Electronic Supplementary Information

Bulkiness effect dependent photosalient behavious of photoactive cadmium coordination polymers

Qing-Shu Dong, ‡ª Ning Wang, ‡ª David James Young, ^b Fei-Long Hu, *ª Yan Mi*a

^a Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China.

^b Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu 611731, China. Video SV1: photosalient effects of CP1

Video SV2: photosalient effects of CP2

Video SV3: photosalient effects of CP₃

Video SV4: photosalient effects of CP1 showing bending behavior

Video SV5: photosalient effects of CP₂ showing bending behavior

Video SV6: photosalient effects of CP₃ showing jumping behavior

Video SV7: photosalient effects of CP₁-PVA membrane

Video SV8: photosalient effects of CP₁-PVA membrane

Video SV9: photosalient effects of the robot gripper

Table of Contents

General procedures
Experimental
Table. S1 Summary of crystal data and structure refinement parameters for CP ₁ -CP ₃ 7
Figure. S1 The ¹ H (a) and ¹³ C (b) NMR spectra of 1 in CDCl ₃ 8
Figure. S2 The ¹ H (a) and ¹³ C (b) NMR spectra of Pebpeb in CDCl ₃ 9
Figure. S3 Thermogravimetric plots of CP ₁ (a), CP ₂ (b) and CP ₃ (c)11
Figure. S4 PXRD patterns of CP ₁ (a), CP ₂ (b) and CP ₃ (c)12
Figure. S5 IR spectra of CP ₁ (a), CP ₂ (b), CP ₃ (c)14
Figure. S6 View of the 1D chain structure of CP ₁ -CP ₃ 15
Figure. S7 View of the coordination environments of Cd (II) centers in CP ₁ -CP ₃ 16

Figure. S8 The structural unit of CP ₃ 16
Figure. S9 Diagram of the coordination mode of carboxylic acid ligands with Pebpeb16
Figure. S10 View of the face-to-face alignment of Pebpeb pair in CP ₁ -CP ₃ 17
Figure. S11 The stacking ways of adjacent 1D chains in CP ₁ (a), CP ₂ (b), CP ₃ (c)18
Figure. S12 The adjacent zigzag chains are connected to form a 1D tape motif
Figure. S13 Diagram of the coordination mode of carboxylic acid ligands with Pebpeb20
Figure. S14 PS behavior of CP ₁ -CP ₃ 20
Figure. S15 The ¹ H NMR spectra of CP ₁ before and after UV light irradiation21
Figure. S16 The ¹ H NMR spectra of CP ₂ before and after UV light irradiation22
Figure. S17 The ¹ H NMR spectra of CP ₃ before and after UV light irradiation23
Figure. S18 ¹ H NMR spectra of CPs'24
Figure. S19 Time versus percentage conversion plots for CP ₁ -CP ₃ 24
Figure. S20 Mass spectra of Pebpeb25
References

General procedures

All chemicals were commercially accessible and used as received without further purification. Powder X-ray diffraction (PXRD) patterns were acquired on a Bruker D8 advance using Cu K α radiation ($\lambda = 1.5406$ Å) from 5° to 50° with a scanning step size of 0.02°. Single-crystal X-ray diffraction data for **CP**₁, **CP**₂ and **CP**₃ were recorded on a Bruker Smart CCD diffractometer. ¹H NMR chemical shifts were referenced to the solvent signal in CDCl₃ or DMSO-*d*₆. ¹³C-NMR spectra were recorded at a resonance frequency of 101.6 MHz on a Bruker AVANCE 400M spectrometer. IR spectra were recorded on a Varian 1000 FT-IR spectrometer (4000-400 cm⁻¹). Elemental analyses (C, H, N) were performed using a PE 2400 II elemental analyzer. Thermogravimetric analyses (TGA) were performed on a Mettler Toledo Star System under a nitrogen atmosphere at a heating rate of 10 °C/min. Photo-irradiation experiments were conducted with a high-pressure mercury lamp at a wavelength of 365 nm.

Experimental

Synthesis of ligand Pebpeb. A 50 mL round-bottom flask was located with 5bromobenzene-1, 3-dialdehyde (1.00 g, 5 mmol), 4-methylpyridine (1.13 g, 10 mmol) in 2 mL of acetic anhydride solvent. The mixture was heated at 130 °C for a period of 24 h and then diluted with H₂O (200 mL). The mixture was extracted by CH₂Cl₂ (3 × 50 mL). A brown powdery **1** was obtained. Yield: 1.75 g (82 %). ¹H NMR (400 MHz, DMSO- d_6) δ 8.58 (d, 4H, Ph-H), 7.81 (s, 1H, Ph-H), 7.57-7.53 (m, 2H, C=C), 7.50 (s, 2H, Ph-H), 7.39-7.34 (d, 2H, C=C). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 153.30, 146.01, 139.47, 131.64, 129.80, 128.10, 124.96, 123.25, 121.51 (Figure S1).

A 50 mL round-bottom flask was located with 4-(3-bromo-5-((E)-2-(pyridine-4yl) vinyl) styrenyl) pyridine (1.00 g, 2.8 mmol), 3-alkynylpyridine (0.35 g, 3 mmol), Pd(PPh₃)₂Cl₂ (0.04 g, 0.0057 mmol) and CuI (0.08 g, 0.4 mmol) in 15 mL of tetrahydrofuran and triethylamine solvent (3:1). The mixture was heated at 80 °C for a period of 48 h and then diluted with H₂O (200 mL). The mixture was extracted by CH₂Cl₂ (3 × 50 mL). The light-yellow product was isolated by column chromatography (ethyl acetate: methanol = 3:1). Yield: 1.17 g (87 %). ¹H NMR (400 MHz, DMSO-*d*₆, TMS, Figure. S2) δ 8.81 (s, 1H, Ph-H), 8.63-8.61 (d, 4H, Ph-H), 8.60 (d, 2H, Ph-H), 7.86-7.84 (d, 2H, Ph-H), 7.70-7.67 (s, 4H, Ph-H), 7.41 (d, 5H, Ph-H), 7.39 and 7.35 (s, 2H, C=C), 7.21 and 7.17 (s, 2H, C=C). ¹³C NMR (100 MHz, CDCl₃, ppm): δ 151.77, 149.15, 147.10, 143.21, 138.16, 136.56, 132.29, 129.37, 127.12, 125.48, 119.97, 94.97, 87.29. M+1=386.1 (Figure S2).

Scheme S1. Synthesis of Pebpeb.

Preparation of [Cd₃(Pebpeb)₂(L₁)₆] (CP₁). A mixture containing 3-chlorobenzoic acid (HL₁) (9.5 mg, 0.05 mmol), CdSO₄·8/3H₂O (25 mg, 0.05 mmol) and Pebpeb (6.5 mg, 0.05 mmol) in DMAC-H₂O-HNO₃ (2 mL, 5:20:1 in volume ratio) was sealed in a Pyrex tube and heated at 140 °C for 10 h to yield yellow rod-shaped crystals of **CP**₁ (5.35 mg, 82 %, based on Pebpeb). Anal. Calcd for C92H66Cd3C15N6O14: C, 57.77; H, 3.11; N, 4.21. found: C, 57.78; H, 3.13; N, 4.21. ¹H NMR (400 MHz, DMSO-*d*₆, ppm, Fig. S15): δ 8.81 (s, 1H, Py-H), 8.63 (d, 1H, Py-H), 8.59 (d, 4H, Py-H), 8.03 (d,

2H, Ph-H of Pebpeb), 7.90 (s, 4H, Ph-H of HL₁), 7.87 (d, 4H, Ph-H of HL₁), 7.63 (s, 1H, Py-H), 7.59 (d, 2H, CH=CH), 7.55 (d, 4H, Py-H), 7.48 (d, 4H, Ph-H of HL₁), 7.44 (d, 4H, Ph-H of HL₁), 7.43 (s, 2H, CH=CH). IR (KBr disk, cm⁻¹): 3064(w), 1609(s), 1549(s), 1500(s), 1481(s), 1417(s), 1303(s), 1265(s), 1218(s), 1145(s), 1066 (w), 1013(m), 964(m), 874(m), 805(s), 765(s), 696(s), 543(s).

Preparation of [Cd₃(Pebpeb)₂(L₂)₆] (CP₂). A mixture containing 3-nitrobenzoic acid (HL₂) (9.5 mg, 0.05 mmol), Pebpeb (6.5 mg, 0.05 mmol) and CdSO₄·8/3H₂O (25 mg, 0.05 mmol) in DMAC-H₂O-HNO₃ (2 mL, 5:20:1 in volume ratio) was sealed in a Pyrex tube and heated at 140 °C for 10 h to yield yellow rod-shaped crystals of **CP**₂ (5.53 mg

, 85 %, based on Pebpeb). Anal. Calcd for C96H62N12O24Cd3: C, 54.73; H, 2.95; N, 7.98. Found: C, 54.74; H, 2.94; N, 7.99. ¹H NMR (400 MHz, DMSO-*d*₆, ppm, Fig. S16): δ 8.82 (d, 1H, Py-H), 8.68(s, 3H, Ph-H of HL₂), 8.64 (d, 1H, Py-H), 8.62 and 8.59(m, 4H, Py-H),8.34 (t, 6H, Ph-H of HL₂), 8.04 (d, 2H, Ph-H of Pebpeb),7.88 (s, 1H, Py-H), 7.72 (t, 3H, Ph-H of HL₂), 7.64 (s, 1H, Py-H), 7.61 (s, 2H, CH=CH),7.60 (s, 4H, Py-H), 7.54 and 7.52 (m, 1H, Py-H), 7.50 (d, 2H, CH=CH), 7.46 (s, 1H, Ph-H of Pebpeb). IR (KBr disk, cm⁻¹): 3074(w), 1607(s), 1551(s), 1523(s), 1472(s), 1391(s), 1350(s), 1221(s), 1155(w), 1157(s), 1068(m), 1073(m), 1017(m), 1014(m), 963(m), 907(s), 830(s), 786(s), 723(s), 541(s).

Preparation of $[Cd_6(Pebpeb)_4(L_3)_{12}] \cdot HL_3$ (CP₃). A mixture containing 3-isopropyl benzoic acid (HL₃) (9.5 mg, 0.05 mmol), Pebpeb (6.5 mg, 0.05 mmol) and CdSO₄·8/3H₂O (25 mg, 0.05 mmol) in DMAC-H₂O-HNO₃ (2 mL, 3:20:1 in volume ratio) was sealed in a Pyrex tube and heated at 140 °C for 10 h to yield yellow block crystals of **CP**₃ (5.66 mg, 87 % based on Pebpeb). Anal. Calcd for C₂₃₈H₂₂₀Cd₆N₁₂O₂₆: C, 65.88; H, 5.11; N, 3.87. found: C, 65.86; H, 5.09; N, 3.85. ¹H NMR (400 MHz, DMSO-*d*₆, ppm, Fig. S17): δ 8.81 (s, 1H, Py-H), 8.63 (d, 1H, Py-H), 8.59 (d, 4H, Py-H)

H), 8.03 (d, 2H, Ph-H of Pebpeb), 7.87 (s, 1H, Py-H), 7.84 (s, 4H, Ph-H of HL₃), 7.77 (d, 4H, Ph-H of HL₃), 7.63 (s, 1H, Py-H), 7.60 (s, 2H, CH=CH), 7.59 (s, 4H, Py-H), 7.48 (s, 2H, CH=CH), 7.44 (s, 1H, Ph-H of Pebpeb), 7.39 (d, 4H, Ph-H of HL₃), 7.34 (t, 4H, Ph-H of HL₃). IR (KBr disk, cm⁻¹):3051(w), 2955(s), 1713(s), 1607(s), 1540(s), 1459(s), 1389(s), 1331(s), 1218(m), 1120(m), 1045(m), 1015(m), 966(m), 923(s), 861(m), 805(s), 765(s), 699(s), 545(s).

Photo-irradiation experiment

Crystals (ca 0.5 g) of CP₁, CP₂ and CP₃ were placed between glass plates and exposed to a 100 W high-pressure mercury lamp ($\lambda = 365$ nm) for 2 h to form the corresponding photoproducts of CPs', respectively.

Single crystal structure determination. Structures of CP_1 - CP_3 were solved by direct methods and refined by full-matrix least-squares techniques using the *SHELXL*-2019, Olex 2 programs.^{S1} Non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms were introduced at the calculated positions and included in the structure-factor calculations.^{S2} A summary of key crystallographic information for CP_1 - CP_3 is given in Table S1. The CCDC codes for these compounds are 2405226-2405228.

	CP ₁	CP ₂	CP ₃
Emperical formula	C ₉₆ H ₆₂ Cd ₃ Cl ₆ N ₆ O ₁₂	C ₉₆ H ₆₂ Cd ₃ N ₁₂ O ₂₄	C ₂₃₈ H ₂₂₀ Cd ₆ N ₁₂ O ₂₆
Formula weight	2041.41	2104.86	4338.65
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P^{1}	P^1	p1
a/Å	14.4964(11)	14.4569(8)	17.803(3)
b/Å	16.5414(13)	16.5945(9)	21.233(5)
c/Å	18.6341(13)	18.5996(10)	30.75(3)
$\alpha/^{\circ}$	87.128(6)	88.336(2)	82.149(12)
β/°	77.188(6)	78.624(2)	87.549(14)
γ°	85.054(7)	85.858(2)	88.691(8)
$V/Å^3$	4338.6(6)	4362.5(4)	11503(13)
Dc/g cm ⁻³	1.563	1.602	1.253
Z	2	2	2
μ(Mo-Kα)/mm ⁻¹	0.711	0.811	0.710
Total reflections	39131	82668	126910
Unique reflections	18674	20011	51941
No. observations	0	0	0
No. parameters	1108	1216	2529
F (000)	2044	2112.32	4456
R_1^a	0.0735	0.0812	0.0508
WR_2^b	0.1098	0.1135	0.1306
GOF ^c	1.079	1.027	1.079

Table. S1 Summary of crystal data and structure refinement parameters for CP1-CP3.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{0}|. \ {}^{b}wR_{2} = \{\Sigma w (F_{0}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{0}^{2})^{2}\}^{1/2}. \ {}^{c}\text{GOF} = \{\Sigma w ((F_{0}^{2} - F_{c}^{2})^{2}) / (n - p)\}^{1/2}, \text{ where } n = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}$

number of reflections and p = total number of parameters refined.

Figure. S1 The ${}^{1}H$ (a) and ${}^{13}C$ (b) NMR spectra of 1 in CDCl₃.

Figure. S2 The ¹H (a) and ¹³C (b) NMR spectra of Pebpeb in CDCl₃.

(a)

Figure. S3 Thermogravimetric plots of $CP_1(a)$, $CP_2(b)$ and $CP_3(c)$.

(a)

Figure. S4 PXRD patterns of CP₁(a), CP₂(b) and CP₃(c).

(a)

(b)

Figure. S5 IR spectra of CP_1 (a), CP_2 (b), CP_3 (c).

(b)

Figure. S6 View of the 1D chain structure of CP₁-CP₃.

(a)

(b)

Figure. S7 View of the coordination environments of Cd (II) centers in CP_1 - CP_3 .

Figure. S8 The structural unit of CP₃.

Figure. S9 Diagram of the coordination mode of carboxylic acid ligands with Pebpeb.

Figure. S10 View of the face-to-face alignment of Pebpeb pair in CP₁-CP₃.

S17

Figure. S11 The stacking ways of adjacent 1D chains in CP₁ (a), CP₂ (b), CP₃ (c).

(b)

(c)

Figure. S12 The adjacent zigzag chains are connected to form a 1D tape motif.

(a)

S19

(b)

Figure. S13 Diagram of the coordination mode of carboxylic acid ligands with Pebpeb.

Figure. S14 PS behavior of CP₁-CP₃.

Figure. S15 The ¹H NMR spectra of CP_1 before and after UV light irradiation.

Figure. S16 The ¹H NMR spectra of CP₂ before and after UV light irradiation.

Figure. S17 The ¹H NMR spectra of CP₃ before and after UV light irradiation.

Figure. S18 ¹H NMR spectra of CPs'.

Figure. S19 Time versus percentage conversion plots for CP₁-CP₃.

Figure. S20 Mass spectra of Pebpeb.

References

- S1. F. Haque, A. Halder and D. Ghoshal, Cryst. Growth Des., 2018, 18, 5231-5244.
- S2. J.-W. Wu, B.-F. Long, M.-F. Wang, D. J. Young, F.-L. Hu, Y. Mi and J.-P. Lang, Chemical Communications, 2022, 58, 2674-2677