Supplementary Information

Revealing the origin of activity and selectivity of nitrate to ammonia on single transition metal atoms catalysts supported by Ti₂NO₂ monolayer

Yuwen Cheng,^{a,b,*} Wenjie Wang, ^a Cuiping Shao,^a

^a School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, PR China

^b Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Maanshan 243002, PR China

*Corresponding Authors

E-mail: ywcheng@ahut.edu.cn;

1. Calculation details

1.1 The Gibbs free energy change (ΔG) for each element step of NO₃RR

The Gibbs free energy change (ΔG) for each step of NO₃RR are calculated by employing the standard hydrogen electrode (SHE) model, via equation (S1)^{1,2}:

$$\Delta G = \Delta E_{\text{DFT}} + \Delta E_{\text{ZPE}} - T\Delta S \tag{S1}$$

 ΔE_{DFT} represents the energy change between the products and reactants, while ΔE_{ZPE} denotes the zero-point energy difference derived from vibrational frequencies, reflecting the entropy change. The temperature (T) is 298K. The catalyst's intrinsic activity hinges on the potential-determining step (PDS), which can be described from maximum Gibbs free energy change (ΔG_{max}) during proton-electron transfer. The PDS allows us to calculate the limiting potential (U_{L}) with the formula $U_{\text{L}} = -\Delta G_{\text{max}}/e$. The ΔZPE -T ΔS of intermediates adsorbates are referred from previous works and NIST.^{3,4}

1.2 Binding energy

The binding energy (E_b) of TM with Ti₂NO₂ can be evaluated by eq (S2)⁵

$$Eb = E_{TM@Ti_2NO_2} - E_{TM} - E_{Ti_2NO_2}$$
(S2)

where $E_{TM@Ti_2NO_2}$, $E_{Ti_2NO_2}$, and E_{TM} represent the total energies of Ti₂NO₂ with and without TM

loading, and single TM atom, respectively.

1.3 Adsorption energy of NO₃-

To avoid calculating the energy of charged NO_3^- directly, gaseous HNO_3 is chosen as a reference based on the following steps.⁶⁻⁸

$$HNO_3(g) \rightarrow HNO_3(l)$$
 (S3)

$$HNO_3 (1) \rightarrow H^+ + NO_3^-$$
(S4)

$$^{*}+\mathrm{NO}_{3}^{-} \rightarrow ^{*}\mathrm{NO}_{3}+e \tag{S5}$$

as a result, the NO₃⁻ adsorption can be described as *+HNO₃(g) \rightarrow H⁺+*NO₃. Correspondingly, the adsorption energy of NO₃⁻ (Δ G*_{NO3}) can be approximated by

$$\Delta G^*_{NO3} = G^*_{NO3} - G^* - G_{HNO3(g)} + 0.5 \Delta G_{H2}(g)$$
(S6)

where ΔG^*_{NO3} , G^* , $G_{HNO3(g)}$, ΔG_{H2} are the total energy of TM/Ti₂NO₂ substrates with and without NO₃ adsorption, HNO₃ and H₂ molecules in the gas phase, respectively. $\Delta G_{correct}$ denotes the correction of adsorption energy. According to CRC handbook of chemistry and physics,⁹ $\Delta G_{correct}$ is set to 0.392 eV.

1.4 Calculation of charge transfer of TM

The charge transfer (Q_{TM}) of TM is based on Bader charge analysis¹⁰ via equation (S7).

$$Q_{TM} = Q_{bader} - Q_{out}$$
(S7)

where Q_{bader} and Q_{out} are the Bader charge via DFT calculation and extranuclear electron of TM.

1.5 Calculation of electronic descriptor (ψ)

The electronic descriptor (ψ) is a descriptor of NO₃⁻ reduction properties of NO₃RR, which can be calculated via equation (S8):

$$\psi = \frac{\prod_{i=1}^{N} S_{v}^{2/N}}{(\prod_{i=1}^{N} \chi_{i})^{1/N}}$$
(S8)

where *N* is the number of atoms at active centers, S_{v_i} and χ_i are the outmost electron number and electronegativity of the *i*th atom at active centers, respectively.¹¹

Figure S1. Free energy diagrams for releasing NO₂, NO, N₂, and NH₃ of NO₃RR on Ti₂NO₂.

References

- Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. *J. Phys. Chem. B.*, 2004, 108, 17886-17892.
- [2] Rossmeisl J, Logadottir A, Nørskov J K. Electrolysis of water on (oxidized) metal surfaces. *Chem. Phys.*, 2005, **319**, 178-184.
- [3] Niu H, Zhang Z, Wang X, Wan X, Shao C, Guo Y. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. *Adv. Funct. Mater.*, 31, 2008533.
- [4] Computational Chemistry Comparison and Benchmark Database. http://cccbdb.nist.gov/, 2019 (accessed Dec 25, 2019).
- [5] Shao C, Wang W, Cheng Y. Synergetic effect of vacancy and dual-metals on defective V₂CO₂
 MXene as efficient catalysts for nitrogen reduction reaction. *Appl. Surf. Sci.*, 2024, 665, 160295.
- [6] Guo S, Heck K, Kasiraju S, Qian H, Zhao Z, Grabow L C, Miller J T, Wong M S. Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts. ACS Catal., 2018, 8, 503.
- [7] Liu J X, Richards D, Singh N, Goldsmith B. R. Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals. *ACS Catal.*, 2019, **9**, 7052.
- [8] Calle-Vallejo F, Huang M, Henry J B, Koper M T, Bandarenka A S. Theoretical design and experimental implementation of Ag/Au electrodes for the electrochemical reduction of nitrate. *Phys. Chem. Chem. Phys.*, 2013, 15, 3196.
- [9] Lide D R, CRC Handbook of Chemistry and Physics (90th Ed.), 2010.
- [10] Henkelman, G.; Arnaldsson, A.; Joń sson, H. A Fast and robust algorithm for Bader decomposition of charge density. *Comput. Mater. Sci.*, 2006, 36, 354–360.
- [11] Gu Y, Wei B, Legut D, Fu Z, Du S, Zhang H, Francisco JS, Zhang R. Single atom modiffed hybrid transition metal carbides as efficient hydrogen evolution reaction catalysts. *Adv. Funct. Mater.*, 2021, **31**, 2104285.