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Table S1. A brief survey of CO, reduction performances of reported photocatalysts.

Productivity Ref

Samples Sacrificial agent Products (umol/g/h)

. Thi
Ui066-NH,@In,05 H,0 Co 69.30 Woﬁ(
Ag/GaOOH/CaTiOs H,O CO 0.04 1
Ui066 with Defects H,O CO 1.33 2
UiO68-NH,-ML100 TEOA CO 21.3 3

. RU(bp}/)j,Clz : 6H20
Ni-MOF (H,0) TEOA CO 9610 4
Co-MOEF/Cu,O H,O CO 3.83 5

CO 0.6

PCN222-Cu@TpPal H,0 CH, 13 6
PCN-224(Cu)/TiO, H,0 CO 37.21 7
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Figure S1. The standard XRD pattern of In,O; and UiO66-NH, shows that the main

In,O; peaks around 30° and 35° overlap with the diffraction peaks of UiO66-NH,,

making it difficult to distinguish the In,O; phase in the heterostructure.
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Figure S2. (a, b) The estimated band gap of UiO66-NH, and In,0O5 from Tauc plots. (c,
d) Mott-Schottky curves of samples tested at 1000 Hz and 1500Hz in 0.5 mol L!

Na,SO;, solution.
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Figure S3. XRD patterns of InN3;09-xH,0 (a) and InN304-xH,0 calcined at 250 °C
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(b), 280 °C (c), and 300 °C (d). XRD analysis confirmed that calcination at 250 °C, 280

°C, and 300 °C for 4 hours consistently produced pure In,0O3, as no diffraction peaks

corresponding to indium nitrate were observed.
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Figure S4. XRD patterns of UiO66-NH,@In** calcined at 300 °C (a) and 350 °C (b).
Increasing the calcination temperature to 300 °C resulted in significantly weakened
XRD diffraction peaks, though they remained assignable to UiO66-NH,, indicating
partial structural collapse (Figures S4a). At 350 °C, the XRD peaks corresponding to
UiO66-NH, disappeared entirely, and only ZrO, and In,O; diffraction peaks were
observed, signaling complete framework decomposition. Specifically, the main
diffraction peaks of In,O; overlap with the peaks of ZrO, at around 30° and 35° (20),
which makes it difficult to distinguish the In,O5 phase in the XRD pattern. The standard
XRD pattern of In,0j5 is for reference (PDF#06-0416). To provide a clearer view of the
phase conversion of UiO66-NH,@In?*, the bottom of Figure S4 provides a detailed
description of the product transformation as the calcination temperature increases from
250°C to 350°C. Initially, the product is UiO66-NH,@In,05 (250°C), which gradually
transitions into a partially collapsed structure, UiO66-NH,(ZrO,)/In,O5 (300°C).

Ultimately, the structure fully collapses, resulting in a ZrO,/In,O3; composite (350°C).



Figure S5. SEM images of UiO66-NH,@In3" calcined at 300 °C (a) and 350 °C (b).

SEM analysis revealed that samples calcined at 300 °C exhibited partially collapsed
structures with traces of octahedral morphology and the emergence of numerous
nanoparticles (Figures S5a). At 350 °C, the structure collapsed entirely, leaving only

aggregated nanoparticles (Figures SSb).
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Figure S6. Photoelectrochemical measurements of UiO66-NH,, In,O3, and UiO66-

NH,@In,05 confirm enhanced photocatalytic activity, as evidenced by the significantly
higher photocurrent observed for UiO66-NH,@In,0;.



