- Supporting Information -

Concerted Proton Electron Transfer or Hydrogen Atom Transfer? An Unequivocal Strategy to Discriminate these Mechanisms in Model Systems

Davide Zeppilli^{*a*} and Laura Orian^{*a,b,**}

^a Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy ^b Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL), 35020 Legnaro (PD) Italy.

* Correspondence: laura.orian@unipd.it

LIST of TABLES and FIGURES:

Figure S2. Changes in the α_{OH} spin IBOs involved in the hydrogen abstraction from phenol by 'OOH along the reaction path: α_{OH} spin IBO of the OH σ bond (green). Level of theory: M06-2X/def2TZVP//M06-2X/6-31G(d)......S5

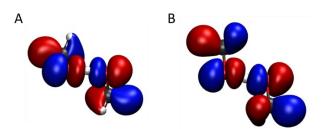
Figure S8. Energy decomposition analysis of the phenoxyl/phenol self-exchange reaction: (A) ΔE_{Pauli} , (B) ΔV_{elstat} along the relaxed (blue lines) and the disfavored reaction path (green lines). The filled circles represent the position of the transition states. The reaction coordinate is defined as the degree of O-H bond formation with respect to the same distance in the reactant complex. Level of theory: ZORA-M06-2X/TZ2P//M06-2X/6-31G(d)......S7

Table S1. Electronic reaction and activation energies (kcal mol⁻¹) computed for each system at different levels of theory. ΔE_1^{\dagger} and ΔE_2^{\dagger} refer to the relaxed and the partially constrained transition states, while $\Delta \Delta E^{\dagger}$ represents the energy difference between the two species. All geometries have been optimized at M06-2X/6-31G(d) level of theory.

reaction		M06-2X/6- 311+G(d,p)	ZORA-M06- 2X/TZ2P	DLPNO-CCSD(T)/cc- pVTZ-DK	MP2/aug- cc-pVTZ
	ΔΕ	3.5	4.5	2.4	24.5
phenol +	ΔE_1^{\dagger}	9.6	10.8	15.4	32.3
OOH	ΔE_2^{\dagger}	15.5	16.5	23.3	27.2
	$\Delta\Delta E^{\dagger}$	5.9	5.8	8.0	-5.1
	ΔE_1^{\dagger}	0.8	1.6	-	1.2
phenoxyl/ phenol	ΔE_2^{\dagger}	5.1	5.9	-	7.3
phenor	$\Delta\Delta E^{\dagger}$	4.7	4.3	-	6.2
	ΔE_1^{\dagger}	13.4	15.0	-	34.5
benzyl/ toluene	ΔE_2^{\dagger}	17.0	17.6	-	38.4
torucite	$\Delta\Delta E^{\dagger}$	3.6	2.6	-	3.9
	ΔE_1^{\dagger}	7.2	7.7	9.6	10.1
methoxyl/ methanol	ΔE_2^{\dagger}	8.8	9.3	11.5	12.3
memanul	$\Delta\Delta E^{\dagger}$	1.6	1.6	1.9	2.1

DLPNO-CCSD(T) calculations were not computed for the biggest systems due to the high computational cost.

Table S2. Electronic activation energies (kcal mol⁻¹) computed for methoxyl/methanol self-exchange reaction with different basis set and M06-2X functional. ΔE_1^{\dagger} and ΔE_2^{\dagger} refer to the relaxed and the partially constrained transition states, while $\Delta \Delta E^{\dagger}$ represents the energy difference between the two species.


	cc-pVTZ	def2TZVP	6-311+G(d,p)	6-311+G(d,p)// 6-31G(d)
ΔE_1^{\dagger}	6.23	7.01	7.06	7.19
ΔE_2^{\dagger}	8.13	8.73	8.68	8.82
$\Delta \Delta E^{\dagger}$	1.90	1.72	1.62	1.64

No significant geometrical variation is observed using the cc-pVTZ, def2TZVP and 6-311+G(d,p) basis sets, neither in the minima, nor in the transition states. Furthermore, the energies remain consistent with the ones reported in the main text.

Table S3. Electronic activation energies (kcal mol⁻¹) computed for methoxyl/methanol self-exchange reaction with functionals. ΔE_1^{\dagger} and ΔE_2^{\dagger} refer to the relaxed and the partially constrained transition states, while $\Delta \Delta E^{\dagger}$ represents the energy difference between the two species. All geometries have been optimized with 6-31G(d) basis set, while energies are obtained by single point calculation with 6-311+G(d,p) basis set.

	BLYP- D3BJ	BLYP	M06L	PBE1PBE -D3BJ	PBE1PBE	M06	M05-2X	M06-2X
ΔE_1^{\dagger}	-4.48	-2.74	1.22	3.57	4.51	5.25	8.27	7.19
ΔE_2^{\dagger}	-4.26	-2.54	1.76	4.51	5.39	6.52	9.97	8.82
$\Delta\Delta E^{\dagger}$	0.22	0.20	0.53	0.95	0.87	1.26	1.69	1.64

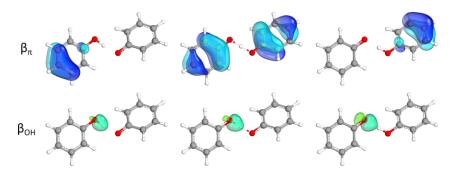

GGA functional (BLYP and BLYP-D3BJ) does not reproduce the energy barriers which become negative with respect to free reactants. During TS optimization, the C-O-O-C dihedral angle increases, which becomes similar to the one of the partially constrained TS; thus, similar energies are computed. Meta-GGA (M06L) and hybrid functionals (PBE1PBE and PBE1PBE-D3BJ) improve the description of the energy barriers (positive numbers) as well as the energy difference between the two TSs; still, a slight increase of the C-O-O-C dihedral angle is computed. The best agreement with M06-2X functional is found with meta-hybrid functionals of the same family (M06 and M05-2X), which are also suggested by the QM-ORSA protocol.

Figure S1. SOMO of the transition state for the methoxyl/methanol self-exchange reaction. (A) Relaxed structure and (B) partially constrained structure with a C-O-O-C dihedral angle of 175°. Level of theory: M06-2X/6-311+G(d,p)//M06-2X/6-31G(d).

Figure S2. Changes in the α_{OH} spin IBOs involved in the hydrogen abstraction from phenol by 'OOH along the reaction path: α_{OH} spin IBO of the OH σ bond (green). Level of theory: M06-2X/def2TZVP//M06-2X/6-31G(d).

Figure S3. Changes in the main spin IBOs involved in the phenoxyl/phenol self-exchange reaction along the energetically disfavored reaction path via the partially constrained transition state: β_{π} spin IBO (blue) transferred from the π system of the ring, and β_{OH} spin IBO of the OH σ bond (green). Level of theory: M06-2X/def2TZVP//M06-2X/6-31G(d).

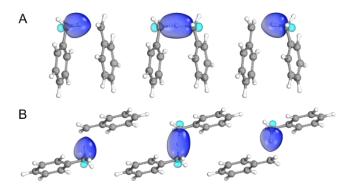
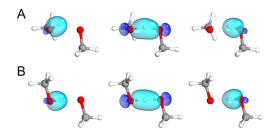
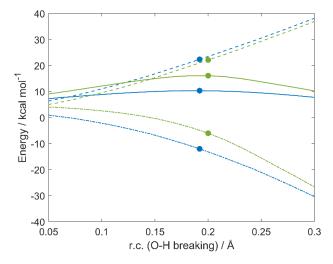
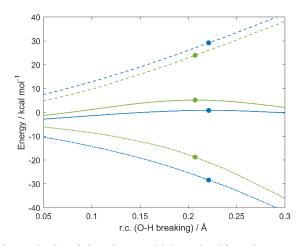


Figure S4. Changes in the main β spin IBO involved in the benzyl/toluene self-exchange reaction along (A) the relaxed and (B) the disfavored reaction path. Level of theory: M06-2X/def2TZVP//M06-2X/6-31G(d).

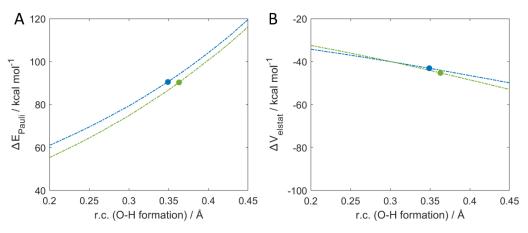

Figure S5. Changes in the main β spin IBO involved in the methoxyl/methanol self-exchange reaction along (A) the relaxed and (B) the disfavored reaction path. Level of theory: M06-2X/def2TZVP//M06-2X/6-31G(d).

Figure S6. Activation strain analysis of the hydrogen abstraction from phenol by 'OOH: energy profiles (solid lines), ΔE_{strain} (dashed lines), ΔE_{int} (dash-dotted lines) along the relaxed (blue lines) and the disfavored reaction path (green lines). The filled circles represent the position of the transition states. The reaction coordinate is defined as the degree of O-H bond breaking with respect to the same distance in the reactant complex. Level of theory: ZORA-M06-2X/TZ2P//M06-2X/6-31G(d).

Figure S7. Activation strain analysis of the phenoxyl/phenol self-exchange reaction: energy profiles (solid lines), ΔE_{strain} (dashed lines), ΔE_{int} (dash-dotted lines) along the relaxed (blue lines) and the disfavored reaction path (green lines). The filled circles represent the position of the transition states. The reaction coordinate is defined as the degree of O-H bond breaking with respect to the same distance in the reactant complex. Level of theory: ZORA-M06-2X/TZ2P//M06-2X/6-31G(d).

Figure S8. Energy decomposition analysis of the phenoxyl/phenol self-exchange reaction: (A) ΔE_{Pauli} , (B) ΔV_{elstat} along the relaxed (blue lines) and the disfavored reaction path (green lines). The filled circles represent the position of the transition states. The reaction coordinate is defined as the degree of O-H bond formation with respect to the same distance in the reactant complex. Level of theory: ZORA-M06-2X/TZ2P//M06-2X/6-31G(d).

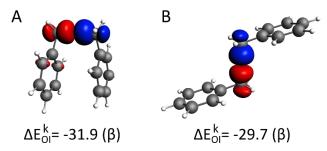
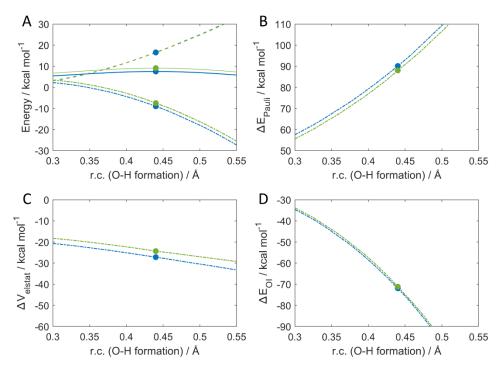
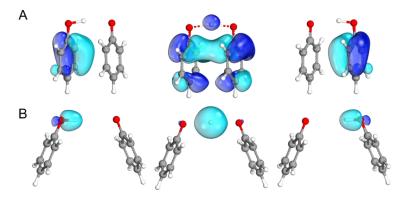




Figure S9. Deformation densities of the dominating contributions to ΔE_{OI} of (A) the relaxed and (B) the partially constrained reaction path at r.c.=0.39 of the benzyl/toluene self-exchange reaction, according to the EDA-NOCV scheme. Blue/red phases correspond to accumulation/depletion of β electron densities, respectively; isosurface value 0.003. Level of theory: ZORA-M06-2X/TZ2P//M06-2X/6-31G(d).

Figure S10. (A) Activation strain analysis of the methoxyl/methanol self-exchange reaction: energy profiles (solid lines), ΔE_{strain} (dashed lines), ΔE_{int} (dash-dotted lines) along the relaxed (blue lines) and the disfavored reaction path (green lines). Energy decomposition analysis: (B) ΔE_{Pauli} , (C) ΔV_{elstat} , (D) ΔE_{OI} . The filled circles represent the position of the transition states. The reaction coordinate is defined as the degree of O-H bond formation with respect to the same distance in the reactant complex. Level of theory: ZORA-M06-2X/TZ2P//M06-2X/6-31G(d).

Figure S11. Changes in the main β spin IBO involved in the phenoxyl/phenol self-exchange reaction along a reaction path with an increased O-O distance in the transition state of (A) 1 Å and (B) 2 Å. Level of theory: M06-2X/def2TZVP//M06-2X/6-31G(d).

Table S4. Coordinates (Å) and energies (E, Hartree) of stationary points and number of imaginary frequencies (Nimag, cm⁻¹) of transition states. Level of theory: M06/6-31G(d).

Phe	nol + 'OOF	I		0	-0.797984	-0.695042	1.222970
				Н	-1.523307	-0.915719	0.622098
.00	н	E= -150.	832724				
0	0.055503	0.709875	0.000000	Phe	noxyl	E= -306.	686310713
0	0.055503	-0.601901	0.000000	С	0.799615	0.004475	-2.571996
Н	-0.888054	-0.863793	0.000000	С	-0.367308	-0.250990	-1.894008
				С	1.975755	0.312346	-1.863132
но	ОН	E= -151.	4681908	Н	-1.293812	-0.491755	-2.404912
0	0.000000	0.713705	-0.055572	Н	2.892466	0.513271	-2.408071
0	0.000000	-0.713705	-0.055572	С	-0.409810	-0.208942	-0.444793
Н	-0.812252	-0.891397	0.444578	С	1.978709	0.363475	-0.456758
Н	0.812252	0.891397	0.444578	Н	2.898800	0.602945	0.067107
				С	0.825003	0.112008	0.244990
Phe	nol	E= -307.	329665839	Н	0.787856	0.142112	1.328994
С	1.459724	-0.002560	-1.590836	Н	0.822951	-0.029247	-3.656719
С	0.302766	-0.357463	-0.902738	0	-1.465645	-0.439057	0.182761
С	2.613494	0.351389	-0.898429				
Н	-0.598328	-0.633926	-1.445875	TS		E= -458.	147730965
Н	3.513008	0.627411	-1.438130	Nim	ag= -2139.66		
С	0.300782	-0.358135	0.491987	0	9.260700	12.992977	0.769349
С	2.600694	0.347461	0.495887	0	8.040723	12.406342	0.957669
Н	3.494895	0.621866	1.047414	Н	9.889566	12.258488	0.896182
С	1.452993	-0.004672	1.194890	С	8.977317	13.329684	3.583297
Н	1.424902	-0.013201	2.279137	С	9.687323	12.502222	4.488119
Н	1.453956	-0.004310	-2.676608	С	9.585580	14.523147	3.118156

Н	9.203395	11.592486	4.827806
н	9.029277		2.424601
C II	9.029277 10.944196	12.872955	4.926149
c c	10.944190	12.872933	3.556595
н			5.630790
	11.480267	12.244915	
H	11.315112		3.199207
C	11.533979		4.459716
Н		14.338140	
0	7.766086		
Н	7.737715	12.801439	2.057462
TSa	onstreined	E- 159	138757278
	ag= -3552.74		138/3/2/8
	•		0.00000
0	0.000000	0.000000	0.000000
0		0.000000	
C	1.247505	0.000000	2.735785
С	2.324822	0.375829	1.885192
0	0.745869	-1.138708	-0.200838
Н	1.557556	-0.803229	-0.619804
С	1.551899	-0.478666	4.042206
Η	0.722209	-0.798679	4.663066
С	2.852111	-0.486222	4.497222
Н	2.093729	0.738976	0.890189
С	3.628355	0.331185	2.353375
Η	3.068480	-0.819551	5.507292
С	3.902430	-0.091677	3.653375
Η	4.441631	0.627327	1.698303
Η	4.926456	-0.124302	4.010267
Н	-0.110103	0.029625	1.202148
		D	
		E= -438.	062551204
	ag= -2816.47	12 252222	0.27(540
0	9.292102	13.373332	0.376549
0	8.117879	12.694552	0.444526
H	9.971018	12.675087	0.426571
C	8.913661	13.256353	4.083888
С	9.597286	12.572897	5.124813
С	9.550377	14.360299	3.449813
Н	9.100432	11.724825	5.583890
Н	9.029288	14.852707	2.634068
С	10.838365	13.012937	5.544400
С	10.806180	14.766031	3.863126
Н	11.348104	12.503774	6.356246
Н	11.291262	15.604947	3.374318
С	11.450528	14.103720	4.913872
Н	12.432304	14.433075	5.238605
0	7.708838	12.880173	3.751347

Н 7.779725 12.736213 2.108903

Phenoxyl/phenol

TS		E= -614.015521288		
Nim	ag= -1972.86			
С	0.255755	0.785203	2.167383	
С	0.514079	-0.565682	2.017184	
С	0.066275	1.594561	1.044655	
Н	0.657257	-1.217776	2.873059	
Н	-0.134143	2.654131	1.167173	
С	0.625937	-1.139881	0.715945	
С	0.109383	1.035887	-0.243594	
Н	-0.061108	1.668455	-1.109500	
С	0.392041	-0.302423	-0.414594	
Н	0.461860	-0.757102	-1.397577	
Н	0.207056	1.217754	3.161881	
0	0.973170	-2.381703	0.552120	
Н	2.019079	-2.568428	1.112959	
С	3.382683	-0.313201	0.728576	
С	3.550961	1.048136	0.909655	
С	3.319415	-1.189436	1.852630	
Н	3.563525	1.709312	0.048722	
С	3.696284	1.574394	2.195435	
С	3.507516	-0.634911	3.153149	
Н	3.826039	2.643131	2.332730	
Н	3.475694	-1.316108	3.997451	
С	3.700529	0.720748	3.311198	
Н	3.836519	1.136284	4.305086	
Н	3.275634	-0.748388	-0.260048	
0	3.055039	-2.454157	1.710450	
	onstrained	E= -614.	.008717050	
	ag= -2961.75			
С	-0.526575	0.939161	1.767128	
С	0.115596	-0.274904	1.613643	
С	-0.900674	1.693343	0.648970	
Н	0.404976	-0.876315	2.470092	
Η	-1.412827	2.640911	0.779623	
С	0.419094	-0.760166	0.309981	
С	-0.616583	1.221844	-0.639708	
Н	-0.908178	1.809423	-1.504750	
С	0.037544	0.019077	-0.816069	
Н	0.279395	-0.366671	-1.800642	
Н	-0.750519	1.306050	2.764013	
0	1.023048	-1.897127	0.124370	
Н	1.580537	-2.294460	1.094229	

С	3.879585	-4.202352	2.660135	Н 0.685140 -1.	199381	2.874761
С	4.418020	-5.467137	2.533470	Н -0.192097 2.	.639717	1.163127
С	2.765698	-3.815734	1.866100	С 0.642690 -1.	138991	0.726737
Н	5.266457	-5.756282	3.145947	C 0.142914 1.	033331	-0.231961
С	3.881340	-6.378571	1.614209	Н -0.013955 1.	.653580	-1.109478
С	2.223135	-4.754561	0.943397	С 0.439538 -0.	318458	-0.384747
Н	4.311659	-7.369981	1.518475	Н 0.513273 -0.	.745917	-1.381895
Н	1.369142	-4.455820	0.343072	Н 0.158353 1.	199418	3.155938
С	2.787486	-6.010220	0.822521	Н 2.082549 -2.	736929	0.552706
Н	2.372303	-6.719637	0.113368	С 0.995591 -2.	595816	0.559570
Н	4.279651	-3.472467	3.355758	Н 0.605854 -2.	.993395	-0.381372
0	2.263453	-2.624197	2.007533	Н 0.591307 -3.	198302	1.377794
TSé	listance	E= -613	.871131778	Benzyl	E= -270	779437967
	hag = -617.88	E 015	.0/1101//0	•	768019	2.157730
С	-1.821567	0.644199	1.576901		589296	1.999848
С	-1.270780	-0.617142	1.547066		592721	1.041345
С	-1.650280	1.513407	0.486796		.227452	2.870264
Н	-1.380559	-1.315979	2.369899		.656670	1.169031
Н	-2.087204	2.506472	0.518746		174381	0.709181
С	-0.522004	-1.065341	0.401111		038674	-0.240575
С	-0.919181	1.112882	-0.643740		675056	-1.111162
Н	-0.798359	1.800330	-1.475105		317515	-0.408410
С	-0.359943	-0.144033	-0.694243		744865	-1.406697
Н	0.212072	-0.488770	-1.549493		193592	3.155793
Н	-2.389800	0.973788	2.441098		558111	0.543287
0	-0.039312	-2.232913	0.350663		.001936	-0.443711
Н	1.996326	-2.354655	1.158065		209394	1.399274
С	5.171661	-0.408564	1.193868			
С	5.655315	0.854407	1.451430	TS	E= -542.	191988051
С	4.447359	-1.138135	2.202677	Nimag= -1518.32		
Н	6.205628	1.396551	0.688784		070675	1.857984
С	5.438285	1.449525	2.705142		297707	2.038190
С	4.236886	-0.493150	3.473232		601723	0.572874
Н	5.822357	2.445921	2.899547		705105	3.040304
Н	3.683701	-1.048251	4.223819		.672443	0.431959
С	4.728999	0.770627	3.709745		170764	0.937922
Н	4.571993	1.248865	4.671515		748924	-0.529399
Н	5.318228	-0.900384	0.237764		154201	-1.532816
0	4.026656	-2.310856	1.986839		620846	-0.349444
-					.282828	-1.211785
Ber	nzyl/toluene				728357	2.721918
201					.663835	1.107550
Tոհ	uene	E= -271	.433220704		035805	0.779611
101	utit	L2/1				

C 0.239360 0.778340 2.158199

0.535647 -0.571985 1.999172

0.042034 1.586755 1.041315

С

С

S11

C 3.590354 1.257073 1.280988

Н 3.558330 2.100742 0.598079

3.557554 -1.145888 1.640734

С

С	3.673670	1.473784	2.656539
С	3.646179	-0.910973	3.023024
Η	3.715300	2.485289	3.048673
Η	3.663400	-1.759449	3.703180
С	3.705463	0.383492	3.524534
Н	3.776452	0.543996	4.596395
Н	3.449087	-0.199761	-0.291601
С	0.668668	-2.594889	1.121888
Н	0.380791	-3.252685	0.301587
Н	0.433022	-3.005976	2.103931
С	3.374040	-2.500986	1.121416
Н	3.712253	-3.313723	1.764505
Н	3.629659	-2.650152	0.071981
TSc	onstrained	E= -542	.186897300
Nin	nag= -1508.71		
С	-0.174468	1.079813	1.553748
С	0.169487	-0.244308	1.795162
С	-0.253698	1.557484	0.246469
Н	0.228353	-0.612815	2.816398
Н	-0.523947	2.591582	0.057598
С	0.438556	-1.125593	0.735514
С	0.014470	0.696435	-0.816649
Н	-0.047530	1.059247	-1.838314
С	0.358419	-0.627645	-0.575018
Н	0.564994	-1.295885	-1.407491
Н	-0.384274	1.742711	2.387925
Н	2.205302	-2.500929	1.099994
С	4.050926	-4.364800	2.787208
С	4.395329	-5.687392	3.036269
С	3.972083	-3.873903	1.473946
Н	4.456351	-6.044725	4.059923
С	4.665258	-6.553939	1.978082
С	4.242875	-4.760689	0.419325
Н	4.935878	-7.586857	2.172794
Н	4.184946	-4.397641	-0.603928
С	4.587295	-6.083300	0.668171
Н	4.798464	-6.750507	-0.162216
Н	3.843075	-3.692266	3.615885
С	0.861244	-2.504898	0.992254
Н	0.721034	-3.210393	0.172462
Н	0.577551	-2.921637	1.959375
С	3.549216	-2.496204	1.209052
Н	3.834228	-2.084596	0.240130
Н	3.687919	-1.786216	2.025232

Met	thanol	E= -115	.6547578
С	-0.046785	0.658091	0.000000
Η	-1.091646	0.973590	0.000000
Η	0.437523	1.077763	0.891937
Η	0.437523	1.077763	-0.891937
0	-0.046785	-0.753213	0.000000
Η	0.871595	-1.051960	0.000000
Met	thoxyl	E= -114	.9889688
С	-0.009738	-0.577810	0.000000
Н	1.056999	-0.867510	0.000000
Н	-0.460335	-1.006509	0.905992
Н	-0.460335	-1.006509	-0.905992
0	-0.009738	0.793424	0.000000
TS		E= -230	.635760987
Nin	nag= -1809.67		
0	1.332618	-0.130554	0.490813
Η	2.006671	-0.077235	1.433628
0	2.820453	-0.518371	2.133057
С	2.132974	-0.394625	-0.621739
Η	2.947898	0.328781	-0.738231
Н	2.543247	-1.414321	-0.599874
Η	1.470766	-0.324514	-1.494450
С	2.464528	-1.824683	2.472053
Н	1.463109	-1.889868	2.912409
Н	2.536189	-2.506190	1.612401
Η	3.200238	-2.155100	3.216786
TSc	onstrained	E= -230	.632333659
Nin	nag= -1919.88		
0	0.960432	-0.045941	0.251547
Η	1.945154	-0.341033	0.788183
0	2.655988	-0.405712	1.702259
С	1.197810	1.228113	-0.271960
Η	1.237602	1.990276	0.517303
Н	2.111196	1.274492	-0.877214
Н	0.336824	1.459693	-0.912867
С	2.360812	-1.630059	2.308469
Н	1.383071	-1.610488	2.807539
Η	2.400772	-2.471557	1.606299

Н 3.124879 -1.778940 3.082874

Methoxyl/methanol