Observation of Boron Carbonyl Complexes B₁₁(CO)_n⁺ (n = 1-6) and B₁₅(CO)_n⁺ (n =1-5) with Conflicting Aromaticity

Rui-Nan Yuan,^[a] Qiang Chen,^{*[a]} Hong Niu,^[a] Cai-Yue Gao,^[a] Xiao-Ni Zhao,^[a] Yan-Bo Wu,^[a] Sheng-Gui He,^{*[b]} Si-Dian Li^{*[a]}

[a] Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China

[b] State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry,

Chinese Academy of Sciences, Beijing 100190, P. R. China

E-mail: chenqiang@sxu.edu.cn; shengguihe@iccas.ac.cn; lisidian@sxu.edu.cn.

Table of Contents

Fig. S1-S4 Low-lying isomers of $B_{11}(CO)_n^+$ (n = 1-6) and $B_{15}(CO)_n^+$ (n = 1-5).

- **Fig. S5** Optimized fluxional mechanisms of $C_s B_{11}^+$ and $C_{2\nu} B_{15}^+$.
- **Fig. S6-S16** Relaxed potential-energy curves for the approach of CO toward $B_{11}(CO)_n^+$ (n = 0-5) and $B_{15}(CO)_n^+$ (n = 0-4).
- Fig. S17-S18 Born-Oppenheimer molecular dynamics (BOMD) simulations of $B_{11}(CO)_n^+$ (n = 1-6) and $B_{15}(CO)_n^+$ (n = 1-5).
- Fig. S19-S22 AdNDP bonding patterns analyses of $B_{11}(CO)_n^+$ (n = 0-6), B_{11}^+ , B_{10} , and C_6H_6 .
- Fig. S23-S26 AdNDP bonding patterns analyses of $B_{15}(CO)_n^+$ (n = 0-5), B_{15}^+ , B_{14} , and C_8H_8 .
- Fig. S27-S28 and Table S1-S2 EDA-NOCV analyses of $B_{11}(CO)^+$ and $B_{15}(CO)^+$.
- Fig. S29-S32 AdNDP bonding patterns analyses of $B_{10}(CO)_n$ (n = 0.6) and $B_{14}(CO)_n$ (n = 0.6).
- **Fig. S33** Calculated chemisorption energies of $E_c = (E_{B13+} + nE_{CO}) E_{B13(CO)n+}$ and $E_c = (E_{B12} + nE_{CO}) E_{B12(CO)n}$ with respect to the number of CO ligands (*n*).

Fig. S1. Optimized low-lying isomers of $B_{11}(CO)_n^+$ (n = 1-3) at PBE0/6-311-G(d,p) level, with the relative energies (ΔE) indicated in eV at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses) levels, respectively.

Fig. S2. Optimized low-lying isomers of $B_{11}(CO)_n^+$ (n = 4-5) at PBE0/6-311-G(d,p) level, with the relative energies (ΔE) indicated in eV at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses), respectively.

Fig. S3. Optimized low-lying isomers of $B_{15}(CO)_n^+$ (n = 1-3) at PBE0/6-311-G(d,p) level, with the relative energies (ΔE) indicated in eV at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses), respectively.

Fig. S4. Optimized low-lying isomers of $B_{15}(CO)_n^+$ (n = 4-6) at PBE0/6-311-G(d,p) level, with the relative energies (ΔE) indicated in eV at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses) levels, respectively.

Fig. S5. (a) Optimized fluxional mechanism of B_{11}^+ , with the relative energies indicated in eV at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses) levels, respectively. (b) Optimized structures of B_{15}^+ with the relative energies indicated in eV at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p), PBE0/6-311+G(d,p) (in parentheses), TPSSh/def2-TZVPP (square bracket), respectively. (c) Optimized fluxional mechanism of $C_{2\nu} B_{15}^+$ (**15-I**), with the relative energies indicated eV at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p)//PBE0/6-311+G(d,p), with the relative energies indicated eV at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses), respectively.

Fig. S6. (a) Calculated relaxed potential energy curves for the approach of CO toward B_{11}^+ at PBE0/6-311+G(d,p). (b) Calculated potential energy profile to form **11-1A** and **11-1B**, with the relative energies indicated in eV for the intermediate states (Is) and transition states (TSs) at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses), respectively.

Fig. S7. (a) Calculated relaxed potential energy curves for the approach of CO toward **11-1A** and **11-1B** at PBE0/6-311+G(d,p). (b) Calculated potential energy profile to form **11-2A** and **11-2B**, with the relative energies indicated in eV for the intermediate states (Is) and transition states (TSs) at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses), respectively.

Fig. S8. Calculated relaxed potential energy curves for the approach of CO toward **11-2B** to form **11-3A**, **11-3B** and **11-3C** at PBE0/6-311+G(d,p).

Fig. S9. Calculated relaxed potential energy curves for the approach of CO toward **11-3A** to form **11-4A**, **11-4B** and **11-4C** at PBE0/6-311+G(d,p).

Fig. S10. (a) Calculated relaxed potential energy curves for the approach of CO toward **11-4A** at PBE0/6-311+G(d,p). (b) Calculated potential energy profile to form **11-5A**, **11-5B** and **11-5C**, with the relative energies indicated in eV for the intermediate states (Is) and transition states (TSs) at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses), respectively. The relative energies are in units of eV and bond lengths are given in pm.

Fig. S11. (a) Calculated relaxed potential energy curves for the approach of CO toward **11-5A** at PBE0/6-311+G(d,p). (b) Calculated potential energy profile to form **11-6A**, **11-6B** and **11-6C**, with the relative energies indicated in eV for the intermediate states (Is) and transition states (TSs) at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses), respectively. The relative energies are in units of eV and bond lengths are given in pm.

Fig. S12. Calculated relaxed potential energy curves for the approach of CO toward **15-I** (a) to form **15-1A** and **15-1C** and **15-II** (b) to form **15-1A** and **15-1B** at PBE0/6-311+G(d,p). (c) Calculated potential energy profile to form **15-1A**, with the relative energies indicated in eV for the intermediate states (Is) and transition states (TSs) at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses), respectively.

Fig. S13. Calculated relaxed potential energy curves for the approach of CO toward **15-1A** to form **15-2A** and **15-2B** at PBE0/6-311+G(d,p).

Fig. S14. Calculated relaxed potential energy curves for the approach of CO toward **15-2A** to form **15-3A** and **15-3B** at PBE0/6-311+G(d,p).

Fig. S15. (a) Calculated relaxed potential energy curves for the approach of CO toward **15-3A** at PBE0/6-311+G(d,p). (b) Calculated potential energy profile to form **15-4A**, **15-4B** and **15-4C**, with the relative energies indicated in eV for the intermediate states (Is) and transition states (TSs) at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses), respectively. The relative energies are in units of eV and bond lengths are given in pm.

14

Fig. S16. (a) Calculated relaxed potential energy curves for the approach of CO toward **15-4B** at PBE0/6-311+G(d,p). (b) Calculated potential energy profile to form **15-5A**, and **15-5B**, with the relative energies indicated in eV for the intermediate states (Is) and transition states (TSs) at CCSD(T)/6-311+G(d,p)//PBE0/6-311+G(d,p) and PBE0/6-311+G(d,p) (in parentheses), respectively. The relative energies are in units of eV and bond lengths are given in pm.

15

Fig. S17. Born-Oppenheimer molecular dynamics (BOMD) simulations of (a) C_s **B**₁₁-1**A**, (b) C_s **B**₁₁-2**A**, (c) C_1 **B**₁₁-3**A**, (d) C_1 **B**₁₁-4**A**, (e) C_1 **B**₁₁-5**A**, and (f) C_1 **B**₁₁-6**A** at 300K for 100 ps, with the calculated average root-mean-square-deviations (RMSD) values and maximum bond length deviations (MAXD) values indicated.

Fig. S18. Born-Oppenheimer molecular dynamics (BOMD) simulations of (a) C_s **B**₁₅-1**A**, (b) C_1 **B**₁₅-2**A**, (c) C_s **B**₁₅-3**A**, (d) C_1 **B**₁₅-4**B** and (e) C_s **B**₁₅-5**A** at 300K for 100 ps. The calculated average root-mean-square-deviations (RMSD) values and maximum bond length deviations (MAXD) values are indicated.

Fig. S19. AdNDP bonding patterns of (a) $C_s B_{11}^+ GM$, (b) $D_{6h} C_6 H_6$, (c) $C_2 B_{11}^+ TS$, and (d) $C_{2h} B_{10}$, with the occupation numbers (ONs) indicated.

Fig. S20. AdNDP bonding patterns of (a) C_s B₁₁-1A and (b) C_s B₁₁-2A, with the occupation numbers (ONs) indicated.

Fig. S21. AdNDP bonding patterns of (a) C_1 B₁₁-3A and (b) C_1 B₁₁-4A, with the occupation numbers (ONs) indicated.

Fig. S22. AdNDP bonding patterns of (a) C_1 B₁₁-5A and (b) C_1 B₁₁-6A, with the occupation numbers (ONs) indicated.

11 2c-2e σ bonds ON = 1.81-1.93 |e|

10 2c-2e σ bonds

ON = 1.82-1.93 |e|

2 3c-2e σ bonds ON = 1.89-1.91 |e|

2 3c-2e π bonds ON = 1.62 |e|

2 3c-2e σ bonds

ON = 1.88 |e|

2 4c-2e π bonds

ON = 1.81 |e|

 $2 3c-2e \sigma$ bonds 1 4c-2e σ bond 1 5c-2e σ bond ON = 1.61-1.94 |e|

1 4c-2e π bond 1 5c-2e π bond ON = 1.88-1.95 |e|

2 3c-2e σ bonds 2 4c-2e σ bonds ON = 1.68-1.87 |e|

2 5c-2e π bonds ON = 1.94 |e|

1 12c-2e σ bond

ON = 1.94 |e|

1 12c-2e σ bond ON = 1.99 |e|

(c) C₈H₈ (D_{2d} ¹A₁)

(b) B₁₄ (C_{2v} ¹A₁)

Fig. S23. AdNDP bonding patterns of (a) $C_{2\nu} B_{15}^+$, (b) $C_{2\nu} B_{14}$, and (c) $D_{2d} C_8 H_8$, with the occupation numbers (ONs) indicated.

8 2c-2e σ bonds ON = 1.99 |e|

Fig. S24. AdNDP bonding patterns of (a) C_s B₁₅-1A and (b) C_1 B₁₅-2A, with the occupation numbers (ONs) indicated.

Fig. S25. AdNDP bonding patterns of (a) C_s **B**₁₅-**3A** and (b) C_1 **B**₁₅-**4B**, with the occupation numbers (ONs) indicated.

Fig. S26. AdNDP bonding patterns of C_s B₁₅-5A, with the occupation numbers (ONs) indicated.

Fig. S27. Bonding scheme of $B_{11}(CO)^+$ (**11-1A**) based on EDA-NOCV analyses, with $C_s B_{11}^+$ and CO designated as interacting fragments. Only the most important occupied valence orbitals HOMO-13 representing the effective σ -donation coordination bond and HOMO and HOMO-5 responsible for weak π -back-donations between B_{11}^+ and its ligand CO are shown, with the percentage contributions from the corresponding molecular orbitals of the fragments B_{11}^+ and CO indicated.

Fig. S28. Bonding scheme of $B_{15}(CO)^+$ (**15-1A**) based on EDA-NOCV analyses, with $C_{2\nu} B_{15}^+$ and CO designated as interacting fragments. Only the most important occupied valence orbitals HOMO-17 representing the effective σ -donation coordination bond and HOMO and HOMO-2 responsible for weak π -back-donations between B_{15}^+ and its ligand CO are shown, with the percentage contributions from the corresponding molecular orbitals of the fragments B_{15}^+ and CO indicated.

Fig. S29. AdNDP bonding patterns of (a) C_1 B₁₀(CO), (b) C_i B₁₀(CO)₂, and (c) C_1 B₁₀(CO)₃, with the occupation numbers (ONs) indicated.

(a) B₁₀(CO)₄ (C₁ ¹A)

Fig. S30. AdNDP bonding patterns of (a) C_1 B₁₀(CO)₄, (b) C_1 B₁₀(CO)₅, and (c) C_{2h} B₁₀(CO)₆, with the occupation numbers (ONs) indicated.

(a) B₁₄CO (C_s ¹A')

one lone pair on O ON = 1.98 |e|

2 3c-2e σ bonds ON = 1.89 |e|

2 3c-2e σ bonds

ON = 1.88 |e|

(b) $B_{14}(CO)_2 (C_{2v} {}^1A_1)$

ON = 1.79-1.93 |e|

2 3c-2e σ bonds 2 6c-2e σ bonds ON = 1.85-1.95 |e|

2 6c-2e σ bonds

ON = 1.87-1.90 |e|

ON = 1.98-2.00 |e|

1 12c-2e σ bond ON = 1.99 |e|

2 5c-2e π bonds ON = 1.78 |e|

2 5c-2e π bonds

ON = 1.69-1.84 |e|

2 2c-2e σ bonds ON = 1.98-2.00 |e|

2 6c-2e π bonds ON = 1.78-1.86 |e|

1 12c-2e σ bond ON = 1.94 |e|

2 6c-2e π bonds ON = 1.84 |e|

Fig. S31. AdNDP bonding patterns of (a) $C_s B_{14}(CO)$, (b) $C_{2\nu} B_{14}(CO)_2$, and (c) $C_s B_{14}(CO)_3$, with the occupation numbers (ONs) indicated.

Fig. S32. AdNDP bonding patterns of (a) C_s B₁₄(CO)₄, (b) C_1 B₁₄(CO)₅, and (c) C_s B₁₀(CO)₆, with the occupation numbers (ONs) indicated.

Fig. S33. Calculated chemisorption energies of $E_c = (E_{B13+} + nE_{CO}) - E_{B13(CO)n+}$ (black) and $E_c = (E_{B12} + nE_{CO}) - E_{B12(CO)n}$ (red) with respect to the number of CO ligands (*n*) in the systems at CCSD(T) level. The slopes of the fitted linear relationships represent the approximate average cohesive energy per CO ligand of the corresponding adsorption processes.

Energy term	Assignment	Interacting fragment $B_{11}^+ + CO$
$\Delta E_{ m int}$		-75.4
$\Delta E_{ ext{Pauli}}$		157.9
$\Delta E_{elstat}^{[a]}$		-82.1 (35.2%)
$\Delta E_{ m orb}^{[a]}$		-151.2 (64.8%)
$\Delta E_{\rm orb}(1)^{[b]}$	$[B_{11}^+(p)] \leftarrow CO \sigma$ donation	-102.3 (67.7%)
$\Delta E_{ m orb} (2)^{[b]}$	$[B_{11}^+(p)] \rightarrow CO \pi$ backdonation	-20.2 (13.3%)
$\Delta E_{ m orb} (3)^{[b]}$	$[B_{11}^+(p)] \rightarrow CO \pi$ backdonation	-15.2 (10.1%)
$\Delta E_{ m orb}$ (4) ^[b]		-11.5 (7.6%)
$\Delta E_{\rm orb} ({\rm rest})^{[b]}$		-2.1 (1.4%)

Table S1. EDA-NOCV results for $B_{11}(CO)^+$ (**11-1A**) at the PBE0/TZ2P-ZORA level using PBE0/6-311+G(d,p) optimized geometries, with CO and B_{11}^+ designated as the interacting fragments. Energy values are given in kcal/mol.

[a] The values in parentheses give the percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb}$. [b] The values in parentheses give the percentage contribution to the total orbital interactions ΔE_{orb} .

Energy term	Assignment	Interacting fragment $B_{15}^+ + CO$
$\Delta E_{ m int}$		-82.9
$\Delta E_{ ext{Pauli}}$		176.2
$\Delta E_{elstat}^{[a]}$		-92.6 (35.7%)
$\Delta E_{ m orb}{}^{[a]}$		-166.5 (64.3%)
$\Delta E_{\rm orb}(1)^{[b]}$	$[B_{15}^+(p)] \leftarrow CO \sigma$ donation	-106.8 (64.2%)
$\Delta E_{ m orb}\left(2 ight)^{[b]}$	$[B_{15}^+(p)] \rightarrow CO \pi$ backdonation	-22.1 (13.3%)
$\Delta E_{ m orb} \left(3\right)^{[b]}$	$[B_{15}^+(p)] \rightarrow CO \pi$ backdonation	-20.6 (12.4%)
$\Delta E_{ m orb}$ (4) ^[b]		-14.7 (8.9%)
$\Delta E_{\rm orb} ({\rm rest})^{[b]}$		-2.2 (1.3%)

Table S2. EDA-NOCV results for $B_{15}(CO)^+$ complexes at the PBE0/TZ2P-ZORA level using PBE0/6-311+G(d,p) optimized geometries, with CO and B_{15}^+ designated as the interacting fragments. Energy values are given in kcal/mol.

[a] The values in parentheses give the percentage contribution to the total attractive interactions $\Delta E_{elstat} + \Delta E_{orb}$. [b] The values in parentheses give the percentage contribution to the total orbital interactions ΔE_{orb} .