Supporting Information

First-principles study of phase transition and the structural, energetic and electronic properties of pristine and transition metal (Fe/Co/Ti)-doped layered MoS₂ as anode materials for

sodium-ion batteries

Wenlong Xi^a, Patrick Sit^{a,*}

^a School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China

Table S1: Pristine and TM-doped MoS₂ optimized lattice parameters (a, b, c, α , β , γ), and average atom distance of Mo-S (d_{Mo} s) and M-S (d_{Mo} s)

and average atom distance of Wo-5 (d _{Mo-5}) and W-5 (d _{M-5})									
	Phase	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	d _{M-S} (Å)	d _{Mo-S} (Å)
Pristine	1T	6.51	6.51	12.09	90	90	120	-	2.44
	2H	6.40	6.40	12.42	90	90	120	-	2.42
Fe	1T	6.50	6.50	11.85	90	90	120	2.32	2.43
	2H	6.39	6.39	12.34	90	90	120	2.34	2.42
Со	1T	6.51	6.51	11.79	90	90	120	2.31	2.43
	2H	6.41	6.41	12.33	90	90	120	2.34	2.42
Ti	1T	6.50	6.50	11.97	90	90	120	2.42	2.43
	2H	6.45	6.45	12.24	90	90	120	2.41	2.42

Fig. S1. The system relative energy of single Na atom intercalation in (a) Ti-doped (b)
Co-doped and (c) Fe-doped 1T phase MoS₂, (d) Ti-doped (e) Co-doped and (f) Fe-doped 2H phase MoS₂. The configuration on the left is close to M, and the
configuration on the right is far from M. The lower energy configuration is set to 0 eV.

Fig. S2. TM-doped MoS₂ with Na intercalation. Mo is in purple, S is in light yellow, M (Fe/Co/Ti) is in blue, and Na is in dark yellow.

Fig. S3. The lattice parameters c with different Na concentration intercalation for 1T and 2H $M_{0.125}Mo_{0.875}S_2$.

Fig. S4. Formation energy per Na atom for 1T and 2H Na $_x$ Fe $_{0.25}$ Mo $_{0.75}$ S₂, Na $_x$ Co $_{0.25}$ Mo $_{0.75}$ S₂, and Na $_x$ Ti $_{0.25}$ Mo $_{0.75}$ S₂.