2. G. Wang, Y.-C. Wang, J. Lu, W.-F. Yan, J. Jin, Y.-P. Wang, J.-J. Zhang, H.-J. Zhang, H. Dong, X.-G. Liu, *Dyes Pigments*, 2024, 221, 111832.
- S3. C. Hong, Y.-L. Huang, L. Li, J.-Y. Zou, E.-L. Wang, L. Zhang, Y.-W. Liu, S.-Y. You, J. Mol. Struct., 2024, 1299, 137113.
- S4. T. Liu, M. Ji, J. Zheng, N. Liu, H. Hao, J. Dou, J. Jiang, Y. Li, S. Wang, J. Mater. Chem. C 2024, 12, 17635-17646.
- S5. L. Wang, T. Liu, J. Cheng, H. Zou, J. Lu, H. Liu, Y. Li, J. Dou, S. Wang, J. Mol. Struct., 2024 1296, 136815.
- S6. Y. Zhang, A. Wang, S. Feng, C. Yuan and L. Lu, Dalton Trans., 2023, 52, 5243-5251.

LCPs-based chemosensor	Ksv / M ⁻¹	LOD	Medium	Ref.
CdMOF-NH ₂	2.1×10 ⁴	0.031 µM	ЦО	S7
ZnMOF-NH ₂	2.23×10 ⁴	0.045 μM	П ₂ О	
${[Eu_6L_6(\mu-OH)_8(H2O)_3]_8 \cdot H_2O_n)}$	1.92×10^{4}	1.93 μM	DMF	S8
$[Zn_2(tdc)_4(pdiq)_3]$	0.8×10 ⁵	0.154 μM	H ₂ O	S9
$[Cd_3(H_2O)(H_3L)_2(dia)_2] \cdot 4DMA \cdot 10H_2O$	1.43×10 ⁵	NR	H ₂ O	S10
[Zn-(PBBA)(H ₂ O)]·3DMF·2H ₂ O	4.4×10 ⁴	1.0 µM	H ₂ O	S11
CP-Cd	4.77×10 ⁴	0.147 μM	H ₂ O	This work

Table S5 Comparison of CP-Cd with recent LCPs-based luminescent sensors for TNP

- S7. M. Kaur, M. Yusuf, Y. F. Tsang, K. H. Kim, A. K. Malik, *Sci Total Environ.*, 2023, 857, 159385.
- Y. Zhao, C. A. Wang, J. K. Li, Q. L. Li, Q. Guo, J. Ru, C. L. Ma, Y. F. Han, *RSC Adv.*, 2022, 12, 26945-26952.
- S9. G. Bairy, A. Dey, B. Dutta, S. Maity, C. Sinha, Dalton Trans., 2022, 51, 13749-13761
- S10. Q. An, S. Bao, X. Li, J. Sun and Z. Su, New J. Chem., 2022, 46, 11377-11381.
- S11. W. Liu, J. Qiao, J. Gu and Y. Liu, Inorg. Chem., 2023, 62, 1272-1278.

Fig. S6 13 C NMR spectra of **3** in DMSO-d₆

Fig. S9 Molecular structure of 3

Fig. S10 (a) Coordination environment of Pb^{2+} in **CP-Pb**;

Fig. S12 2D Fingerprint plot of CP-Cd

Fig. S13 The percentage of fluorescence quenching efficiency in 8 different phenols

Fig. S14 IR spectra of CP-Cd after sensing different analytes

Fig. S15 PXRD patterns of CP-Cd after the detection of analytes

Fig. S16 Overlap between the UV absorption spectra of various phenols

······

Fig. S17 The TG curve for CP-Cd under N2 atmosphere