Interface modification of hole transport layer in tin-based halide perovskite solar cells

Xin Zhang a,b , Xinyao Chen c , Zhenjun Li d , Jin Cheng b , Chunqian Zhang b and Junming Li b*

^a Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, China

^b Beijing Key Laboratory for Sensor, School of Science, Beijing Information Science and Technology University, Beijing 100101, China

^c Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100192, China

^d CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Nanophotonic Materials and Devices (Preparatory), National Center for Nanoscience and Technology, Beijing 100190, China

* Correspondence: li@bistu.edu.cn;

Note S1. The current density-voltage characteristics of PEDOT:PSS film as an active layer (ITO/SAM/PDEOT:PSS/Cu).

The HTL layer is approximately 40 nm thick and has an effective area of 0.05 cm². The control, MeO-2PACz, and Me-4PACz exhibited conductivities of 0.06967 S, 0.10784 S, and 0.12939 S, respectively. The calculated values were $0.55736 \times 10^{-2} \text{ mS cm}^{-1}$, $0.86272 \times 10^{-2} \text{ mS cm}^{-1}$, and $1.03512 \times 10^{-2} \text{ mS cm}^{-1}$, respectively, using the equation.

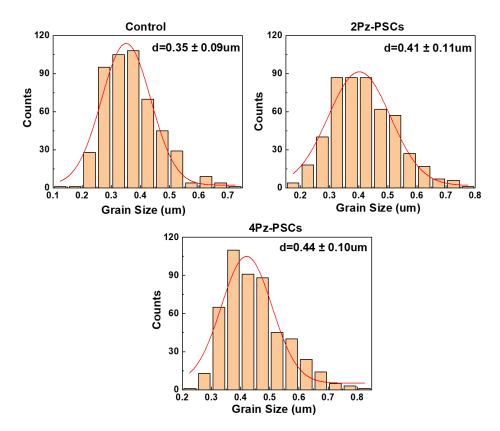
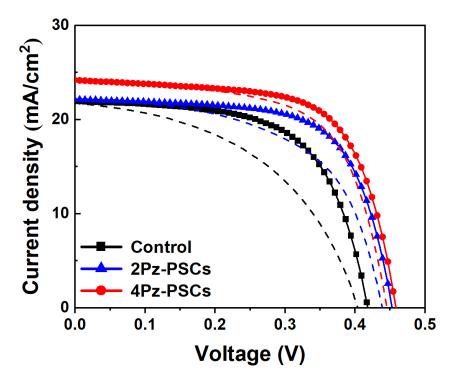


Figure S1. Size distribution histogram determined from top-view SEM image.


Table S1. The information of Sn XPS measurement deconvoluted into Sn^{2+} and Sn^{4+} peaks for control, 2Pz and 4Pz perovskite thin layers.

Sample	Ionic	Peak index	BE	FWHM	Percentage	Relative ratio
Sample	Ionic	Peak index	(ev)	(ev)	(%)	(Sn^{4+}/Sn^{2+}) [%]
Control	Sn ²⁺	Sn 3d _{5/2}	486.00	1.17	32.66	45.0
		Sn 3d _{3/2}	494.41	1.17	32.87	
	Sn ⁴⁺	Sn 3d _{5/2}	486.77	1.16	17.22	
		Sn 3d _{3/2}	495.19	1.16	17.25	
2Pz/PVSK	Sn ²⁺	Sn 3d _{5/2}	486.06	1.18	34.59	44.1
		Sn 3d _{3/2}	494.48	1.18	34.82	
	Sn ⁴⁺	Sn 3d _{5/2}	486.81	0.98	15.25	
		Sn 3d _{3/2}	495.22	0.98	15.34	
4Pz/PVSK	Sn ²⁺	Sn 3d _{5/2}	486.07	1.19	37.70	32.2
		Sn 3d _{3/2}	494.48	1.19	37.92	
	Sn ⁴⁺	Sn 3d _{5/2}	486.84	0.98	12.15	
		Sn 3d _{3/2}	495.26	0.98	12.23	

Table S2. Fitted PL lifetimes of control and SAM-modified Sn-based perovskite films on glass substrates. A₁ and A₂ are fractional intensities, and τ_1 and τ_2 are lifetimes. The average carrier lifetime (τ_{ave}) was calculated with $\tau_{ave} = A_1 * \tau_1 + A_2 * \tau_2$.

	$A_1(\%)$	$\tau_1 (ns)$	$A_2(\%)$	$ au_2$ (ns)	$\tau_{ave} (ns)$
Control	1.52	0.50	0.06	3.94	1.0
2Pz/PVSK	0.99	1.65	0.07	4.78	2.0
4Pz/PVSK	1.05	1.67	0.02	16.46	2.1

Figure S2. Champion device optical current density-voltage forward and reverse sweep curves.

au = RC								
Sample	$R_{ m rec}$ (Ω)	C (F)	τ (μs)					
Control	11747	7.238E ⁻⁹	85.018					
2Pz-PSCs	16975	6.612E ⁻⁹	112.243					
4Pz-PSCs	18483	7.292E ⁻⁹	134.778					

 Table S3. Data were obtained from the EIS fitting circuit.

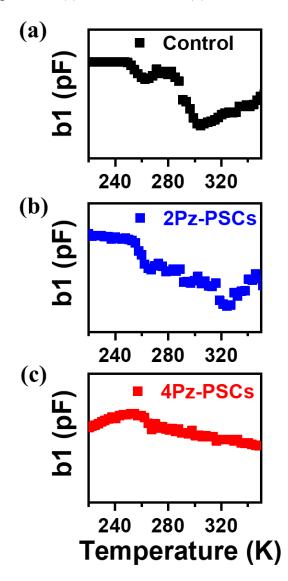


Figure S3. DLTS spectra of (a) control devices, (b) 2Pz-PSCs, and (c) 4Pz-PSCs.