Construction of relay reaction system by Co@S-1 and In-Ce/H-Beta for selective catalytic reduction of nitrogen oxides with methane

Mingkang Zhang¹, Jinwei Wu¹, Junfei Chen¹, Haolin Yang², *, Xiaohan Wang², Zebao Rui^{1,*}

¹ School of Chemical Engineering and Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and their Functionalization, Sun Yat-sen University, Zhuhai 519082, China

² CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

* To whom correspondence should be addressed.

E-mail address: <u>ruizebao@mail.sysu.edu.cn</u> (Zebao Rui); <u>yanghl@ms.giec.ac.cn</u> (Haolin Yang)

S1. Preparation of catalyst

Synthesis of InCo/H-Beta

The InCo/H-Beta/H-Beta sample was prepared by an ion exchange method. A certain amount of $InCl_3 \cdot 4H_2O$ and $Co(NO_3)_3$ ($\mathbf{0}_{6}H_2O$) were dispersed in a 100 mL deionized water solution with the In/Co mass ratio of 1:8. Then, 3 g of H-Beta molecular sieve was added, and the solution was stirred for 8 h at 85 °C. The product was washed and dried at 80 °C overnight. Finally, the sample was calcined at 500 °C for 3 h in air with a heating rate of 5 °C min ⁻¹. The obtained catalyst was donated as InCo/H-Beta.

S2. Catalyst evaluation

Fig. S1 CH₄-SCR performance comparison of various relay reaction systems at 500 °C. Reaction conditions: 500 ppm CH₄, 500 ppm NO, 5 vol.% O₂, balanced with Ar, WHSV= 60000 mL g⁻¹ h⁻¹, m_{cat} . = 0.2 g.

The catalyst activity for selective catalytic reduction of nitrogen oxides with methane (or CH₄-SCR) was evaluated on a fixed-bed reactor at 500 °C. Compared with S-1+In-Ce/H-Beta, the Co@S-1+In-Ce/H-Beta shows a much higher CH₄ conversion activity. This activity improvement is attributed to the redox properties of CoO_x sites on the Co@S-1.^{1,2} Notably, the Co@S-1+H-Beta shows a lower NO_x conversion activity than Co@S-1+In-Ce/H-Beta, suggesting that In-Ce/H-Beta holds high NO_x conversion activity because of the exit of InO⁺ active sites.³

Fig. S2 Performance comparison of various relay reaction systems at different gas compositions: (a & b) 500 ppm NO+ 5 vol.% O₂, (c) 500 ppm CH₄+5 vol.% O₂; balanced with Ar, *WHSV*= 60000 mL g⁻¹ h⁻¹, m_{cat} =0.2 g.

To identify the role of Co@S-1 and In-Ce/H-Beta in CH₄-SCR reaction, the

catalytic activity of various relay reaction systems (or RRS), i.e., Co@S-1+In-Ce/H-Beta, Co@S-1+H-Beta, and S-1+In-Ce/H-Beta were evaluated under various gas compositions. As illustrated in Fig. S2a, the Co@S-1+H-Beta RRS exhibits superior NO conversion capability compared to other catalysts under NO+O₂ gaseous composition. Additionally, S-1+In-Ce/H-Beta RRS exhibits the lowest NO_x conversion compared to other RRS (Fig. S2b), due to the absence of Co@S-1 catalyst for NO oxidation. Under the atmosphere of CH₄ + O₂ (Fig. S2c), the CH₄ conversion rates are ordered as Co@S-1+In-Ce/H-Beta ~ S-1+In-Ce/H-Beta > Co@S-1+H-Beta, suggesting that the In-Ce/H-Beta possesses favorable activity of CH₄ conversion.

As observed in Fig. S3a, the NO oxidation performance of the Co@S-1+In-Ce/H-Beta relay reaction system exhibits an initial enhancement followed by a subsequent decline with increasing mass ratio of Co@S-1 in the relay reaction system. Furthermore, Fig. S3b&c demonstrates that the CH₄-SCR performance progressively improves with elevated mass ratios of In-Ce/H-Beta in the relay reaction system. However, the enhancement became less pronounced when the In-Ce/H-Beta loading is increased from 0.1 g to 0.15 g. Notably, an optimal mass ratio is identified, where the relay reaction system achieves maximum CH₄-SCR efficiency when the Co@S-1 and In-Ce/H-Beta maintain a mass ratio of unit.

Fig. S3 Effect of relay catalysts mass ratio on (a) NO, (b) NO_x, and (c) CH₄ conversions over Co@S-1 + In-Ce/H-Beta relay reaction system. Reaction conditions: 500 ppm CH₄, 500 ppm NO, 5 vol.% O₂, balanced with Ar, *WHSV*= 60000 mL g⁻¹ h⁻¹, m_{cat} . = 0.2 g.

To investigate the effectiveness of direct cobalt incorporation into In/H-Beta catalysts for CH₄-SCR performance, catalytic evaluations were conducted on three distinct systems: S-1+InCo/H-Beta, Co@S-1+H-Beta, and Co@S-1+In/H-Beta. As illustrated in Fig. S4, comparative analysis reveals that the S-1+InCo/H-Beta exhibits inferior CH₄-SCR activity compared to the other two catalysts. This observation demonstrates that cobalt doping into In/H-Beta zeolite systems fails to enhance catalytic performance for CH₄-SCR applications.

Fig. S4 (a) NO, (b) NO_x, and (c) CH₄ conversion over various relay reaction systems. Reaction conditions: 500 ppm CH₄, 500 ppm NO, 5 vol.% O₂, balanced with Ar, *WHSV*= 60000 mL g⁻¹ h⁻¹, $m_{cat.} = 0.2$ g.

As compared in Fig. S5, the sequential loading of the catalysts (Co@S-1+In-Ce/H-Beta) leads to remarkably better CH₄-SCR performance than the physical mixture of Co@S-1&In-Ce/H-Beta. Although the NO_x conversions of Co@S-1+Co@S-1are highest among the samples at temperatures lower than 350 °C, its NO_x conversion decreases rapidly and is greatly lower than those of Co@S-1+In-Ce/H-Beta with further increasing reaction temperatures (Fig. S5b). In spite of the high CH₄ activation ability

of In-Ce/H-Beta, the CH₄ conversions of Co@S-1+In-Ce/H-Beta are comparable with those of In-Ce/H-Beta+In-Ce/H-Beta (Fig. S5c). As evidenced in Fig. S5d, a progressive decline in CH₄ selectivity is observed for both Co@S-1+In-Ce/H-Beta and Co@S-1&In-Ce/H-Beta systems as the temperature increases beyond 400 °C, indicating the gradual predominance of CH₄ oxidation over the selective catalytic reduction of nitrogen oxides by CH₄. Notably, the relay catalytic system (Co@S-1+In-Ce/H-Beta) demonstrates superior CH₄ selectivity performance compared to the physically mixed system (Co@S-1&In-Ce/H-Beta). This comparative analysis underscores the enhanced efficacy of the relay catalytic system in optimizing CH₄-SCR. These results indicate the sequential relay catalysis character of Co@S-1+In-Ce/H-Beta and its promotion to CH₄-SCR.

Fig. S5 CH₄-SCR performance comparison of various relay reaction systems. Reaction conditions: 500 ppm CH₄, 500 ppm NO, 5 vol.% O₂, balanced with Ar, *WHSV*= 60000 mL g⁻¹ h⁻¹, m_{cat} = 0.2 g.

Samples	Gas composition	WHSV (mL h ⁻ ¹ g ⁻¹)	<i>Т</i> (°С)	NO _x conversion(%)	CH ₄ conversion (%)	Ref.
Co@S-1+In-	500 nnm CH +500		250	18	7	
Ce/Beta	$500 \text{ ppm CH}_4 + 500$	60000	350	27	13	This work
	ppm NO +5% O_2 +Ar		450	79	57	
In-Beta81	500 ppm CH ₄ +500 ppm NO+ 2% O ₂ +Ar	23600	450	50	52	4
			250	40	0	
Co _{3.0} -Pd _{0.15} -	150 ppm NO+1500 ppm CH ₄ +7% O ₂ +He	40000	350	48	5	5
SiBEA			450	52	25	
Ce/HZSM-5- CoOx	1000 ppm CH ₄ +1000 ppm NO+2% O ₂ +N ₂	15000	350	26	12	6
Pd-In-HMOR	4000 ppm NO+4000	15000	350	25	10	7
	ppm CH ₄ +2% O ₂		450	42	30	/
Co-SSZ-13	1000 ppm NO+1000 ppm CH ₄ +4% O ₂ +N ₂	10000	450	72	51	8
Co, Ag-ZSM-5	1000 ppm NO+5000	6000	350	95	8	9
	ppm $CH_4+2\% O_2+He$		450	95	45	
In-Co ₃ O ₄ /H- Beta	400 ppm NO+400 ppm CH ₄ +100 ppm SO ₂ +10% O ₂ +5% H ₂ O+Ar	23600	550	40	38	10

 Table S1. Experimental details and performance comparison of Co@S-1+In-Ce/Beta

 with typical reported catalysts in the literature for CH4-SCR

S3. Morphology and structure

Fig. S6 (a) SEM image and (b) STEM image and metal particle size distribution of Co@S-1

SEM and STEM images of Co@S-1 are presented in Fig. S4. The Co@S-1 catalyst TEM characterization in Fig. S4b indicates that the nanoparticle structure with a size of ca. 23 nm.

Table S2 Texture properties and composition information of the employed samples.

Catalysts	$S_{ m BET}$ $(m m^2 \cdot m g^{-1})$ a	V _{total} (cm ³ ·g ⁻¹) ^a	$V_{ m micro}$ (cm ³ ·g ⁻¹) ^a	V _{meso} (cm ³ ·g ⁻¹) ^a	In loading (wt.%) ^b	Ce loading (wt.%) ^b	Co loading (wt.%) ^b
In-Ce/H-Beta	u 521.2	0.539	0.164	0.375	2.05	0.5	-
Co@S-1	362.6	0.667	0.096	0.571	-	-	12.12

^a calculated by BET formula

^b measured by ICP-AES

S4. Chemical properties

Fig. S7 O 1s XPS spectra of catalysts

As shown in Fig. S7, the O_{α} , O_{β} , and O_{γ} peaks in the O 1s spectrum of Co@S-1 can be attributed to the lattice oxygen of Co₃O₄ crystallites, surface-adsorbed oxygen, and the Si-O-Si or Si-O-Co species, respectively.^{11,12} Wherein, the surface-adsorbed oxygen species are reported to play a pivotal role in modifying reaction energy and activating reactants, thereby facilitating NO_x reduction.¹³ The O_{α'}, O_{β'}, and O_{γ'} peaks in the O 1s spectrum of In-Ce/H-Beta can be attributed to the indium oxide, lattice oxygen in HBEA zeolite, and surface oxygen species, respectively.^{14,15} The surface oxygen species possesses high mobility and can actively participate in the oxidation process.¹⁶ After the long-time stability test, the relative amounts of O_{α'}, O_{β'}, and O_{γ} peaks in the Co@S-1 (used) and the relative amounts of O_{$\alpha'}, O_{<math>\beta'$}, O_{$\gamma'} in the In-Ce/H-Beta (used) all$ show an obvious change, as compared in Table S3.</sub></sub>

Catalysts	Co species (%)		$C_{2}^{3+/}C_{2}^{2+}$	Ce species (%)		$C_{2}^{3+/}C_{2}^{4+}$	In species (%)		O species (%)		
	Co ³⁺	Co ²⁺		Ce ³⁺	Ce ⁴⁺		In ₂ O ₃	InO ⁺	Οα	Οβ	Ογ
Co@S-1	31.5	68.5	0.46	-	-		-		29.9	44.3	25.8
Co@S-1 (used)	21.9	78.1	0.28	-	-		-		35.9	40.3	23.8
In/H-Beta	-	-		-	-		45.9	54.1	9.2	43.2	47.6
In-Ce/H-Beta	-	-		43.6	56.4	0.77	38.5	61.5	7.0	43.3	49.7
In-Ce/H-Beta (used)	-	-		45.9	54.1	0.85	38.9	61.1	11.5	63.7	24.8

 Table S3 XPS-derived chemical compositions of the samples

	Nł	Total NH ₃			
Sample		desorption (mmol			
-	α	β	θ	γ	g ⁻¹) a
In-Ce/H-Beta	0.376	0.469	0.464	1.309	2.619
Co@S-1	0.338	0.321	0.333	0.264	1.257

Table S4 Calculated NH₃ desorption amount of catalysts from NH₃-TPD profiles

^a The NH₃ desorption of each peak was calculated according to the standard curve of

NH₃ amount versus peak area.

S5. In-situ DRIFTS study

Fig. S8 *In-situ* DRIFTS spectra of NO + O_2 + Ar gas mixture adsorption over (a) Co@S-1 and (b) In-Ce/H-Beta versus temperatures. Reactant gas: 500 ppm NO +5 vol.% O_2 , balanced with Ar, *WHSV*=60000 mL g⁻¹ h⁻¹.

Fig. S8 shows *in-situ* DRIFTS spectra of Co@S-1 and In-Ce/H-Beta with an exposure to NO + O_2 +Ar. As depicted in Fig. S8a, the intensity of bands at 1575 cm⁻¹(NO-3 species) decreases with the increase in temperature,¹⁷ indicating that the NO-3

species is formed over Co@S-1 below 300 °C. Furthermore, the intensity of the ionic nitrates band at 1368 cm⁻¹ remains consistent with the increase in temperature, indicating that ionic nitrates on the Co@S-1 catalyst possess well thermal stability.¹⁸ The absorption peak at 3610 cm⁻¹ is observed on In-Ce/H-Beta (Fig. S8b), which is assigned to the stretching vibration of the bridging hydroxyl group (H⁺Z⁻) on the Brønsted acid of the zeolite.^{19,20} The intensity enhancement of the H⁺Z⁻ band of the acidic hydroxyl groups is partly due to the replacement of the protons by NO⁺ .²¹ Notably, the NO-3 species absorption band at 1575 cm⁻¹ is consistently detected on In-Ce/H-Beta from 150 °C to 500 °C, suggesting the In-Ce/H-Beta can produce NO-3 species with enhanced thermal stability.

Fig. S9 In-situ DRIFTS spectra of $CH_4 + O_2 + Ar$ gas mixture adsorption over (a) Co@S-1 and (b) In-Ce/H-Beta versus temperatures. Reactant gas: 500 ppm $CH_4+5vol.\% O_2$, balanced with Ar, *WHSV*=60000 mL g⁻¹ h⁻¹.

Fig. S9 shows *in-situ* DRIFTS spectra of Co@S-1 and In-Ce/H-Beta with an exposure to $CH_4 + O_2 + Ar$. The bands observed at 3014 cm⁻¹ and 1303 cm⁻¹ over two catalysts correspond to the stretching vibration of the C-H bond of the adsorbed gaseous

 CH_{4} ,²² indicating that the ability of two catalysts to adsorb and activate CH_{4} . The peak at 1592 cm⁻¹ is associated with the carbonate species (CO_{3}^{*}),²³ and the intensity of carbonate species increases with the increase in temperature.

Fig. S10 *In-situ* DRIFTS spectra of $CH_4 + NO + O_2 + Ar$ gas mixture adsorption over (a) Co@S-1 and (b) In-Ce/H-Beta versus times at 500 °C. Reactant gas: 500 ppm CH₄ + 500 ppm NO + 5vol.% O₂, balanced with Ar, *WHSV*=60000 mL g⁻¹ h⁻¹.

Fig. S10 shows *in-situ* DRIFTS spectra of Co@S-1 and In-Ce/H-Beta with an exposure to $CH_4 + NO + O_2 + Ar$ at 500 °C. After a 30-minute exposure to the $CH_4 + NO + O_2$ atmosphere, the peak intensities at 1575 cm⁻¹ (NO-3) and 1304 cm⁻¹ (C-H bond) on both catalysts remain constant,^{17,22} suggesting that both catalysts exhibit excellent thermal stability in the activation of CH_4 and the generation of NO-3 at this temperature.

Reference

- 1 X. Fan, L. Li, F. Jing, J. Li and W. Chu, Fuel, 2018, 225, 588-595.
- 2 X. Xie, Y. Li, Z.-Q. Liu, M. Haruta and W. Shen, *Nature*, 2009, 458, 746–749.
- 3 H. Schwarz, Angew. Chem. Int. Ed., 2011, 50, 10096–10115.
- 4 J. Zhao, G. Zhang, J. He, Z. Wen, Z. Li, T. Gu, R. Ding, Y. Zhu and R. Zhu, *Chemosphere*, 2020, 252, 126458.
- 5 A. Rodrigues, P. Da Costa, C. Méthivier and S. Dzwigaj, *Catal. Today*, 2011, 176, 72–76.
- 6 F. Huang, W. Hu, J. Chen, Y. Wu, P. Qu, S. Yuan, L. Zhong and Y. Chen, *Ind. Eng. Chem. Res.*, 2018, 57, 13312–13317.
- 7 H. Decolatti, H. Solt, F. Lónyi, J. Valyon, E. Miró and L. Gutierrez, *Catal. Today*, 2011, 172, 124–131.
- 8 S. Han, X. Tang, Y. Ma, Q. Wu, J. Shi, J. Li, X. Meng, A. Zheng and F.-S. Xiao, J. Phys. Chem. C, 2021, 125, 16343–16349.
- 9 X. Chen, A. Zhu, C. T. Au and C. Shi, Catal. Lett., 2011, 141, 207-212.
- 10 J. Zhao, Z. Wen, R. Zhu, Z. Li, R. Ding, Y. Zhu, T. Gu, R. Yang and Z. Zhu, *Chem. Eng. J. Adv.*, 2020, 3, 100029.
- 11 S. Song, J. Li, Z. Wu, P. Zhang, Y. Sun, W. Song, Z. Li and J. Liu, AIChE J., 2022, 68, e17451.
- 12 L. Zhang, S. Huang, W. Deng, D. Yang, Q. Tang, S. Zhu, and L. Guo, *Microporous Mesoporous Mater.*, 2021, 312, 110599.
- 13 J. S. Yoo, T. S. Khan, F. Abild-Pedersen, J. K. Nørskov and F. Studt, *Chem. Commun.*, 2015, 51, 2621–2624.
- 14 Y. Shi, X. Wang, L. Chen, S. Li, C. Wu, S. Shan and W. Li, *Appl. Surf. Sci.*, 2020, 506, 144715.
- 15 L. B. Hoch, T. E. Wood, P. G. O'Brien, K. Liao, L. M. Reyes, C. A. Mims and G. A. Ozin, *Adv. Sci.*, 2014, 1, 1400013.
- 16 T. Gu, Y. Liu, X. Weng, H. Wang and Z. Wu, Catal. Commun., 2010, 12, 310-

313.

- 17 R. Q. Long and R. T. Yang, J. Catal., 2000, 194, 80-90.
- 18 C. Zhang, G. Xu, Y. Zhang, C. Chang, M. Jiang, L. Ruan, M. Xiao, Z. Yan, Y. Yu and H. He, *Appl. Catal. B Environ. Energy*, 2024, 348, 123820.
- 19 M. Iwasaki and H. Shinjoh, J. Catal., 2010, 273, 29-38.
- 20 M. Rivallan, G. Ricchiardi, S. Bordiga and A. Zecchina, *J. Catal.*, 2009, 264, 104–116.
- 21 J. Xu, Y. Zhang, X. Xu, X. Fang, R. Xi, Y. Liu, R. Zheng and X. Wang, ACS Catal., 2019, 9, 4030–4045.
- 22 L. Jiang, D. Li, G. Deng, C. Lu, L. Huang, Z. Li, H. Xu, X. Zhu, H. Wang and K. Li, *Chem. Eng. J.*, 2023, 456, 141054.
- 23 K. Li, K. Liu, D. Xu, H. Ni, F. Shen, T. Chen, B. Guan, R. Zhan, Z. Huang and H. Lin, *Chem. Eng. J.*, 2019, 369, 660–671.