Supplementary Information

Theoretical Understanding and Prediction of Metal-doped CeO₂

Catalyst for Ammonia Dissociation

Yongjie Shen,^a Kaewraung Wongsathorn, ^b and Min Gao *^a

^aInstitute for Chemical Reaction Design ana Discovery (WP-ICReDD), Institute for Catalysis Hokkaido University, Sapporo 001-0021, Japan.

^b Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.

*To whom correspondence should be corresponded: gaomin@icredd.hokudai.ac.jp

This pdf file includes:

Table S1 to S4 (page S3-S6)

Fig S1 to S12 (pages S7-S18)

Content

Table S1 U _{eff} (eV) value of transition metal elements S3
Table S2 Distance between the doping metal and oxygenS4
Table S3 Relevant properties calculated by DFT for metal and metal-doped catalysts
Table S4 Adsorption energies of NH ₃ -related species on metal-doped CeO ₂ S6
Figure S1 Relative energies of Ni-doped, V-doped, and Nb-doped CeO ₂ surfaces and the structures of adsorbed species (NH ₃ , NH ₂ _H, NH_2H and N_3H) on the corresponding surfaces at different k-point mesh densityS7
Figure S2 Structural diagrams of pure CeO ₂ and CeO ₂ doped with different transition metalsS8
Figure S3 Adsorption structures of NH_3 , NH_2 -H, NH -2H and N -3H on metal (V, Cr, Mn, Fe, and Co)-doped CeO ₂ S9
Figure S4 Adsorption structures of NH ₃ , NH ₂ -H, NH-2H and N-3H on metal (Ni, Cu, Zn, Nb, Tc, and W)-doped CeO ₂ S10
Figure S5 Valence band maximum as function of the adsorption energies of NH_2 -H species in NH_3 dissociationS11
Figure S6 Oxygen vacancy formation as function of the adsorption energies of (a) NH_3 , (b) NH_2 - H, (c) $NH-2H$, and (d) $N-3H$ species in NH_3 dissociationS12
Figure S7 Valence band maximum as function of the activation energies for the transitionS13 states of (a) $NH_3 \rightarrow NH_2$ -H, (b) NH_2 -H $\rightarrow NH$ -2H, and (c) NH -2H $\rightarrow N$ -3H in NH_3 dissociation
Figure S8 Schematic diagram of the interaction between HOMO and LUMOS14
Figure S9 The Linear relationship between NH_3 adsorption energy and $\Delta E_{LUMO(Metal)-HOMO(N)}$ S15
Figure S10 Work function as function of the adsorption energies of (a) NH_3 , (b) NH_2 -H, and (c) NH -2H species in NH_3 dissociationS16
Figure S11 Valence band maximum as function of the work functionS17
Figure S12 (a) Valence band maximum, (b) work function, and (c) highest oxidation state as function of the adsorption energies of H
Reference

Element	Sc	Ti	v	Cr	Mn	Fe	Со	Ni	Cu	Zn	Y
U _{eff} (eV)	5.0	4.2	3.1	3.5	4.5	4.0	3.4	6.0	6.0	8.0	3.5
Ref	1	2	3	4	5	6	4	4	7	8	9
Element	Zr	Nb	Мо	Тс	Cd	La	Ce	Pr	Nd	Sm	w
U (a)/)	4.0										
U _{eff} (ev)	4.0	4.0	3.5	-	2.0	5.0	5.0	4.5	6.0	-	6.2

Table S1 U_{eff} (eV) value of transition metal elements.

					•				
	Metal-oxygen distance (Å)								
	distance1	distance 2	distance 3	distance 4	distance 5	distance 6	distance 7		
v	2.131	1.962	1.960	1.698	3.121	3.436	2.041		
Cr	2.889	1.803	1.876	1.806	2.870	3.452	1.909		
Mn	2.467	2.636	2.110	2.812	2.098	2.390	2.208		
Fe	2.633	2.055	2.125	2.025	2.836	2.053	2.082		
Со	1.780	3.680	3.357	3.666	1.774	1.757	1.868		
Ni	1.805	1.848	1.805	3.662	3.385	3.690	1.887		
Cu	1.839	3.705	3.324	3.684	1.837	1.841	1.878		
Zn	1.997	3.501	2.010	3.517	1.995	3.191	1.955		
Nb	2.580	1.942	2.424	1.941	2.602	1.950	2.005		
Тс	2.646	1.790	2.745	1.787	2.694	1.757	1.903		
w	2.428	1.837	2.399	1.837	2.869	1.825	1.924		

Table S2 Distance between the doping metal and oxygen.

	E _{SMA} a (eV)	BG ^b (eV)	DBC ^c (eV)	VBM ^a (eV)	CBM ^e (eV)	WF ^f (eV)	E _{dope} ^g (eV)
v	-6.43	1.21	-0.27	-0.51	0.70	4.96	3.39
Cr	-5.91	1.80	0.14	-1.10	0.70	5.60	4.41
Mn	-6.82	0.56	-3.04	-1.25	-0.68	5.76	7.24
Fe	-5.45	0.93	-1.69	-1.16	-0.23	5.76	7.29
Со	-4.71	0.22	-2.38	-1.37	-1.15	5.94	8.29
Ni	-2.40	0.34	-3.16	-1.43	-1.09	6.17	9.03
Cu	-2.39	0.27	-3.84	-1.44	-1.17	6.22	10.48
Zn	-0.79	0.61	-6.97	-1.42	-0.81	5.94	8.98
Nb	-7.34	0.43	-4.14	0.33	0.76	4.35	0.96
Тс	-10.99	0.11	-3.64	0.43	0.54	4.49	5.76
w	-13.64	0.55	-3.20	0.22	0.77	4.39	2.64

 Table S3 Relevant properties calculated by DFT for metal and metal-doped catalysts.

A: the energy of single metal atom. b: band gap. C: d band center. D: valence band maximum. E: conduction band minimum. F: work function.

G: the energy of doping formation.

	E _{NH3}	E _{NH2-H}	E _{NH-2H}	E _{N-3H}	E _H
	(eV)	(eV)	(eV)	(eV)	(eV)
v	-0.67	-1.26	-1.41	-1.42	-3.58
Cr	-0.54	-1.36	-1.44	-1.47	-4.23
Mn	-1.62	-1.81	-2.10	-1.98	-4.96
Fe	-0.40	-1.54	-0.70	0.14	-5.17
Со	-1.35	-1.47	-1.13	-1.49	-4.94
Ni	-1.62	-1.49	-1.76	-1.56	-5.22
Cu	-1.09	-1.09	-1.35	-1.66	-5.24
Zn	-1.38	-1.48	-1.91	-1.95	-5.09
Nb	-0.36	-0.90	-0.22	0.51	-3.91
Тс	0.23	0.15	-0.59	-2.48	-3.07
w	-0.05	-0.33	-0.29	0.29	-3.40

Table S4 Adsorption energies of NH_3 -related species on metal-doped CeO_2 .

Figure. S1 Relative energies of Ni-doped, V-doped, and Nb-doped CeO₂ surfaces and the structures of adsorbed species (NH₃, NH₂_H, NH_2H and N_3H) on the corresponding surfaces at different k-point mesh density.

Figure. S2 Structural diagrams of pure CeO₂ and CeO₂ doped with different transition metals.

Figure. S3 Adsorption structures of NH₃, NH₂-H, NH-2H and N-3H on metal (V, Cr, Mn, Fe, and Co)-doped CeO₂.

Figure. S4 Adsorption structures of NH_3 , NH_2 -H, NH-2H and N-3H on metal (Ni, Cu, Zn, Nb, Tc, and W)-doped CeO_2 .

Figure. S5 Valence band maximum as function of the adsorption energies of NH_2 -H species in NH_3 dissociation.

Figure. S6 Oxygen vacancy formation as function of the adsorption energies of (a) NH_3 , (b) NH_2 -H, (c) NH-2H, and (d) N-3H species in NH_3 dissociation.

Figure. S7 Valence band maximum as function of the activation energies for the transition states of (a) $NH_3 \rightarrow NH_2$ -H, (b) NH_2 -H $\rightarrow NH$ -2H, and (c) NH-2H $\rightarrow N$ -3H in NH_3 dissociation.

Figure. S8 Schematic diagram of the interaction between HOMO and LUMO.

Figure. S9 The Linear relationship between NH_3 adsorption energy and $\Delta E_{LUMO(Metal)-HOMO(N)}$ (the difference between the LUMO energy of doped metal d orbital and the HOMO energy of N p orbital in NH_3).

Figure. S10 Work function as function of the adsorption energies of (a) NH_3 , (b) NH_2 -H, and (c) NH-2H species in NH_3 dissociation.

Figure. S11 Valence band maximum as function of the work function.

Figure. S12 (a) Valence band maximum, (b) work function, and (c) highest oxidation state as function of the adsorption energies of H.

- 1 Q. Meng, T. Wang, E. Liu, X. Ma, Q. Ge and J. Gong, *Phys. Chem. Chem. Phys.*, 2013, **15**, 9549-9561.
- 2 F. Liu, H. He, Y. Ding and C. Zhang, *Appl. Catal. B Environ. Energy*, 2009, **93**, 194-204.
- G. Sai Gautam, P. Canepa, A. Abdellahi, A. Urban, R. Malik and G. Ceder, *Chem. Mater.*, 2015, 27, 3733-3742.
- 4 A. Jain, G. Hautier, S. P. Ong, C. J. Moore, C. C. Fischer, K. A. Persson and G. Ceder, *Phys. Rev. B*, 2011, **84**, 045115.
- 5 W. Song, J. Liu, H. Zheng, S. Ma, Y. Wei, A. Duan, G. Jiang, Z. Zhao and E. J. M. Hensen, *Catal. Sci. Technol.*, 2016, **6**, 2120-2128.
- 6 R. Grau-Crespo, F. Corà, A. A. Sokol, N. H. de Leeuw and C. R. A. Catlow, *Phys. Rev. B*, 2006, 73, 035116.
- 7 B. Himmetoglu, R. M. Wentzcovitch and M. Cococcioni, *Phys. Rev. B*, 2011, 84, 115108.
- 8 S. Haffad and K. Korir Kiprono, Surf. Sci., 2019, 686, 10-16.
- 9 B. Saha, T. D. Sands and U. V. Waghmare, J. Appl. Phys., 2011, 109, 073720.
- 10 Y. Tang, S. Zhao, B. Long, J.-C. Liu and J. Li, J. Phys. Chem. C, 2016, 120, 17514-17526.
- 11 Y. Fang, D. Cheng, M. Niu, Y. Yi and W. Wu, Chem. Phys. Lett., 2013, 567, 34-38.
- 12 L. N. Bai, B. J. Zheng, J. S. Lian and Q. Jiang, Solid State Sciences, 2012, 14, 698-704.
- 13 S. Grieshammer, M. Nakayama and M. Martin, *Phys. Chem. Chem. Phys.*, 2016, **18**, 3804-3811.
- 14 Z. Su, X. Li, W. Si, L. Artiglia, Y. Peng, J. Chen, H. Wang, D. Chen and J. Li, *ACS Catal.*, 2023, **13**, 3444-3455.
- 15 B. Milberg, A. Juan and B. Irigoyen, *Appl. Surf. Sci.*, 2017, **401**, 206-217.
- 16 K. O. Obodo, G. Gebreyesus, C. N. M. Ouma, J. T. Obodo, S. O. Ezeonu, D. P. Rai and B. Bouhafs, *RSC Adv.*, 2020, **10**, 15670-15676.
- 17 J. Tao, Q. Zhang and T. Liu, Phys. Chem. Chem. Phys., 2022, 24, 22918-22927.

References