Electronic Supporting Information

New insights into bioactive Ga(III) hydroxyquinolinate complexes from UV-vis, fluorescence and multinuclear high-field NMR studies

Vanessa V. Gaensicke, Stephanie Bachmann, Luca Craciunescu, Andrew W. Prentice, Martin J. Paterson, Dinu Iuga, Peter J. Sadler^{*} and Rafael Cavalieri Marchi^{*}

Contents

Table S1. B3LYP and wB97X-D3 excitation/emission energies.	3			
Table S2 . B3LYP and ω B97X-D3 energy comparison of the <i>mer</i> - and	4			
fac-isomer of for [Ga(Br ₂ -HQ) ₃] in DMSO and vacuum [kJ/mol].	4			
Figure S1. 500 MHz (A) ¹ H-NMR and (B) ¹ H- ¹ H NOESY in DMSO-	F			
d_6 of [Ga(HQ) ₃].	3			
Figure S2. Emission intensity variation of the band at 550 nm as	6			
$Ga(NO_3)_3$ in water is titrated into Br_2 -HQH.	0			
Figure S3. (A) Changes in the UV-vis absorption spectra when				
$Ga(NO_3)_3$ in water is added into Br_2 -HQH solution. (B) Changes in the	7			
consumption band (341 nm) from Br_2 -HQH and the formation band (389	341 nm) from Br_2 -HQH and the formation band (389			
nm) from $[Ga(Br_2-HQ)_3]$.				
Figure S4 . Changes in the UV-vis absorption spectra when Ga(NO ₃) ₃				
mol in water is added into Br ₂ -HQ solution in DMSO.				
Figure S5. UV-vis spectrum of Br ₂ -HQH and synthesised [Ga(Br ₂ -	0			
HQ) ₃] in DMSO.				
Figure S6. FT-IR comparison of Br ₂ -HQH and [Ga(Br ₂ -HQ) ₃]	10			
between 4000 to 450 cm^{-1} .				
Figure S7. Observed (top) and theoretical (bottom) HR-MS of	11			
${[Ga(Br_2-HQ)_3] + Na^+}^+.$				
Figure S8. ¹ H- ¹ H NOESY spectra of (A) [Ga(Br ₂ -HQ) ₃] and (B)				
$[Ga(HQ)_3]$ with mixing time of 5 ms. Spectra were recorded at 20 T				
with a 1.3 mm probe and a spinning speed of 60 kHz.				
Figure S9. (A) ¹³ C CPMAS spectra of Br ₂ -HQH at 10 kHz and 11	12			
kHz. (B) ¹³ C CPMAS spectra of HQH at 10 kHz and 11 kHz.	13			

Figure S10. Lifetime decay of $[Ga(Br_2-HQ)_3]$ (1 µM) in DMSO with $\lambda_{ex} = 405$ nm.	14
Figure S11. Photostability of $[Ga(Br_2-HQH)_3]$ in DMSO under irradiation of blue light (420 nm).	15
Figure S12. [Ga(Br ₂ -HQ) ₃] UV-vis absorption spectrum calculated by DFT methods.	16
Figure S13. Comparison of UV-Vis absorption spectra in DMSO calculated by DFT for $[Ga(Br_2-HQ)_3]$ and $[Ga(HQ)_3]$.	17

Transition	B3LYP		ωB97X-D3	
	Enormy [aV]	Wavelength	Energy [aV]	Wavelength
	Ellergy [ev]	[nm]	Energy [ev]	[nm]
S1 vert Exc	2.90	428	3.69	336
S1 vert Em	2.05	605	2.81	442
T1 vert Exc	2.33	532	2.74	453
T1 vert Em	1.64	758	1.60	774

Table S1. B3LYP and ω B97X-D3 excitation/emission energies in DMSO for [Ga(Br₂-HQ)₃].

Table S2. B3LYP and ω B97X-D3 energy comparison of the *mer-* and *fac-*isomers of [Ga(Br₂-HQ)₃] in DMSO and vacuum (kJ/mol).

Isomer	B3LYP-D3	B3LYP-D3	ωB97X-D3	ωB97X-D3
	DMSO	vac	DMSO	vac
mer	0	0	0	0
fac	5.3	26.3	7.8	30.8

Figure S2. Variation of the intensity of emission at 550 nm on excitation at 400 nm with increasing Ga concentration on addition of aliquots of 0.6 μ L Ga(NO₃)₃ in water (0.065 mol equiv, 8 μ M) to Br₂-HQH (1 mol equiv, 0.16 mM) in 99.6% DMSO/ 0.4% DMF (v/v). See Figure 2B.

Figure S3. (A) Time-dependent changes in the UV-vis absorption spectrum after addition of Ga(NO₃)₃ (0.67 mol equiv, 0.10 mM) in water to Br₂-HQH (1 mol equiv, 0.15 mM) solution in 99.6% DMSO/ 0.4% DMF (v/v). (B) Changes in absorbance at 341 nm from Br₂-HQH and the new band at 389 nm from [Ga(Br₂-HQ)₃]. The inset shows the best fit of log A *vs.* time (red line), giving the first-order rate constants in Table 1.

Figure S4. Time-dependent changes in the UV-vis absorption spectrum for $Ga(NO_3)_3$ (0.33 mol equiv, 0.05 mM) in water after addition of Br₂-HQ (1 mol equiv, 0.15 mM) in DMSO (0.4% DMF (v/v)).

Figure S5. UV-vis spectra of Br_2 -HQH (0.15 mM in 99.6% DMSO/ 0.4% DMF (v/v)) and synthesised [Ga(Br_2 -HQ)₃] (0.045 mM) in DMSO.

Figure S6. FT-IR comparison of Br_2 -HQH and $[Ga(Br_2-HQ)_3]$ between (A) 4000 to 450 cm⁻¹; the band assignable to the phenolic -OH disappears upon coordination. (B) Finger print region between 1800 to 450 cm⁻¹ where two new peaks at 950 and 1110 cm⁻¹ assignable to Ga(III)–O bonds appear.

Figure S7. Observed (top) and calculated (bottom) HR-MS for ${[Ga(Br_2-HQ)_3] + Na]}^+$

Figure S8. 850 MHz ¹H-¹H NOESY 2D solid state MAS NMR spectra of (A) [Ga(Br₂-HQ)₃] and (B) [Ga(HQ)₃] \cdot 0.5 CH₃CO₂H (mixing time of 5 ms).

Figure S9. ¹³C CPMAS NMR spectra of Br_2 -HQH (**A**) and HQH (**B**) at spinning rates at 10 kHz (black) and 11 kHz (green). Peaks assigned to the ligands have chemical shifts independent of spinning rate. * = Spinning side bands.

Figure S10. Lifetime decay of $[Ga(Br_2-HQ)_3]$ (1 μ M) in DMSO with λ_{ex} = 405 nm. The decay was fitted to a monoexponential function with decay constant of 1.32 ns.

Figure S11. Photostability of $[Ga(Br_2-HQ)_3]$ (0.03 mM) in DMSO under irradiation for 15 min using blue light (420 nm) followed by UV-vis spectroscopy. A decomposition of 13% was observed.

Figure S12. Comparison of the UV-vis absorption spectrum of $[Ga(Br_2-HQ)_3]$ in DMSO with those calculated using the DFT functionals B3LYP, CAM-B3LYP, ω B97X-D3, RSX-QIDH and SCS- ω PBEPP86 (see section 2.11). While all functionals show the right intensity pattern of the experimental absorption spectrum, excitation energies vary, with B3LYP giving the best fit to experiment.

Figure S13. Comparison of the observed UV-vis absorption spectra for $[Ga(HQ)_3]$ (yellow hashed line) and $[Ga(Br_2-HQ)_3]$ (red hashed line) in DMSO with those calculated for $[Ga(Br_2-HQ)_3]$ using the B3LYP and ω B97X-D3 functionals. Both functionals reproduce the experimentally observed hypsochromic shift when replacing Br with H. Again, B3LYP is the best fit to experiment.