Supplementary Information

Enhancing Magnetic Coupling in MN₄-Graphene via Strain Engineering

Mahnaz Rezaei¹, Jahanfar Abouie^{2,*}, Fariba Nazari^{1,3,*}

¹Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran

²Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran

³Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic

Sciences, Zanjan 45137-66731, Iran

*Corresponding authors: jahan@iasbs.ac.ir, nazari@iasbs.ac.ir

Fig. S1 The exchange couplings of the M atom located at the origin of a unit-cell with the neighboring atoms are shown with the purple double-head arrows along $\pm x$, $\pm y$, and the two main diameter (d1, d2) directions.

Table S1 The cohesive energy (CE) of the unstrained and strained MN₄-G layers. The CE defined as $CE = \frac{\left[E_{MN_4-G} - \left(N_C E_C + N_N E_N + N_M E_M\right)\right]}{q}, \text{ where } E_{MN_4-G} \text{ is the total energy of the studied layers, and } E_C, E_N \text{ and } E_M \text{ are the}$

total energies of free C, N, and M atoms, respectively. N_C , N_N , and N_M are the number of C, N, and M atoms in the supercell, respectively. The parameter q stands for the total number of atoms in the supercell. For graphene, the CE per atom is -5.8275 eV.

Layer	CE/atom (eV)	Layer	CE/atom (eV)	Layer	CE/atom (eV)	Layer	CE/atom (eV)
Mn-Mn	-7.9709	Fe-Fe	-8.0017	Co-Co	-8.0198	Cu-Cu	-7.9752
Mn-Fe	-7.9698	Fe-Mn	-7.9976	Co-Mn	-8.0059	Cu-Mn	-7.9738
Mn-Co	-7.9658	Fe-Co	-8.0004	Co-Fe	-8.0043	Cu-Fe	-7.9750
Mn-Cu	-7.9730	Fe-Cu	-7.9980	Co-Cu	-8.0211	Cu-Co	-7.9725

MnN ₄ -G	Direction	$J_0(meV)$	$k_F^{\chi}(\text{\AA}^{-1})$	$k_F^{\gamma}(\text{\AA}^{-1})$	$k_F(\text{Å}^{-1})$
	x	-5.548	0.118		
m = -0.26	у	-0.003		0.002	
$\eta = -0.36$	d1	-3.939			0.118
	d2	-3.949			0.118
	x	-6.313	0.121		
n = -0.20	У	-0.007		0.002	
η = 0.20	d1	-2.210			0.121
	d2	-0.900			0.121
		75 (10	0.102		
	x	-/5.610	0.123		
$\eta = 0.00$	<i>y</i>	41.040		0.125	0.175
	d1 d2	-1.570			0.175
	x	-118.600	0.150		
0.00	У	-53.000		0.145	
$\eta = 0.03$	d1	-15.560			0.209
	d2	-8.486			0.209

Table S2 Fitting parameters of J_r in Eq. (8), for MnN₄-G layer under the strain. $k_F = [(k_F^x)^2 + (k_F^y)^2]^{1/2}$ is the Fermi wave number, k_F^x and k_F^y are components of the Fermi wave vector; and J_0 is a constant along $\pm x$, $\pm y$, and the two main diameter (d1, d2) directions.

FeN ₄ -G	Direction	$J_0(meV)$	$k_F^x(\text{\AA}^{-1})$	$k_F^{\gamma}(\text{\AA}^{-1})$	$k_F(\text{\AA}^{-1})$
	x	-0.600	0.117		
0.1.6	у	0.361		0.150	
$\eta = -0.16$	d1	-0.100			0.190
	d2	0.200			0.190
	x	-0.164	0.125		
<i>m</i> – 0.00	У	-0.029		0.022	
$\eta = 0.00$	d1	-0.143			0.127
	d2	-1.300			0.127
	x	-1.46	0.108		
	У	-0.084		0.037	
$\eta = 0.20$	d1	0.188			0.114
	d2	-0.310			0.114
	x	-0.450	0.125		
	у	0.753		0.091	
$\eta = 0.23$	d1	0.191			0.155
	d2	0.319			0.155

Table S3 Fitting parameters of J_r in Eq. (8), for FeN₄-G layer under the strain. Other parameters are detailed in the caption of Table S2.

CoN ₄ -G	Direction	$J_0(meV)$	$\overline{k_F^x(\text{\AA}^{-1})}$	$\overline{k_F^y(\text{\AA}^{-1})}$	$\overline{k_F(\text{\AA}^{-1})}$
	x	-0.004	0.129		
	v	-0.0004		0.029	
$\eta = 0.00$	d1	-0.001			0.132
	d2	-0.001			0.132
	x	48.460	0.223		
	у	0.099		0.097	
$\eta = 0.16$	d1	0.240			0.243
	d2	-3.721			0.243
	x	0.833	0.099		
	у	-0.100		0.046	
$\eta = 0.36$	d1	0.109			0.109
	d2	-0.109			0.109
	x	19.65	0.221		
	У	0.131		0.111	
$\eta = 0.39$	d1	0.047			0.247
	d2	-1.391			0.247

Table S4 Fitting parameters of J_r in Eq. (8), for CoN₄-G layer under the strain. Other parameters are detailed in the caption of Table S2.

Table S5 Calculated $\binom{k_F^{Cal}}{F}$ and fitted $\binom{k_F^{Fit}}{F}$ Fermi wave numbers for various strained and unstrained MN₄-G layers under the strain.

MnN ₄ -G			FeN ₄ -G			CoN ₄ -G		
η	$k_F^{Cal}(\text{\AA}^{-1})$	$k_F^{Fit}(\text{\AA}^{-1})$	η	$k_F^{Cal}(\text{\AA}^{-1})$	$k_F^{Fit}(\text{\AA}^{-1})$	η	$k_F^{Cal}(\text{\AA}^{-1})$	$k_F^{Fit}(\text{\AA}^{-1})$
-0.36	0.112	0.118	-0.16	0.106	0.190	0.00	0.105	0.132
-0.20	0.100	0.121	0.00	0.120	0.127	0.16	0.149	0.243
0.00	0.125	0.175	0.20	0.101	0.114	0.36	0.139	0.109
0.03	0.137	0.209	0.23	0.122	0.155	0.39	0.132	0.247