Supplementary Information

Tunable orange-deep red photoluminescence in amorphous KZn₁₋

_xMn_x(PO₃)₃ phosphors and anti-counterfeiting applications

Jiayue Jiang,^{a,c} Hao Wang,^b Tingting Zhao,^b Yixuan Xu,^a Junlong Li,^{a,b,c} Hu Cheng,^a Fei Zhang,^a Dongliang Yang,^a Yu Gong,^a Chuanlong Lin,^{*b} Xiaodong Li ^{*a} and Yanchun Li ^{*a} ^aMulti-disciplinary Research Division of Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China. ^bCenter for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing 100193, P.R. China. ^cUniversity of Chinese Academy of Sciences, Beijing 100049, P.R. China.

Fig. S1. The XRD patterns of a) α -KZn_{1-x}Mn_x(PO₃)₃ phosphor, b) β -KZn_{1-x}Mn_x(PO₃)₃ phosphor, and c) Am-KZn_{1-x}Mn_x(PO₃)₃ phosphor.

Fig. S2. SEM images, and 2D element mapping of a) α -KZn_{0.8}Mn_{0.2}(PO₃)₃ phosphor and b) β -KZn_{0.8}Mn_{0.2}(PO₃)₃ phosphor.

Materials	Aı	$\tau_1(ms)$	A ₂	$\tau_2(ms)$	$ au_{\mathrm{ave}}$	R ²
α-KZn _{0.8} Mn _{0.2} (PO ₃) ₃	0.43025	3.08456	0.33267	24.15623	21.16954	0.9693
β -KZn _{0.8} Mn _{0.2} (PO ₃) ₃	0.35486	7.76794	0.5912	26.32281	23.53072	0.99196
Am-	0.40992	2.96749	0.53371	18.56466	16.85916	0.98716
KZn _{0.8} Mn _{0.2} (PO ₃) ₃						

Table. S1. The individual lifetime components (τ_1 , τ_2) and their relative amplitudes (A_1 , A_2) at $KZn_{0.8}Mn_{0.2}(PO_3)_3$ phosphor with different phases.

Table. S2. The individual lifetime components and their relative amplitudes at $KZn_{0.99}Mn_{0.01}(PO_3)_3$ phosphor with different phases.

Materials	Aı	$\tau_1(ms)$	A ₂	$\tau_2(ms)$	τ_{ave}	R ²
α-KZn _{0.99} Mn _{0.01} (PO ₃) ₃	0.68972	0.04177	-	-	-	0.96125
β -KZn _{0.99} Mn _{0.01} (PO ₃) ₃	0.42285	0.02348	-	-	-	0.95731
Am-	0.25061	0.00764	0.51181	0.02447	0.02223	0.96913
KZn _{0.99} Mn _{0.01} (PO ₃) ₃						

Fig. S3. The decay curves of $KZn_{0.99}Mn_{0.01}(PO_3)_3$ phosphor for different phases.

Fig. S4. The 3D PL spectra of a) α -KZn_{1-x}Mn_x(PO₃)₃ phosphor and b) β -KZn_{1-x}Mn_x(PO₃)₃ phosphor.

Fig. S5. The TL curves of a) α -KZn_{1-x}Mn_x(PO₃)₃ phosphor, b) β -KZn_{1-x}Mn_x(PO₃)₃ phosphor, and c) Am-KZn_{1-x}Mn_x(PO₃)₃ phosphor at heating rates of 1 K s⁻¹.

Fig. S6. The temperature-dependent XRD patterns of a) α -KZn_{0.95}Mn_{0.05}(PO₃)₃ phosphor, b) β -KZn_{0.95}Mn_{0.05}(PO₃)₃ phosphor, and c) Am-KZn_{0.95}Mn_{0.05}(PO₃)₃ phosphor.

Fig. S7. The CIE chromaticity coordinates of β -KZn_{0.95}Mn_{0.05}(PO₃)₃, Am-KZn_{0.99}Mn_{0.01}(PO₃)₃, and Am-KZn_{0.8}Mn_{0.2}(PO₃)₃ phosphors.