Supporting Information (SI) for

A Flexible Molecular Organic Crystals with $\pi-\pi$ Bonding for the Highly Selective Recognition of Hydrogen Isotopes

Min Lei, †^a Lisha Jiang, †^b Chunhui Wang,^a Jianxin Song,^b Wei Liu*^b and Jie Qiu*^a

^a School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

^b School of Environmental and Material Engineering, Yantai University, Yantai, 264005, Shandong, China

[†]These authors contributed equally to this work.

*Corresponding author: Prof. Jie Qiu; E-mail: <u>qiujie1228@xjtu.edu.cn</u>

*Corresponding author: Prof. Wei Liu; E-mail: <u>wliu@ytu.edu.cn</u>

Content

Figure S1. Microscopic images of crystals of ASP-1011
Table S1. Crystallographic data of the fresh crystal of ASP-101
Table S2. Crystallographic data of the dried crystal of ASP-101
Table S3. Hydrogen bond data of ASP-1013
Figure S2. Quantum yield of ASP-1014
Figure S3. The powder X-ray diffraction pattern and fluorescence data of H_4ADIP 4
Figure S4. The emission spectra of ASP-101 in H ₂ O and D ₂ O5
Figure S5. Support information for fluorescence detection of H ₂ O and D ₂ O5
Figure S6. The emission spectra of H ₄ ADIP in H ₂ O and D ₂ O6
Figure S7. Fourier transform infrared spectra of H ₄ ADIP and ASP-101 in H ₂ O/D ₂ O6
Figure S8. Thermogravimetric and DSC curves of ASP–101 after being soaked in H_2O
and D ₂ O7
Table S4. Elemental analysis results of ASP -101 before and after being soaked in H ₂ O
and D ₂ O7
Figure S9. The 7.0 to 8.5 ppm region of ¹ H-NMR spectrum of ASP-101 after its partial
dissolution in D ₂ O7

Figure S1. Microscopic images of crystals of ASP-101.

Measurement of the fresh crystal of ASP-101 by Single Crystal X-ray Diffraction: The prepared crystals of ASP-101 were transferred from the mother liquor onto the slide. With the aid of a microscope, a rod-shaped crystal, that exhibited no grain or cracks, was selected and mounted on a cryoloop using silicon oil. The corresponding crystallographic data (CCDC: 2381082) are shown in Table S1.

Compound	ASP-101(fresh)
Empirical formula	$C_{38}H_{41}O_{12}S_4$
Mr [g·mol⁻¹]	817.95
Crystal system	monoclinic
Space group	<i>C 2/c</i>
a(Å)	20.809(3)
b(Å)	18.499(2)
c(Å)	10.0983(12)
$\alpha(^{\circ})$	90
β(°)	95.989(6)
γ(°)	90
Volume(Å ³)	3866.1(8)

Table S1. Crystallographic data of the fresh crystal of ASP-101.

Z	4		
$D_c (\mathrm{g}\cdot\mathrm{cm}^{-3})$	1.405		
$\mu(\text{mm}^{-1})$	0.308		
F(000)	1716		
Temperature(K)	150(2)		
GOF on F ²	1.117		
R _{int}	3.3%		
$\mathbf{R}_1^{\mathbf{a}}/\mathbf{w}\mathbf{R}_2^{\mathbf{b}}[I \ge 2\sigma(I)]$	0.0772/0.1755		
$R_1^{a/w}R_2^{b}$ (all data)	0.1062/0.1910		
${}^{a}R_{I} = \Sigma F_{o} - F_{c} / \Sigma F_{o} . {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$			

Measurement of dried crystal of ASP-101 by Single Crystal X-ray Diffraction: Fresh crystals of ASP-101 are prone to absorb water in the air, which may affect the accurate identification of trace water molecules in high-purity heavy water. Thus, fresh crystals of ASP-101 were dried at 65°C for 20 minutes and then measured using a single crystal X-ray diffractometer. The corresponding crystallographic data (Table S2) is almost same to the data in Table S1, indicating that the structure of ASP-101 doesn't change after the dry treatment. Therefore, dried crystals were used in subsequent other tests and experiments.

Compound	ASP-101(dry)
Empirical formula	$C_{38}H_{42}O_{12}S_4$
Mr [g·mol⁻¹]	818.95
Crystal system	monoclinic
Space group	C 2/c
a(Å)	20.819(4)
b(Å)	18.462(4)

Table S2. Crystallographic data of the dried crystal of ASP-101.

c(Å)	10.101(2)			
α(°)	90			
β(°)	96.203(8)			
γ(°)	90			
Volume(Å ³)	3859.6(14)			
Ζ	4			
$D_c (\mathrm{g}\cdot\mathrm{cm}^{-3})$	1.409			
$\mu(\mathrm{mm}^{-1})$	0.309			
F(000)	1720			
Temperature(K) 150				
GOF on F ²	1.039			
R _{int}	16.26 %			
$R_1^{a}/wR_2^{b}[I \ge 2\sigma(I)]$	0.1144 / 0.2638			
R_1^{a}/wR_2^{b} (all data)	0.1631 / 0.2998			
^a $R_{I} = \Sigma F_{o} - F_{c} / \Sigma F_{o} $. ^b $wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$				

Table S3. The bond lengths and bond angles of hydrogen bonds in the structures of fresh and dried crystals of ASP-101.

	D-H-A Bonds	Bond length(Å)	Bond angle	
ASP_101(fresh)	O2-H1O5	2.6416	165.264°	
ASI -101(116511)	O1-H2O3	2.6053	144.359°	
ASP-101(dry)	O9-H9O57	2.8172	146.659°	
	O18-H18O4	2.6438	163.204°	

Figure S2. Quantum yield of ASP-101.

Figure S3. a) The powder X-ray diffraction pattern of H₄ADIP; b) Excitation and emission spectra of H₄ADIP, inset is its fluorescent photograph under 365 nm UV; c, d) Quantum yield and fluorescence lifetime of H₄ADIP.

Figure S4. The emission spectra of ASP-101 in H₂O and D₂O.

Figure S5. a) Luminescence spectra of ASP–101 soaked in the mixed solutions of H_2O and D_2O containing different amount of H_2O (vol.%). b) The correlation between the quenching ratio (I_0 –I)/ I_0 and concentration. c) Relationship between I_0/I –1 and the concentration of H_2O . I_0 and I refer to the luminescence intensity of ASP–101 soaked in D_2O and the mixed solutions of H_2O and D_2O , respectively. The volume concentrations of 0 to 90% correspond to molar concentrations of 0 to 50 M. d) Variation in the luminescence intensity of ASP-101 immersed in a mixed solution of H_2O (1:10 ratio) over time.

Figure S6. The emission spectra of H₄ADIP in H₂O and D₂O.

Figure S7. Fourier transform infrared spectra of H_4ADIP and ASP-101, and the spectra of ASP-101 after being soaked in H_2O and D_2O .

Figure S8. Thermogravimetric curves of ASP-101 after being soaked in H_2O and D_2O , respectively. a) Mass loss curves; b) Differential thermal analysis (DTA) curves.

Table S4. Elemental analysis results of ASP-101 before and after being soaked in H_2O and D_2O , respectively.

Sample	C area	H area	S area	С %	Н %	S %
ASP-101	34106	6830	2250	62.17	4.426	9.308
After D ₂ O	33 853	4 837	264	69.01	3.653	1.160
After H ₂ O	41159	5939	239	69.61	3.619	0.869

Figure S9. The 7.0 to 8.5 ppm region of ¹H-NMR spectrum of ASP-101 after its partial dissolution in D_2O .