Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Electronic Supplementary Information for

Ultrafast photophysics of the cyan fluorescent protein chromophore in solution

Anam Fatima,^{*a*} Eleanor K. Ashworth,^{*a*} Isabelle Cambrier,^{*a*} Andrew N. Cammidge,^{*a*} Giovanni Bressan,^{*a*} Stephen R. Meech,^{*a*} and James N. Bull^{**a*}

^aChemistry, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom

Fig. S1 Absorption (solid lines) and emission (dotted lines) spectra for neutral cyan at room temperature. The emission spectra were recorded following excitation at 400 nm. Starred peaks (*) in emission spectra are Raman scattering artefacts. Spectral maxima are summarised in Table S1.

Fig. S2 Absorption (black) and fluorescence emission (blue) spectra for neutral cyan at room temperature in 2-methyltetrahydrofuran, which is a non-protic solvent. The emission spectrum was recorded following excitation at 400 nm.

Table S1 Absorption (λ_{abs}) and emission λ_{em} maxima (and associated Stokes shift ($\Delta \tilde{v}$) of cyan in various solvents, with the corresponding viscosity (η) and polarity (ε). Values for viscosity and polarity were taken from the CRC Handbook of Chemistry and Physics, 85th Edition.

Solvent	λ_{abs} / nm	$\lambda_{\rm em}$ / nm	$\Delta \tilde{v}$ / cm ⁻¹	η / cP	ε
2-methyltetrahydrofuran	394	450	3158	0.46	7.52
methanol	403	460	3075	0.54	33.0
ethanol	405	459	2905	1.07	25.3
1-propanol	406	460	2891	1.95	20.8
1-pentanol	409	465	2945	3.62	15.1
1-heptanol	410	458	2556	5.81	11.8
1-octanol	410	268	3023	7.29	10.3
ethylene glycol	408	470	3233	16.1	41.4

Fig. S3 TA difference spectra for cyan in: (left) butanol, (middle) heptanol, and (right) ethylene glycol. In all cases, TA band D is on the red edge of the ground state bleach. TA spectra were recorded with \approx 400 nm pump light.

Fig. S4 Experimental (points) and kinetics model from a global fit (traces) for TA spectra of cyan in ethanol at four selected wavelengths corresponding to band features.

Table S2 Bond lengths (l in Å) and angles (θ in °) of cyan at its S_0 , S_1 , and conical intersection (CI) relaxed optimised geometries from MRSF-TDDFT calculations.

	S ₀	S_1	CI
<i>l</i> (3-4)	1.432	1.360	1.354
l(4-5)	1.351	1.445	1.443
l(5-6)	1.471	1.410	1.399
l(6-7)	1.208	1.237	1.244
$\theta(3-4-5)$	127.58	123.55	123.75
$\theta(1-2-3-4)$	0.04	1.51	4.77
$\theta(4-5-8-9)$	179.92	174.15	163.98

Fig. S5 Cyan in the S_1 state optimised geometry solvated with 20 (upper) ethanol and (lower) octanol molecules. (left) Solvent molecules were optimised based on the electronic structure (charge distribution) for the S_0 state. (right) Solvation optimised used the S_0 electronic structure with partial charges (equivalent to charge density for the S_1 state from MRSF-TDDFT) placed on each of the two ring systems to approximately account for prompt solvent reorientation due to the change in charge distribution on the S_1 state.

Optimised equilibrium geometries from MRSF-TDDFT calculations

S_0 minimum

S_1 minimum

С	-1.062952255	-0.233246142	-0.001313524	С	-1.014166769	0.051378366	0.014169786
С	0.081044467	0.503558998	0.444418176	С	0.100528154	0.806222048	-0.156825967
Η	-0.097266429	1.461516022	0.908107218	Н	-0.073779548	1.855564631	-0.383915269
С	1.380190932	0.142140563	0.355268552	С	1.442652194	0.285540350	-0.037876002
С	2.487166091	0.978504298	0.846273390	С	2.222026303	0.315817763	1.130886633
С	3.173493502	-0.950171430	-0.064875263	С	3.326285762	-0.488806540	-0.675824532
Ν	1.895411198	-1.030362790	-0.191794995	Ν	2.146633702	-0.202296404	-1.128527582
Ν	3.606634196	0.211876239	0.542220430	Ν	3.441371074	-0.211640721	0.663164478
С	4.132480796	-1.988164699	-0.518115786	С	4.437050344	-1.055257149	-1.483365761
Η	4.727162019	-2.365161600	0.311980022	Н	4.763028219	-2.028949821	-1.115350547
Η	3.579222826	-2.808741023	-0.957468396	Н	4.095242127	-1.172189167	-2.505426245
Η	4.822636314	-1.589114128	-1.259088559	Н	5.313697263	-0.406999060	-1.486862254
0	2.498710894	2.060851789	1.383113673	0	2.012803399	0.653089669	2.305031624
С	4.954653428	0.618545571	0.837517924	С	4.579548866	-0.384810897	1.516523981
Η	5.438332957	-0.074446407	1.521140539	Н	4.875310080	-1.430169812	1.592493868
Η	5.552131218	0.699525278	-0.066739228	Н	5.435439507	0.190678476	1.168470703
Η	4.891549165	1.592444455	1.307995308	Н	4.284292959	-0.026884248	2.496283576
С	-1.080777534	-1.461211259	-0.612743105	С	-0.948550278	-1.321965683	0.375754042
Η	-0.247672007	-2.085796435	-0.866404309	Н	-0.063776948	-1.901811561	0.540076572
С	-2.443385617	0.179640416	0.108170583	С	-2.439902054	0.366650306	-0.065424207
С	-3.224768738	-0.842817447	-0.453881098	С	-3.127470912	-0.807677185	0.240936847
Ν	-2.360236043	-1.824542226	-0.881912237	Ν	-2.165349531	-1.800534019	0.501972484
С	-4.610683378	-0.777001608	-0.517089634	С	-4.503673564	-0.901537997	0.264184561
С	-3.082018764	1.307353412	0.623818871	С	-3.164334561	1.509438033	-0.365124182
С	-5.215724290	0.348937504	0.000231205	С	-5.208838948	0.251527029	-0.037658275
С	-4.457520494	1.381620232	0.565492843	С	-4.547418018	1.438596418	-0.346937385
Η	-5.191997467	-1.573675124	-0.953277128	Н	-5.008970229	-1.822129015	0.504690520
Η	-6.289517263	0.435732400	-0.031310699	Н	-6.285503930	0.228982259	-0.032361460
Η	-4.961236371	2.248416188	0.961414551	Н	-5.125139632	2.318276597	-0.575843634
Η	-2.511983934	2.110812292	1.062165179	Н	-2.665940711	2.433341615	-0.605793174
Н	-2.629942849	-2.679078297	-1.324127534	Н	-2.379957751	-2.743499240	0.767663768

Optimised CI geometry from MRSF-TDDFT calculations

Conical intersection

С	-1.022565425	0.046793102	0.012010413
С	0.106639014	0.777875128	-0.125143151
Н	-0.054005264	1.836444300	-0.327563689
С	1.434475014	0.225191065	-0.005949843
С	2.217545123	0.259637442	1.148595546
С	3.327409481	-0.478008416	-0.693015991
Ν	2.141993771	-0.207666465	-1.128024010
Ν	3.442707581	-0.236203649	0.655899859
С	4.446290827	-0.998938819	-1.521172409
Η	4.796983239	-1.975426608	-1.183978273
Η	4.100115366	-1.096235930	-2.544165007
Η	5.309269665	-0.332238252	-1.514502195
0	2.016411271	0.567984368	2.337158384
С	4.590243102	-0.399128162	1.496500328
Н	4.945145169	-1.428849670	1.504320908
Η	5.413809671	0.244903536	1.190943881
Н	4.275464997	-0.121347544	2.496306295
С	-0.961234757	-1.327113560	0.392114065
Η	-0.072447883	-1.897333138	0.567271028
С	-2.447223982	0.370262331	-0.066798555
С	-3.136876273	-0.794573218	0.262754516
Ν	-2.170288273	-1.789337533	0.541410688
С	-4.510937949	-0.890468488	0.290878533
С	-3.169364316	1.507456683	-0.388331528
С	-5.215772688	0.258002477	-0.033064106
С	-4.553252803	1.436825024	-0.366369984
Н	-5.016085955	-1.805967521	0.549675922
Н	-6.292248283	0.236548901	-0.027505623
Η	-5.130163603	2.312070824	-0.612951278
Η	-2.670605004	2.425083892	-0.650165676
Η	-2.388294264	-2.728297060	0.822047924