Electronic Supporting Information

Ruthenium Complexes Bearing Terpyridyl Ligands of Distinct Donor-Acceptor Configuration for Solar Energy Conversion

Tanu Singh[‡]^a, Angelina Mary[‡]^a, Tanushree Gupta[#]^a, Pooja Sharma[#], Vinod Kumar^b,

Amilan D. Jose^b, and Abbas Raja Naziruddin^{a*}

^aMalaviya National Institute of Technology Jaipur, Rajasthan, India,

^bNational Institute of Technology Kurukshetra, India.

Contents	Page
Experimental details	4 – 5
Quantum Chemical Calculations	6 – 7
Nuclear Magnetic Resonance (NMR) and High-Resolution Mass Spectroscopy	7 – 16
Figure S1. ¹ H NMR of 2-methyl-6-tributyltin	7
Figure S2 – S3. ¹ H NMR of ¹³ C NMR and HRMS of L	8
Figure S4 – S5. ¹ H NMR ¹³ C NMR and HRMS of (I)	9
Figure S6 – S7. ¹ H NMR ¹³ C NMR and HRMS of [1]	10
Figure S8 – S9. ¹ H NMR, ¹³ C NMR and HRMS of [2]	11
Figure S10 – S11. ¹ H NMR, ¹³ C NMR and HRMS of [3]	12
Figure S12 – S13. ¹ H NMR, ¹³ C NMR and HRMS of [S1]	13
Figure S14 – S15. ¹ H NMR, ¹³ C NMR and HRMS of [S2]	14
Figure S16 – S17. ¹ H NMR, ¹³ C NMR and HRMS of [S3]	15
Fourier Transform Infrared (FTIR) Spectroscopy	
Figure S18. FTIR spectra of [1] – [3] and [S1] – [S3]	16
Ground state electronic structure	
Table S1 . Electron transfer between [Tpy ² –Ru ^{II}] and [tpy ¹] fragments of [S1] – [S3] obtained from the charge displacement analysis	17
Figure S19. Charge displacement curves and natural orbitals for chemical valence	17

(NOCV)-deformation density isosurfaces of contour 0.001. Orbital interaction (oi) energies (ΔE_{oi} , kcal mol⁻¹) relative to NOCV pair, $\Delta \rho_i$ (*i* = 1, 2 and 4/5) contribution of fragments $[tpy^A - Ru(II)] \cdots tpy^D$ of [S1] - [S3]

Figure S20. (a) Absorbance of [S1] - [S3] measured in acetonitrile solution and 18 solid state and (b) Doubly-occupied/unoccupied Kohn-Sham molecular orbitals (contour: 0.03) of complexes [S1] - [S3] in the acetonitrile (SMD) phase

Photophysical studies

Table S2 (a) – (c). TDDFT transition energies (in nm) along with oscillator 19 - 21strengths (f), orbital contributions and excitation character of the selected visiblelight transitions (including those with f > 0.02) charge transfer (CT) excitations of [S1] – [S3] in the acetronitrile (SMD) Table S3. Electron density difference maps (EDDMs, contour: 0.001) of [S1] – [S3] 21 - 22depicting relevant singlet electronic excitations Table S4 - S6. Inter-fragment charge transfer (IFCT) analysis of relevant 22 - 28excitations of [S1] - [S3] **Figure S21.** Inter-fragment charge transfer ($Ru \rightarrow tpy^A$) along with electron density 28 difference maps (blue and orange regions correspond to charge loss and accumulation). Figure S22 (a) – (c). ³MLLCT state singly occupied/unoccupied molecular orbitals 29 (contour: 0.03) of [S1] - [S3] in the acetronitrile (SMD) Figure S23 (a) and (b). Mulliken spin density plots and expectation values of 30 ³MLLCT and ³MC states Table S7 (a) and (b). Relaxed triplet potential energy surface (³PES) scans data 30 - 31 Table S8. Mulliken spin density of triplet electronic states along with their energy 31 (in eV) obtained from the relaxed potential energy surface (3PES) scan and those obtained from optimization of the located local minima Figure S24 (a) - (c). ³MC state singly occupied/unoccupied molecular orbitals 31 - 32(contour: 0.03) of [S1] - [S3] in the acetronitrile (SMD) 32 Figure S25. Lifetime Values of [S1] – [S3] Table S9 (a) and (b). DFT-computed geometrical features of the push-pull 33 [Ru(tpy^D)(tpy^A)]²⁺-based complexes [S1] – [S3] in the acetonitrile (SMD) phase Electrochemistry Table S10 (a) – (c). Born-Haber cycle-computed ground state oxidation potential 34 - 35of [S1] - [S3] along with singly occupied/unoccupied molecular orbitals and spin density analyses Figure S26. Differential pulse voltammogram of [S1] – [S3]: (a) oxidation and (b) 35 reduction peak currents Dye – TiO₂ interfacial studies Figure S27. Illustration of efficiency of ruthenium photosensitizers versus TiO2 36 thickness of 9, 13, 15, and 17 μ m, respectively

Table S11. The table lists the photovoltaic and electron impedance spectroscopic 36 - 37data of devices sensitized with [S1] - [S3] after fitting the experimental value with an equivalent circuit

Table S12. (a) and (b). The table lists the photovoltaic and electron impedance 37 spectroscopic data of devices sensitized with N3 dye with an active area of 0.36 cm²

Figure S28. Partial density of states of (a) (TiO₂)₄₆ cluster and (b) dye – (TiO₂)₄₆ 38 assemblies of [S1] - [S3]

Table S13. Electron density difference maps of dye – TiO₂ assemblies 39 - 40 Figure S29. Inter-fragment charge transfer analysis for the dominant electronic 41

excitations ($f \ge 0.02$) of dye – $(TiO_2)_{46}$ assemblies of [S1] – [S3] in acetonitrile phase(SMD) Figure S30. Interfacial electron transfer (IET) dynamics in the dye – $(TiO_2)_{46}$ 41 – 46 assemblies of [S1] – [S3] Figure S31. Non-electron injecting dye-extended *Hückel* molecular orbitals of [S1] 46 – $(TiO_2)_{46}$ assembly

References

46 – 47

Experimental details

Dimethyl-6-bromo-[2,2'-bipyridine]-4,4'-dicarboxylate(\mathbf{a})¹, 2-methyl-6-tributyltin (\mathbf{b})², 4-carboxylate terpyridine (L_1)³, 4, 4', 4"-tricarboxy terpyridine (L_3),³ and 4'-^{tert}butyl-2,2'6,6'-terpyridine (L_4)⁴ were prepared by following the reported protocols. The photovoltaic and electron impedance spectroscopy studies of [**S1**] – [**S3**] and **N3** dye is displayed in Tables S11 and S12 (a) and (b) respectively.

Preparation of 4-carboxylate terpyridine (*L*₁):

(L_1): 4-carboxylate terpyridine was isolated by following the reported protocol with slight modifications. **Preparation of 4, 4', 4"-tricarboxy terpyridine** (L_3):

(L₃): Initially, ethyl-2-isonicotinate was isolated as yellow solids by refluxing the mixture of paraldehyde (8.20 g, 62.00 mmol) and ethyl isonicotinate (1.90 g, 12.70 mmol), FeSO₄·7H₂O (60.00 mg, 0.20 mmol), trifluoroacetic acid (1.50 g, 13.00 mmol) and 70% BuOOH (3.20 g, 0.25 mmol) in acetonitrile (26.00 mL) for 4 h at 80 °C. Subsequently, acetonitrile was removed in vacuo, and the residue was taken up in a 20.00 mL of sodium carbonate (aq.). The aqueous layer was extracted with benzene. The combined organic fractions were dried over Na₂SO₄, filtered, and then the solvent was removed in vacuo. The reaction mixture containing ethyl-2-isonicotinate (2.00 g, 10.70 mmol) was reacted with freshly distilled furfural (0.49 g, 5.18 mmol) potassium hydroxide (1.33 g, 2.44 mmol), and 10.00 mL of 25 % NH₃ (ag.) in 12.00 mL of absolute ethanol under inert atmosphere at ambient temperature for 24 h. After the completion of the reaction, the reaction mixture was filtered using buchner funnel and the precipitate of 4'-furyl-2,2':6',2"- terpyridine-4,4"-dicarboxylate was washed with acetonitrile till the drops were colourless resulting in light brown solids. Further, 4'-furyl-2,2':6',2"- terpyridine-4,4"-dicarboxylate (2.46 g, 5.30 mmol) was reacted with KMnO4 (4.00 g, 25.31 mmol) in water (100 mL). The solution was adjusted to pH 10 by adding potassium hydroxide (0.04 g). The resulting mixture was stirred at room temperature for 24 h. The resulting mixture was filtered and then the filtrate was acidified with 37 % HCI till pH 5 resulting in white precipitate. The precipitate was filtered and thoroughly washed with H_2O . Product was obtained as white solids. Further esterification was done in methanol by following the procedure reported in the literature.³

Preparation of 4'-*tert*butyl-2,2'6,6'-terpyridine (L_4):

(L4): 4'-tertbutyl-2,2'6,6'-terpyridine was isolated by following the reported protocol.⁴

Dimethyl-6-bromo-[2,2'-bipyridine]-4,4'-dicarboxylate (a):

The titled compound was prepared using a slight modification of the reported protocol.^{1, 5} In a flamedried Schlenk tube, dimethyl-6-chloro-[2,2'-bipyridine]-4,4'-dicarboxylate (1.00 g, 3.30 mmol, 1.00 eq.) was dissolved in propionitrile (60.00 mL) under an atmosphere of nitrogen gas. Subsequently, bromotrimethylsilane (4.00 g, 3.40 mL, 26.10 mmol, 8.00 eq.) was added to the mixture. Attention should be given to the vigorous evolution of bromine fumes. The reaction mixture was refluxed at 100 °C for 4 days. After this time, the content of the Schlenk flask was cooled down, and the mixture was neutralized to pH 7 using a 2.00 M aqueous sodium carbonate solution. The product was extracted in dichloromethane, and the organic layer was dried over magnesium sulfate. Column chromatography using silica gel (100 – 200 mesh) and the solvent mixture of dichloromethane: methanol (97:3, *v*. *v*) separated the products with an R_f value of 0.90. Removal of the solvents gave the product as white solids, in 80% yield. Analytical data matches the reported literature.¹

Synthesis of 2-methyl-6-tributyltin (b): In a flame-dried Schenck flask of 100.00 mL volume, 2-bromo-6-picoline (1.00 g, 5.80 mmol) was dissolved in tetrahydrofuran (20.00 mL). Subsequently, 1.20 M ^{*n*}Butyl lithium (5.00 mL, 6.40 mmol) was added dropwise into the reaction mixture stirring under inert atmosphere at -78 °C for a period of 20.00 minutes. After 1.50 h, tributyl tin chloride (1.90 mL, 6.90 mmol) was added at -78 °C. The color of reaction mixture turned into pale-yellow. Yellow coloured mixture was stirred for 6.00 hours at room temperature. Then the reaction was stopped by quenching the excess ^{*n*}butyl lithium using water. Product was extracted in ethyl acetate and organic layer was dried over MgSO₄. Product was purified using column chromatography (60 mesh silica) using a solvent mixture of hexane: ethyl acetate (9:1)., Yield: 90%, pale yellow coloured liquid. Analytical data matches the reported literature. *R_f* value: 0.90

Syntheses of (L_2): Dimethyl-6-bromo-[2,2'-bipyridine]-4,4'-dicarboxylate (a) (0.30 g, 0.90 mmol) and 2-methyl-6-tributyltin (b) (0.32 g, 0.90 mmol) were dissolved in toluene in a 100.0 mL Schenck flask under an inert atmosphere of N₂ gas. Subsequently, [Pd(PPh₃)₄] (3.20 mg, 0.01 mmol) was added to this mixture. Then, the reaction mixture was refluxed under 110 °C for 48 h. After this time, the content of the Schenck flask was transferred into a 100.00 mL round-bottomed flask and dried using a rotary evaporator. Further purification was done using silica gel column chromatography (60 mesh) using an eluent mixture of dichloromethane: methanol (97:3 *v*: *v*). *R*_f value: 0.90, Yield: 70%, white solid. ¹H NMR (400.00 MHz, CDCl₃): δ 9.1 (s, 1H), 9.0 (s, 1H), 8.9 (s, 1H), 8.8 (s, 1H), 8.4 (s, 1H), 7.9 (s, 1H), 7.8 (s, 1H), 7.2 (s, 1H), 4.0 (s, 6H), 4.00 (s, 1H), 2.6 (s, 3H). ¹³C NMR (100.61 MHz, CDCl₃, ppm): δ 206.2,

165.1, 155.9, 150.4, 137.5, 120.3, 119.7, 67.3, 57.8, 51.6. HRMS: m/z 387.1056 (calculated for [M + Na + H]⁺ 387.1195).

General synthesis of ester precursors [1], [2] and [3]:

ACE glass *vial* containing 4'-('butyl)-2,2',6'2"-terpyridine, and anhydrous RuCl₃ in ethanol (15.00 mL) was refluxed under 120 °C for 12 h. The resulting dark red-turbid solution was filtered using a Buchner funnel to obtain dark maroon solids of [Ru(tpy^{4:t}butyl)(Cl)₃]. This complex was further treated with AgNO₃ in a mixture containing 5 mL of ethanol: water ((1:1) *v*:*v*) and 30 mL acetonitrile solution and refluxed under dark for 12 h. The reaction mixture was cooled down and filtered to obtain the crude product. Purification was done by silica gel (60–100 mesh) column chromatography using a solvent mixture of CH₃CN: H₂O: KNO₃ (aqueous) (89: 9: 1 *v*: *v*: *v*). The dark red band was collected, and the counter anion was exchanged using KPF₆, giving [Ru(tpy^{4:.t}butyl)(CH₃CN)₃](PF₆)₂ as a red powder. Subsequently, a Schlenk flask containing a mixture of [Ru(tpy^{4:.t}butyl)(CH₃CN)₃](PF₆)₂, and L₁/L₂/L₃ in *n*BuOH was refluxed under 120 °C for 12 h to obtain a dark red solution. Subsequently, the solvent was dried, and crude solids were purified using a 10.00 cm column packed with silica gel (60 – 100 mesh) using an eluent comprising a CH₃CN: H₂O: KNO₃ (aqueous) (89: 9: 1 *v*: *v*: *v*) mixture. The product was obtained as a dark red band (*R*_f value: 0.60). Further treatment with an excess KPF₆ precipitated the product of [**1**], [**2**] and [**3**].

[I]: The *tris* acetonitrile complex, $[Ru(tpy^{4:-t_{butyl}})(CH_3CN)_3](PF_6)_2$ was first obtained by following the general synthesis using $tpy^{4:-t_{butyl}}$ (0.30 g, 1.03 mmol), $RuCl_3$ (0.22 g, 1.06 mmol), $AgNO_3$ (0.52 g, 3.08 mmol), ethanol (5.00 mL), CH_3CN (30.00 mL) and degassed analytically pure grade of water (5.00 mL) as red solids. Yield: 0.09 g, 42%. ¹H NMR (400.00 MHz, CD₃CN, ppm): δ 8.90 (d, ³*J*_{C-H} = 6.3, 2H), 8.51(d, ³*J*_{C-H} = 9.5, 2H), 8.36(s, 2H), 8.16(m, 2H), 7.71(m, 2H), 1.94(s, 9H). ¹³C NMR (100.61 MHz, CD₃CN, ppm): δ 159.3, 156.8, 155.9, 137.5, 130.1, 128.0, 127.4, 125.6, 123.7, 120.6, 37.5, 34.7, 33.2, 29.2. HRMS: m/z 593.1600 (calculated for [M + 2Na + CH₄O + H]⁺) 593.1555.

[1]: General procedure for ester precursors was adopted by using $[Ru(tpy^{4:-f_{butyl}})(CH_3CN)_3](PF_6)_2$ (0.20 g, 0.25 mmol) and L_1 (0.072 g, 0.25 mmol) in *n*BuOH. After column chromatography, red solids of $[Ru(L_1)(tpy^{4:-f_{butyl}})](PF_6)_2$ were obtained. Yield: 0.25 g, 65%. ¹H NMR (400.00 MHz, CD₃CN): δ 9.19 (s, 2H), 8.74 (s, 2H), 8.63 (d, ${}^{3}J_{C-H} = 8.1, 2H$), 8.58 (d, ${}^{3}J_{C-H} = 8.1, 2H$), 7.94 (d, ${}^{3}J_{C-H} = 8.0, 2H$), 7.89 (m, 2H), 7.38 (m, 1H), 7.25 (m, 2H), 7.22 (d, ${}^{3}J_{C-H} = 5.5$ Hz, 2H), 7.08 (m, 5H), 7.0 (m, 2H), 4.2 (s, 3H), 1.70 (s, 9H) ppm. ¹³C NMR (100.61 MHz, CD₃CN, ppm): δ 164.0, 158.6, 157.9, 156.0, 154.2, 153.0, 139.4, 138.5, 136.8, 127.3, 126.9, 124.5, 123.9, 121.7, 65.3, 36.3, 30.2, 14.5 ppm. HRMS: m/z 753.1497 (calculated for [M + Na + 4H]⁺) 753.1548. ATR-FTIR (v, cm⁻¹): 548.53, 825.39 (P–F stretch), 1239.00, 1126.24, (C–O stretch), 1614.56, 1740.00 (ester C=O stretch), 2883.02 (–CH aliphatic stretch), 2972.55 (–CH aryl stretch).

[2]: General procedure for ester precursors was adopted by using the *tris*-acetonitrile precursor [Ru(tpy^{4'-f}butyl)(CH₃CN)₃](PF₆)₂ (0.20 g, 0.23 mmol) and L_2 (0.06 g, 0.23 mmol) in ^{*n*}BuOH. After column chromatography, the ester complex [2] was obtained as red solids. Yield: 0.16 g, 67%. ¹H NMR (400.00 MHz, CD₃CN): δ 9.27 (s, 2H), 8.96 (s, 1H), 8.78 (s, 2H), 8.61 (d (${}^{3}J_{C-H} = 7.9$ Hz), 3H), 7.92 (m, 3H), 7.58 (m, 1H), 7.31 (d, ${}^{3}J_{C-H} = 5.5$ Hz, 2H), 7.22 (d, ${}^{3}J_{C-H} = 7.6$ Hz, 1H), 7.14 (m, 2H), 6.98 (m, 1H), 4.18 (s, 3H), 3.90 (s, 3H), 1.70 (s, 9H), 1.62 (s, 3H) ppm. ¹³C NMR (100.61 MHz, CD₃CN, ppm): δ 164.2, 163.3, 162.0, 158.5, 157.5, 156.5, 155.0, 154.0, 152.6, 151.4, 138.06, 128.0, 127.2, 124.4, 121.7, 66.4, 35.9, 35.2, 29.6, 23.5 ppm. HRMS: m/z 899.2423 (calculated for [M + C₄H₁₁O + 3Na + H]⁺ 899.2063. ATR-FTIR (ν , cm⁻¹) 554.00, 819.36 (P–F stretch), 1254.41, 1311.22 (C–O stretch), 1620.14, 1734.00 (ester C=O), 2364.00 (–CH aliphatic stretch), 2958.54 (–CH aryl stretch).

[**3**]: [Ru(tpy^{4'-t}^{butyl})(CH₃CN)₃](PF₆)₂ (0.20 g, 0.20 mmol) was refluxed with L_3 (0.06 g, 0.20 mmol) in *n*BuOH and further purified by column chromatography to obtain red solids of [Ru(L_3)(tpy^{4'-t}^{butyl})](PF₆)₂. Yield: 0.16 g, 73%. ¹H NMR (400.00 MHz, CD₃CN): δ 9.39 (s, 2H), 9.08 (s, 2H), 8.77 (s, 2H), 8.61 (d, ³J_{C-H} = 8.1 Hz, 2H), 7.92 (m, 2H), 7.66 (m, 2H), 7.60 (m, 2H), 7.21 (d, ³J_{C-H} = 5.6 Hz, 1H), 7.10 (m, 2H), 4.21 (s, 3H), 3.94 (s, 6H), 1.72 (s, 9H) ppm. ¹³C NMR (100.61 MHz, CD₃CN): δ 163.72, 162.80, 158.69, 158.07, 156.03, 154.12, 153.29, 152.92, 138.86, 138.48, 127.29, 126.75, 124.65, 123.77, 121.57, 53.23, 52.93, 36.34, 30.04 ppm. ATR-FTIR (*v*, cm⁻¹): 523.53, 823.81 (P–F stretch), 1262.21, 1311.26 (C–O stretch), 1620.41, 1716.11 (ester C=O stretch), 2356.05 (–CH₃ aliphatic stretch), 2958.94 (–CH aryl stretch). HRMS: m/z 943.0882 (calculated for [M + C₄H₁₁O + Na + H₂O]⁺) 943.1155.

Quantum Chemical Calculations

The dispersion-corrected density functional theory (DFT-D3)^{6, 7} calculations were performed for the ruthenium(II) terpyridyl heteroleptic complexes [S1] - [S3]. Restricted Kohn-Sham (RKS) formalism was followed for computing all singlet electronic states, while unrestricted (U)-KS formalism was adopted for calculating the electronic states of other spin multiplicities. The geometries of the electronic states of all photosensitizers were optimized without constraints according to the default convergence criteria (5.0 × 10⁻⁶ E_h for energy change, 3.0 × 10⁻⁴ E_h /Bohr for maximum gradient, 1.0 × 10⁻⁴ E_h /Bohr for RMS gradient, 4.0 x 10⁻³ Bohr and 2.0 x 10⁻³ Bohr for maximum and RMS displacement, respectively). All computations were carried out utilizing the ORCA program (version 5.0.4),^{8,9} with Becke, and the threeparameter Lee-Yang-Parr (B3LYP) hybrid functional.^{10, 11} The Ahlrichs' split valence triple-ζ def2-TZVPP basis set for the ruthenium atom and double- ζ def2-SVP basis set for all other atoms were employed.¹²⁻¹⁷ Additionally, the Stuttgart-Dresden (SDD) relativistic pseudopotential was utilized to describe the Ru-28 core electrons. The RIJCOSX approximation¹² was also used in all DFT-D3 calculations to speed up the computations of the Coulomb and Hartree-Fock exchange integrals at the default grids. All non-periodic calculations were carried out in the acetonitrile phase, modelled via a solvation model based on density (SMD).¹⁸ The singlet ground (S₀) states and their singly oxidized doublets were optimized in the vacuum and acetonitrile phases. The ground state geometries of [S1] -[S3] in the solution phase are listed in Table S1 of the Supporting Information. The Ru^{2+/3+} oxidation potentials for all complexes were calculated via the Born-Haber cycle that employs the Gibbs free energies of their S₀ states and their oxidized forms. Further, the nature of the singly oxidized/reduced doublets with an overall charge of 3+/1+ and doubly oxidized/reduced triplets of the respective charge 4⁺/0 was characterized through the *Mulliken* spin densities of the ruthenium center and tpy ligands.

The bonding interactions between the ruthenium center within the [Ru²⁺–tpy^A] fragment and the coordinating atoms of the tpy donor of the [tpy^D] fragment in the S₀ state were evaluated through the extended transition state-natural orbitals for chemical valence (ETS-NOCV) method.^{19, 20} This method decomposes the Ru – N (tpy^D) bond into pairwise bonding interactions. Subtracting the square of the NOCV pair from that of another contributes to a pairwise interaction and gives a deformation density. This deformation density qualitatively illustrates the electron density rearrangement upon metal_(Ru)-ligand_(tpyD) bond formations. Charge-displacement^{21, 22} (CD) function applied to these deformation densities was evaluated *via* Pycubescd code.²³ For computing the charge-displacement, the cartesian coordinates of the S₀-geometries of [S1] – [S3] were re-oriented by aligning the ruthenium atom at the origin (0 Å), tpy^D on its right (+ *z*-axis), and tpy^A on its left (– *z*-axis), as depicted by the CD graph-horizontal axis (Supporting Information, Figure S19 and Table S1). The $\Delta q(z)$ curves peaking along the vertical axis of the CD-NOCV graph depict the magnitude of charge displacement (Δq) due to bonding interactions. The upward (+ $\Delta q(z)$) and downward (– $\Delta q(z)$) charge displacement arise respectively due to the σ -donation (right to left) and π back-donation (left to right) interactions between the tpy^D and [Ru(II)–tpy^A] fragments.

The geometries of the lowest-lying excited closed-shell singlet (S₁) and the ground open-shell triplet (T₁) electronic states of 2+ charge were relaxed *via* time-dependent (TD)-DFT and ground state optimizations, respectively. TDDFT calculations were also performed on the ground states of all complexes to generate fifty vertical excitations. Electron density difference maps (EDDMs) using the *orca_plot* utility were generated for the relevant singlet excitations to visualize and identify the nature of charge transfer excitations. An inter-fragment charge transfer (IFCT) analysis was performed using Multiwfn 3.6 program²⁴ to quantify the extent of charge transfer occurring in these excitations. A relaxed one-dimensional potential energy scan (1D-PES) along the Ru – N (tpy acceptor) coordinate was performed on the triplet surface to find the metal-centered states. For the ³PES scan, the Ru – N bond was stretched in steps of 0.03 Å. The nature of all higher- and lower-lying triplet states was characterized by *Mulliken* spin densities. The metal- and ligand-based orbitals and their energies involved in these triplet states were identified by analyzing their corresponding singly-occupied molecular orbitals. All electronic states were characterized as having no negative imaginary frequencies through vibrational frequency computations.

The periodic optimization of the TiO₂ unit cell through the "*vc-relax*" method that allows variation of atomic positions and lattice constants was done using the Quantum Espresso program package (version 6.8)²⁵ at the PBE²⁶ level of theory. This calculation was performed *via* the projector-augmented wave method with kinetic energy cutoff for wavefunctions and charge density of 30 Ry and 360 Ry, respectively.²⁷ The relaxed tetragonal lattice of the TiO₂ unit cell was found to have lattice vectors of *a* = *b* = 3.400 Å and c = 11.294 Å. Furthermore, the unit cell was extended and cut at the anatase (101) surface. This was then modeled to form a (TiO₂)₄₆ cluster and optimized using the ORCA program. The dye – TiO₂ assemblies of all complexes were modeled using the optimized (TiO₂)₄₆ cluster, and a constrained optimization was performed in acetonitrile solution at the B3LYP level of theory.²⁸⁻³³ Constraints were applied on the *xyz* coordinates of the bottom layers of the relaxed $(TiO_2)_{46}$ cluster, excluding the top two Ti layers and top four O layers. The adsorption energy of stability of the dye – TiO₂ assemblies (E_{ads}) was calculated as $E_{ads} = E_{Dye - TiO2} - (E_{Dye} + E_{TiO2})^{.34\cdot36}$ The terms $E_{Dye - TiO2}$, E_{Dye} and E_{TiO2} represent the energy of the dye – TiO₂ assembly, free dye and TiO₂ cluster, respectively. The negative value of E_{ads} corresponds to the stable adsorption of ruthenium complexes on the surface of the (TiO₂)₄₆ cluster.^{34, 35} The partial density of states (PDOS) of the (TiO₂)₄₆ cluster and the dye – TiO₂ assemblies of [**S1**] – [**S3**] were computed using the GaussSum program.³⁷ These dye – TiO₂ assemblies were subjected to TDDFT calculations in the acetonitrile phase to generate fifty vertical singlet excitations. These excitations were visualized through EDDMs, and the extent of charge transfer was computed through the IFCT analysis.

Quantum dynamics simulations were carried out on the dye – $(TiO_2)_{46}$ assemblies of **[S1]** – **[S3]** to evaluate the interfacial electron transfer *via* the IET code³⁸ with the default extended *Hückel* (EH) parameters. The relevant extended *Hückel* (EH) orbitals involved in the interfacial electron transfer (IET) resemble the tpy^A-localized virtual *Kohn-Sham* orbitals. Simulations were carried out with a time step of 0.1 fs in the vacuum phase at a fixed geometry of the dye – $(TiO_2)_{46}$ assemblies within the periodic boundary conditions (dimensions) of 22.49 × 35.41 × 24.08 Å for **[S1]** – $(TiO_2)_{46}$, 24.73 × 35.19 × 23.33 Å for **[S2]** – $(TiO_2)_{46}$ and 25.25 × 35.61 × 24.62 Å for **[S3]** – $(TiO_2)_{46}$ in type-*a* mode, 25.03 × 32.00 × 22.50 Å for **[S2]** – $(TiO_2)_{46}$ and 23.97 × 32.85 × 22.48 Å for **[S3]** – $(TiO_2)_{46}$ in type-*b* mode of adsorption, using 1 × 1 × 1 *k*-point sampling. Absorbing potentials for Ti⁴⁺ ions were applied to the Ti atoms in the bottom layer of the (TiO₂)_{46} cluster to prevent the undesired artificial recurrences in the transient electron population. The survival probability obtained through these simulations demonstrates the likelihood of the electron wavepacket localization on the dye at time *t*. The electron injection time was obtained *via* an exponential fit (*f*(*t*) = *exp*(–*tit*)) to the survival probability.

Figure S1. ¹H NMR spectrum of (b) in CDCI₃, 400.00 MHz.

Figure S3. ¹³C NMR spectrum of (L_2) in CD₃CN, 100.61 MHz.

Figure S4. ¹H NMR spectrum and HRMS data of (I) in CD₃CN, 400.00 MHz.

Figure S5. ¹³C NMR spectrum of (I) in CD₃CN, 100.61 MHz.

Figure S9. ¹³C NMR spectrum and HRMS data of [2] in CD₃CN, 100.61 MHz.

Figure S10. ¹H NMR spectrum and HRMS data of [3] in CD₃CN, 400.00 MHz.

Figure S11. ¹³C NMR spectrum of [3] in CD₃CN, 100.61 MHz.

Figure S13. ¹³C NMR spectrum of [S1] in CD₃CN, 100.61 MHz.

Figure S15. ¹³C NMR spectrum of [S2] in CD₃CN, 100.61 MHz.

Figure S17. ¹³C NMR spectrum of [S3] in CD₃CN, 100.61 MHz.

Figure S18. FTIR spectra of ester [1] – [3] and acid [S1] – [S3] complexes.

Electron transfer between [Tpy²–Ru^{II}] and [tpy¹] fragments of [**S1**] – [**S3**] obtained from the charge displacement analysis.

	[5	51]			[5	S2]		[S3]				
					<i>σ</i> -inte	raction						
ĥ	D ₁	ĥ	05	1	0 1	ĥ	D ₄	A	D 1	ĥ	D ₄	
N(<i>sp</i> ²) –	$N(sp^2) \to Ru(d_{z2}) \qquad N(sp^2) \to Ru(d_{x2-y2})$				→ Ru(<i>d</i> _{z2})	$N(sp^2) \rightarrow$	Ru(<i>d</i> _{x2-y2})	N(<i>sp</i> ²) –	→ Ru(<i>d</i> _{z2})	$N(sp^2) \rightarrow$	Ru(<i>d</i> _{x2-y2})	
Ru –	Ru –	Ru - Ru - Ru - Ru - Ru				Ru –	Ru –	Ru –	Ru –	Ru –	Ru –	
N ^{1a}	a N ^{1b,b'} N ^{1a} N ^{1b,b'} N ^{1a}			N ^{1a} N ^{1b,b'} N ^{1a} N ^{1b,b'}				N ^{1a}	N ^{1b,b'}	N ^{1a}	N ^{1b,b'}	
0.271	0.206	0.207	0.318	0.265	0.203	0.190	0.300	0.273	0.205	0.124	0.238	
π -interaction												
	$\rho_2: \operatorname{Ru}(d_{\operatorname{vz}}) o \operatorname{N}(\pi_{\operatorname{v}})$											
	0.3	300			0.:	277		0.292				

Figure S19. Charge displacement curves and natural orbitals for chemical valence (NOCV)deformation density isosurfaces of contour 0.001. Orbital interaction (oi) energies (ΔE_{oi} , kcal mol⁻¹) relative to NOCV pair, $\Delta \rho_i$ (*i* = 1, 2 and 4/5) contribution of fragments [tpy⁴–Ru(II)]···tpy^D of [**S1**] – [**S3**].

Figure S20. (a) Absorbance of [**S1**] – [**S3**] measured in acetonitrile solution and solid state. All complexes show ¹MLLCT excitations in acetonitrile solution and in dye-TiO₂/PMMA assemblies where, PMMA refers to polymethyl methacrylate.

Figure S20. (b) Doubly-occupied/unoccupied *Kohn-Sham* molecular orbitals (contour: 0.03) of complexes **[S1]** – **[S3]** in the acetonitrile (SMD) phase.

TDDFT transition energies (in nm) along with oscillator strengths (*f*), orbital contributions and excitation character of the selected visible-light transitions (including those with f > 0.02) charge transfer (CT) excitations of complexes [**S1**] – [**S3**] in the acetronitrile (SMD) phase. The HOMO and LUMO orbitals are represented by abbreviations H and L, respectively.

			Atom/Ligand %											
te			Ê			From			0		То			-
Excited Sta	(uu) γ	Oscillator strength (<i>f</i>)	Excitation (Maximum orbital contribution	C00H ^ª	Tpyacceptor	Ru	tpydonor	ng,	C00H ^ª	Tpyacceptor	Ru	tpydonor	ng,	Excitation character
S ₁	549.86	0.000	H → L (98%)	_	16	68	16	_	10	78	11	02	_	¹ MLLCT
S_4	467.67	0.021	$H - 2 \rightarrow L (52\%)$	02	22	69	08	_	10	78	11	02	_	¹ MLLCT
			H → L + 2 (30%)	_	16	68	16	_	-	77	01	21	_	¹ MLLCT
S ₁₆	330.56	0.027	$\begin{array}{rrrr} H & - & 2 & \rightarrow & L & + & 4 \\ (34\%) \end{array}$	02	22	69	08	_	15	85	_	_	_	¹ MLLCT
			$H \rightarrow L + 5 (46\%)$	_	16	68	16	_	_	50	_	50	_	¹ MLLCT
			$H - 1 \rightarrow L + 5$											¹ MLLCT
			(14%)	_	08	71	20	01	-	50	-	50	-	
S ₂₉	300.51	0.024	$\begin{array}{rrrr} H & - & 3 & \rightarrow & L & + & 1 \\ (51\%) \end{array}$	_	07	01	92	_	_	09	07	84	01	¹ ILCT/ ¹ LLCT
			$\begin{array}{rrrr} H & - & 4 & \rightarrow & L & + & 1 \\ (20\%) \end{array}$	_	92	02	06	_	_	09	07	84	01	¹ LLCT
			$H \rightarrow L + 6 (12\%)$	_	16	68	16	_	_	-	01	99	-	¹ MLLCT
S ₃₂	295.67	0.030	$H - 4 \rightarrow L + 1$											¹ LLCT
			(69%)	_	92	02	06	-	-	09	07	84	01	
			$\begin{array}{rrrrr} H & - & 3 & \rightarrow & L & + & 1 \\ (11\%) \end{array}$	_	07	01	92	_	_	09	07	84	01	¹ ILCT/ ¹ LLCT
S ₃₄	292.66	0.020	$H - 2 \rightarrow L + 10$											¹ MC
			(73%)	02	22	69	08	_	-	16	65	19	-	
			$H - 2 \rightarrow L + 13$											¹ MC
			(14%)	02	22	69	08	-	-	22	59	18	-	4
S ₃₈	272.39	0.025	$H - 4 \rightarrow L + 2$		~~	~~	~~							'ILCT/'LLCT
			(38%)	-	92	02	06	-	-	70	01	21	-	11 OT/11 OT
			$\frac{H - 6 \rightarrow L (25\%)}{H - 6 \rightarrow L (25\%)}$	-	98	02	01	-	10	78	11	02	-	
			$(23\%) = 4 \rightarrow L + 3$	_	92	02	06	_	_	14	03	83	01	LLCI
S40	269 65	0.052	$\frac{(2070)}{H-3} \rightarrow L+3$		52	02	00			17	00	00	01	¹ II CT/ ¹ I I CT
040	200.00	0.002	(42%)	_	07	01	92	_	_	14	03	83	01	
			$H \rightarrow L + 8 (25\%)$	_	16	68	16	_	_	46	07	47	_	¹ MLLCT
S ₄₅	256.69	0.038	$H - 6 \rightarrow L (65\%)$	_	98	02	01	_	10	78	11	02	-	¹ ILCT/ ¹ LLCT
			$H - 4 \rightarrow L + 2$											¹ ILCT/ ¹ LLCT
			(14%)	—	92	02	06	—	-	77	01	21	-	

(a) [**S1**]

(b) [**S2**]

			Atom/Ligand %										_	
ate			Ê		F	rom				Т	ō			
Excited Sta	(mn) k	Oscillator strength (<i>f</i>)	Excitation (Maximum orbital contributior	COOH ^{alb}	Tpyacceptor	Ru	tpydonor	ťBu	COOH ^{alb}	Tpyacceptor	Ru	tpydonor	nB'	Excitation character
S ₁	556.90	0.000	H → L (46%)	- 01	16	66	16	-	05 06	77	10	02	-	¹ MLLCT
			$H - 1 \rightarrow L (43\%)$	_	08	71	20	01	05 06	77	10	02	_	¹ MLLCT
S ₃	485.58	0.015	$H - 2 \rightarrow L (52\%)$	01 -	20	70	08	-	05 06	77	10	02	_	¹ MLLCT
			$H \rightarrow L (14\%)$	- 01	16	66	16	_	05 06	77	10	02	-	¹ MLLCT
			$H \rightarrow L + 1 (14\%)$	- 01	16	66	16	_	03 03	85	03	07	-	¹ MLLCT
S ₃	296.95	0.034	$H - 1 \rightarrow L + 8$											¹ MLLCT
2			(42%)	_	08	71	20	01	04 -	90	02	05	-	
			$H - 3 \rightarrow L + 2$											¹ ILCT/ ¹ LLCT
			(26%)	-	02	02	96	_	-	02	07	89	01	
			$H \rightarrow L + 6 (12\%)$	- 01	16	66	16	-	_	-	01	99	-	¹ MLLCT
S_4	271.45	0.022	$H - 3 \rightarrow L + 3$											¹ ILCT/ ¹ LLCT
3			(47%)	_	02	02	96	-	0 01	08	03	87	01	
			H → L + 7 (12%)	- 01	16	66	16	-	04 01	20	04	71	-	¹ MLLCT
	264.26	0.057	$H - 5 \rightarrow L (38\%)$	- 01	95	02	03	-	05 06	77	10	02	-	¹ ILCT/ ¹ LLCT

S_4			$H - 4 \rightarrow L + 4$											¹ ILCT/ ¹ LLCT
6			(20%)	_	97	02	01	_	06 13	76	_	05	_	
			$H - 4 \rightarrow L + 1$											¹ ILCT/ ¹ LLCT
			(15%)	-	97	02	01	_	03 03	85	03	07	-	
S ₅	253.45	0.028	$H - 5 \rightarrow L + 1$											¹ ILCT/ ¹ LLCT
			(060/)	101	05	00	02		02102	05	02	07		

(86%) -|01 95 02 03 - 03|03 85 03 07 -*Subscripts *a* and *b* for carboxylic acid corresponds to its linkage to the central and peripheral pyridine rings of terpyridine (tpy_{acceptor}).

(c) [**S3**]

			Atom/Ligand %									_		
Ite			Ê		Fr	om				Тс)			
Excited Sta	(mn) λ	Oscillator strength (<i>f</i>)	Excitation (Maximum orbital contributior	COOH ^{albl}	Tpy _{acceptor}	Ru	tpydonor	ng,	COOH ^{albl}	Tpyacceptor	Ru	tpydonor	ng,	Excitation character
S ₁	570.32	0.001	$H \rightarrow L (49\%)$	- 01 01	16	66	17	_	04 04 04	76	10	02	_	¹ MLLCT
			$H - 1 \rightarrow L (48\%)$	_	07	71	20	01	04 04 04	76	10	02	_	¹ MLLCT
S ₃	495.71	0.013	$H - 2 \rightarrow L (62\%)$	02 - -	22	69	08	-	04 04 04	76	10	02	-	¹ MLLCT
			$H \rightarrow L + 1 (33\%)$	- 01 01	16	66	17	-	- 04 04	86	03	04	-	¹ MLLCT
S ₈	436.27	0.037	$H - 1 \rightarrow L + 2$											¹ MLLCT
			(44%)	_	07	71	20	01	_	01	07	91	01	
			$H \rightarrow L + 1 (38\%)$	- 01 01	16	66	17	-	- 04 04	86	03	04	-	¹ MLLCT
			$H - 2 \rightarrow L(11\%)$	02 - -	22	69	08	-	04 04 04	76	10	02	-	¹ MLLCT
S ₁	384.92	0.020	$H \rightarrow L + 4 (85\%)$					-						¹ MLLCT
3				- 01 01	16	66	17		12 07 07	72	01	-	-	
S_2	327.07	0.048	$H - 4 \rightarrow L (84\%)$					-						¹ ILCT/ ¹ LL
0				_	95	02	03		04 04 04	76	10	02	-	CT
S₃	301.49	0.025	$H - 2 \rightarrow L + 7$					-						¹ MLLCT
0			(86%)	02 - -	22	69	80		14 - -	84	01	-	-	111 07/111
S_3	297.47	0.036	$H - 3 \rightarrow L + 2$			~~	05	-			07		~ ~	'ILC I/'LL
1			(48%)	-	03	02	95		-	01	07	91	01	
	000.00	0.000	$H \rightarrow L + 6 (30\%)$	- 01 01	16	66	17	-	-	-	01	98	-	
\mathbf{S}_3	292.86	0.032	$H - 2 \rightarrow L + 10$	001	22	60	00	-		15	64	01		MC
2				02 - -	22	69	00		_	15	04	21	-	1MC
			$\Pi = Z \rightarrow L \neq 14$	021.1	22	60	00	-		22	50	17		INC
S.	271 22	0.031		02 - -	22	09	00		-	23	79	17	-	
04 4	211.00	0.001	(54%)	_	03	02	95	-	_	03	03	93	01	
4			$H = 4 \rightarrow 1 + 3$		55	52	00	_			00	00	01	111 CT
			(15%)	_	95	02	03		_	03	03	93	01	LLOI
			$H \rightarrow L + 8 (13\%)$	-101101	16	66	17	_	-101101	03	04	92	_	

*Subscripts *a*, *b* and *b*' for carboxylic acid corresponds to its linkage to the central and peripheral pyridine rings of terpyridine (tpy_{acceptor}).

Table S3

Electron density difference maps (EDDMs, contour: 0.001) of complexes [S1] - [S3] depicting relevant singlet electronic excitations in the UV-Visible range in the acetonitrile (SMD) phase. The charge flows from the blue to orange region.

Inter-fragment charge transfer (IFCT) analysis of relevant excitations of [**S1**] in the acetonitrile (SMD) phase. Electron transfer greater than value of 0.05 are highlighted in the following tables.

(a) S1 state

[S	51]				Acc	eptor				
Do	nor			Tpy ²				Tpy ¹		_
00	noi	COOH	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
CO	OH	_	-	_	-	-	-	_	-	-
	Py ^{2a}	_	-	_	-	-	-	_	-	-
Tpy ²	Py ^{2b}	_	0.03	_	-	-	-	_	-	-
	Py ^{2b'}	_	0.03	-	-	-	-	_	-	-
R	lu	0.06	0.33	0.09	0.09	_	_	_	_	_

	Py ^{1a}	_	0.01	_	_	_	_	_	_	
Tpy ¹	Py ^{1b}	_	0.03	-	_	-	_	—	—	-
	Py ^{1b'}	_	0.03	-	0.01	-	_	_	_	_
^t B	Bu	_	—	_	_	_	_	_	_	_

(b) S₄ state

[9	61]				Acc	eptor				
 Do	nor			Tpy ²				Tpy ¹		
DO	noi	COOH	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
CO	OH	_	_	-	_	-	-	_	_	-
	Py ^{2a}	_	_	0.01	_	_	_	_	_	-
Tpy ²	Py ^{2b}	—	0.01	—	—	—	—	—	—	—
	Py ^{2b'}	—	0.01	—	—	—	—	—	—	—
R	lu	0.03	0.32	0.11	0.11	—	—	0.02	0.01	—
	Py ^{1a}	_	_	_	_	-	_	_	_	-
Tpy ¹	Py ^{1b}	_	_	_	_	_	-	_	_	-
	Py ^{1b'}	_	_	_	_	_	_	_	_	-
ťE	Bu	_	—	_	_	_	_	_	_	_

(c) S₁₆ state

	[S1]				Acc	eptor				
Da	por			Tpy ²				Tpy ¹		_
00		COOH	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
CO	OH	—	_	_	_	_	_	_	-	-
	Py ^{2a}	—	_	0.01	_	_	_	0.01	0.01	-
Tpy ²	Py ^{2b}	—	_	_	_	_	_	_	-	-
	Py ^{2b'}	—	0.01	0.01	_	_	_	_	-	-
R	u	0.04	—	0.17	0.11	—	_	0.10	0.10	—
	Py ^{1a}	_	_	0.01	_	_	_	_	—	-
Tpy¹	Py ^{1b}	_	_	-	-	-	_	_	_	-
	Py ^{1b'}	_	_	0.01	_	_	_	_	_	_
ťB	Bu	_	_	_	_	_	_	_	_	_

(d) S₂₉ state

siale										
	[S1]				Ac	ceptor				
De	nor			Tpy ²				Tpy ¹		
DO	nor	COOH	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
CO	OH	_	_	_	_	_	_	_	_	_
	Py ^{2a}	_	_	_	_	_	_	_	_	_
Tpy ²	Py ^{2b}	_	_	_	_	_	0.01	0.01	_	_
	Py ^{2b'}	_	_	_	_	_	0.01	0.01	_	_
R	lu	_	_	_	_	_	0.04	0.04	0.03	_
	Py ^{1a}	_	_	_	_	0.02	_	0.10	0.08	_
Tpy ¹	Py ^{1b}	_	_		_	0.01	0.06	_	0.05	_
	Py ^{1b'}	_	_	_	_	0.01	0.06	0.07	_	_
^t E	Bu	_	_	_	_	_	_	_	_	_

(e) S₃₂ state

[9	61]				Ac	ceptor				
Do	nor			Tpy ²				Tpy ¹		
00	noi	COOH	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
CO	OH	_	_	_	_	_	_	_	_	-
	Py ^{2a}	_	_	_	_	0.02	0.12	0.12	0.09	_
Tpy ²	Py ^{2b}	_	_	_	_	0.01	0.08	0.08	0.06	_
	Py ^{2b'}	_	_	_	_	0.01	0.08	0.08	0.08	_
R	lu	_	_	_	_	_	0.02	0.04	0.01	-
Tpy ¹	Py ^{1a}	_	_	_	_		-	_	_	_

Py ^{1b}	_	_	_	_	_	_	_	-	_
Py ^{1b'}	_	_	_	_	_	_	_	_	_
^t Bu	—	-	—	—	—	—	—	—	—

(f) S₃₄ state

[S1]				Ac	ceptor				
Dopor			Tpy ²				Tpy ¹		
Donoi	COOH	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COOH	_	_	-	_	-	-	-	-	_
Py ²	a _	_	0.01	0.01	0.08	-	-	-	_
Tpy ² Py ²	b _	_	-	_	0.01	-	-	-	_
Py ^{2l}	o' <u> </u>	_	-	_	0.01	-	-	-	_
Ru	_	0.01	0.08	0.07	_	-	0.03	0.03	_
Py ¹	a _	-	-	-	0.01	-	-	-	_
Tpy ¹ Py ¹	b _	-	_	-	0.02	-	-	-	_
Py ¹¹	o'	_	_	_	0.02	_	_	_	_
^t Bu	_	_	_	_	_	_	_	_	_

(g) S₃₈ state

[9	61]				Ac	ceptor				
	nor			Tpy ²				Tpy ¹		
DO	nor	COOH	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
CO	ОН	_	-	-	_	_	_	-	_	-
	Py ^{2a}	_	-	0.04	0.04	0.01	_	-	_	-
Tpy ²	Py ^{2b}	_	0.13	-	0.05	0.02	_	-	_	-
	Py ^{2b'}	_	0.13	_	_	0.02	_	_	_	-
R	u	_	0.01	0.01	_	—	_	_	—	—
	Py ^{1a}	_	0.02	_	0.01	-	-	-	_	-
Tpy¹	Py ^{1b}	-	0.02	_	_	_	_	_	_	-
	Py ^{1b'}	_	0.02	_	_	_	_	_	_	-
^t E	Bu	_	_	_	_	_	_	_	_	_

(h) S₄₀ state

[9	61]				Acc	eptor				
De	nor			Tpy ²				Tpy ¹		
DO	nor	COOH	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
CO	ОН	_	_	_	_	-	_	_	_	-
	Py ^{2a}	_	_	-	_	-	0.03	0.01	0.02	-
Tpy ²	Py ^{2b}	_	_	-	_	-	0.02	0.01	0.01	-
	Py ^{2b'}	_	_	_	_	_	0.02	0.01	0.01	_
R	lu	_	0.01	0.01	0.01	_	0.07	0.04	0.04	_
	Py ^{1a}	_	_	0.01	0.01	-	_	0.03	0.03	-
Tpy ¹	Py ^{1b}	_	_	0.01	0.01	-	0.04	_	0.03	-
Py ^{1b'}		_	_	0.01	0.01	_	0.04	0.02	_	_
^t E	Bu	_	_	_	_	-	_	-	-	_

(i) S₄₅ state

[S	61]				Aco	ceptor				
De	nor			Tpy ²				Tpy ¹		
DO	nor	COOH	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
CO	OH	_	_	_	_	_	_	_	_	-
	Py ^{2a}	_	_	0.02	0.02	0.01	_	_	_	-
Tpy ²	Py ^{2b}	0.02	0.18	_	0.06	0.03	_	_	_	-
	Py ^{2b'}	0.02	0.18	0.06	_	0.03	_	_	_	-
R	lu	_	0.01	_	_	_	_	_	_	-
Tnv ¹	Py ^{1a}	_	-	-	_	-	-	-	-	_
тру	Py ^{1b}	_	_	_	-	_	_	_	_	-

Py ^{1b'}	_	_	_	_	_	_	_	_	_
^t Bu	_	-	_	_	-	-	_	-	_

Inter-fragment charge transfer (IFCT) analysis of relevant excitations of [**S2**] in the acetonitrile (SMD) phase. Electron transfer greater than value of 0.05 are highlighted in the following tables.

a) S₁ state

[S	52]				Ac	ceptor					
	nor				Tpy ²				Tpy ¹		
00		COOH ^{2a}	COOH ^{2b}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COO	OH ^{2a}	_	_	_	_	_	_	_	_	_	_
COO	OH ^{2b}	_	_	_	_	_	_	_	_	_	_
	Py ^{2a}	_	_	_	_	_	_	_	_	_	_
Tpy ²	Py ^{2b}	_	_	0.01	_	_	_	-	_	_	_
	Py ^{2b'}	0.01	0.03	0.01	0.01	_	_	_	_	_	-
F	Ru	_	_	0.24	0.22	0.06	—	_	_	_	-
	Py ^{1a}	_	_	0.02	0.01	_	_	_	_	_	-
Tpy ¹	Py ^{1b}	_	_	0.01	_	_	_	_	_	_	_
	Py ^{1b'}	_	_	0.02	0.02	_	_	_	_	_	_
ťE	Bu	_	_	_	_	_	_	_	_	_	_

b) S₃ state

[S2]					Ac	ceptor					
Dono	r				Tpy ²				Tpy ¹		
DONO	ſ	COOH ^{2a}	COOH ^{2b}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COOH	2a	_	_	_	_	_	_	_	_	_	-
COOH	2b	_	_	_	_	_	_	_	_	_	-
F	∙y²a	_	_	_	0.03	0.01	_	_	_	_	-
Tpy ² F	°y²⁵	_	_	0.01	_	_	_	_	_	_	-
F	y 2b'	_	_	0.01	0.01	_	_	_	_	_	-
Ru		0.02	0.03	0.23	0.21	0.06	_	0.01	0.02	0.01	-
F	°y¹a	_	_	_	_	_	_	_	_	_	-
Tpy ¹ F	°y¹b	_	_	0.01	0.01	_	_	_	_	_	-
F	y ^{1b'}	_	_	0.01	0.02	_	_	_	_	_	_
^t Bu		-	-	_	_	_	_	_	-	_	_

c) S₃₂ state

[S2]					A	cceptor					
Donor					Tpy ²				Tpy ¹		
Donor	(COOH ^{2a}	COOH ^{2b}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COOH ^{2a}	3	-	_	_	_	_	_	_	_	_	-
COOH ^{2b})	_	_	_	_	_	_	_	_	_	-
Py	2a	_	_	_	_	_	_	_	_	_	-
Tpy ² Py	2b	_	_	_	_	_	_	_	_	_	-
Py	2b'	_	_	_	_	_	_	_	_	_	-
Ru		0.02	_	0.02	0.07	0.13	_	_	0.07	0.06	—
Py	1a	_	_	_	0.02	0.04	0.01	_	0.02	0.02	-
Tpy ¹ Py	1b	_	_	_	0.01	0.02	_	_	_	0.01	-
Py	1b'	_	_	_	0.01	0.02	_	_	0.01	_	_
^t Bu		_	_	_	_	_	_	_	_	_	_

d) S₄₃ state

[S2]				Ac	ceptor					
Dopor				Tpy ²				Tpy ¹		
DONO	COOH ^{2a}	COOH ^{2b}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COOH ^{2a}	_	_	_	_	_	_	_	_	_	_
COOH ^{2b}	—	-	—	—	—	—	—	—	-	-

	Py ^{2a}	_	—	_	_	_	-	_	_	_	_
Tpy ²	Py ^{2b}	_	-	_	-	—	-	0.01	—	_	_
	Py ^{2b'}	_	-	_	-	_	_	0.01	0.01	0.01	-
F	Ru	_	-	_	-	0.01	_	0.05	0.03	0.04	-
	Py ^{1a}	_	-	0.01	0.01	0.02	_	-	0.05	0.07	-
Tpy ¹	Py ^{1b}	_	-	0.01	-	0.01	_	0.05	_	0.04	-
	Py ^{1b'}	_	_	0.01	_	0.02	_	0.06	0.03	_	_
ť	Bu	_	_	_	_	_	_	_	_	_	_

e) S₄₆ state

[S	52]				Ac	ceptor					
 Do	nor				Tpy ²				Tpy ¹		
DO	nor	COOH ^{2a}	COOH ^{2b}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COC	OH²a	_	_	-	_	_	_	-	_	_	-
COC	DH ^{2b}	_	_	-	_	_	_	-	_	_	-
	Py ^{2a}	_	_	-	0.04	0.03	0.01	-	_	_	-
Tpy ²	Py ^{2b}	_	_	-	_	0.04	0.02	-	_	_	-
	Py ^{2b'}	0.01	0.01	0.10	0.09	_	0.03	-	_	_	-
R	Ru	_	_	0.02	0.01	0.01	_	-	_	_	-
	Py ^{1a}	_	_	0.01	_	_	_	-	_	_	-
Tpy¹	Py ^{1b}	_	_	-	_	_	_	-	_	_	-
	Py ^{1b'}	_	_	0.01	_	_	_	-	_	_	-
ťE	Bu	_	_	_	_	_	_	_	_	_	_

f) S₅₀ state

[9	52]				A	cceptor					
	nor				Tpy ²				Tpy ¹		
DO	nor	COOH ^{2a}	COOH ^{2b}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COO	OH²a	_	_	_	-	_	_	_	_	_	_
COO	OH ^{2b}	_	_	_	_	_	_	_	_	_	_
	Py ^{2a}	_	_	_	0.02	_	0.01	_	_	_	_
Tpy ²	Py ^{2b}	0.01	0.01	0.20	—	0.06	_	_	_	_	_
	Py ^{2b'}	0.01	0.01	0.16	0.06	_	_	_	_	_	_
F	Ru	_	_	0.01	_	_	_	_	_	_	_
	Py ^{1a}	_	_	_	_	_	_	_	_	_	_
Tpy ¹	Py ^{1b}	_	_	_	_	_	_	_	_	_	_
	Py ^{1b'}	_	_	_	_	_	_	_	_	_	_
ťE	Bu	_	_	_	_	_	_	_	_	_	_

Table S6

Inter-fragment charge transfer (IFCT) analysis of relevant excitations of [**S3**] in the acetonitrile (SMD) phase. Electron transfer greater than value of 0.05 are highlighted in the following tables. (a) S_1 state

[S	3]				A	Accepto	or					
Do	nor				D 22	Tpy ²	D 0h'	_	D 1a	Tpy ¹	D 16	
		COOH ^{2a}	COOH	COOH	Pyza	Pyzu	Pyzu	Ru	Pyra	Py	Py	'Bu
CO(OH ^{2a}	_	_	_	_	_	_	_	-	_	-	_
COC	OH ^{2b}	_	_	_	_	_	-	_	_	_	-	-
COC	OH ^{₂b'}	_	_	_	-	-	-	-	-	-	-	_
	Py ^{2a}	_	_	_	-	_	_	_	-	_	-	Ι
Tpy ²	Py ^{2b}	_	_	_	0.01	_	0.01	_	_	_	_	_
	Py ^{2b'}	_	_	_	0.01	_	_	_	_	_	_	-
F	Ru	0.02	0.02	0.02	0.20	0.15	0.16	_	_	_	_	-
	Py ^{1a}	_	_	_	0.03	0.02	0.02	0.01	_	_	_	_
Tpy ¹	Py ^{1b}	_	_	_	-	-	-	-	-	-	-	_
	Py ^{1b'}	_	_	_	_	0.01	_	_	_	_	_	_
ťE	Bu	_	_	_	_	_	_	_	_	_	_	_

(b) S₃ sta	ate											
_	[S	1]				A	ccepto	r					
_	Do	nor	COOH ^{2a}	COOH ^{2b}	COOH ^{2b'}	Py ^{2a}	Tpy ² Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Tpy ¹ Py ^{1b}	Py ^{1b'}	^t Bu
-	COC	DH ^{2a}	_	_	_	_	_	_	_	_	_	_	_
-	COC	DH ^{2b}	_	_	_	_		_	_	_	_	_	_
_	COOH ^{2b'}		_	_	_	_	_	_	_	_	-	_	-
_		Py ^{2a}	_	_	_	_	0.02	0.02	_	_	_	_	_
	Tpy ²	Py ^{2b}	_	_	_	0.01	_	0.01	_	_	_	_	_
_		Py ^{2b'}	_	_	_	0.01	0.01	_	_	_	_	_	_
	R	lu	0.01	0.02	0.02	0.20	0.16	0.16	_	_	_	_	_
		Py ^{1a}	_	_	_	_	_	_	_	_	_	_	_
	Tpy¹	Py ^{1b}	_	_	_	0.01	0.01	0.01	_	_	_	_	_
_		Py ^{1b'}	_	_	_	0.01	0.01	0.01	_	_	_	_	_
_	ťB	Bu	_	_	_	_	—	_	_	_	_	_	_

(c) S₈ state

[S	3]				Ac	ceptor						
	nor					Tpy ²				Tpy ¹		
DO	nor	COOH ^{2a}	COOH ^{2b}	COOH ^{2b'}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COC	DH ^{2a}	_	_	_	-	-	_	_	_	-	_	-
COC	DH ^{2b}	_	_	_	-	-	_	_	_	-	_	-
COC	DH ^{2b'}	_	_	_	-	-	_	_	_	-	_	-
 Tpy ²	Py ^{2a}	_	_	_	-	-	_	_	_	-	_	-
	Py ^{2b}	_	_	_	-	-	_	_	_	-	_	-
	Py ^{2b'}	_	_	_	-	-	_	_	_	-	_	-
R	lu	_	0.01	0.01	0.13	0.10	0.10	_	0.11	0.10	0.07	-
	Py ^{1a}	_	_	—	0.01	0.01	0.01	_	_	0.01	_	_
Tpy ¹	Py ^{1b}	_	_	_	-	_	_	_	_	_	_	_
	Py ^{1b'}	_	_	_	_	_	_	_	_	_	_	_
ťE	Bu	_	_	_	_	_	_	_	_	_	_	_

(d) S₁₃ state

[S	63]				A	ccepto	r					
Do	nor					Tpy ²				Tpy ¹		_
		COOH ^{2a}	COOH ^{2b}	COOH ^{2b'}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COC	OH ^{2a}	—	—	_	_	—	_	_	_	_	_	-
CO(OH ^{2b}	—	—	_	—	—	—	—	—	—	—	-
COC	OH ^{₂b'}	—	—	_	—	—	_	_	_	_	_	-
	Py ^{2a}	_	_	_	_	0.01	0.01	_	_	_	_	-
Tpy ²	Py ^{2b}	_	_	_	0.01	_	0.01	_	_	_	_	-
	Py ^{2b'}	_	_	_	0.01	0.01	_	_	_	_	_	-
F	Ru	0.06	0.05	0.05	0.15	0.14	0.15	—	_	_	_	-
	Py ^{1a}	_	_	_	_	_	_	_	_	_	_	-
Tpy ¹	Py ^{1b}	_	_	_	0.01	0.01	0.01	_	_	_	_	-
. 1. 2	Py ^{1b'}	_	_	_	0.01	0.01	0.01	_	_	_	_	_
ťE	Bu	_	_	_	_	_	_	_	_	_	_	_

(e) S₂₀ state

[S	63]				ŀ	Accepto	or					
Do	nor					Tpy ²				Tpy ¹		_
00		COOH ^{2a}	COOH ^{2b}	COOH ^{2b'}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COO	OH ^{2a}	_	_	_	-	_	_	_	_	_	-	_
COOH ^{2b}		_	_	_	-	_	_	_	_	_	-	_
COC	DH ^{2b'}	_	_	_	-	_	_	_	_	_	-	_
Tpy ² -	Py ^{2a}	_	0.01	0.01	-	0.08	0.08	0.03	_	_	-	_
	Py ^{2b}	0.01	_	-	0.07	_	0.05	0.02	_	-	_	_

	Py ^{2b'}	0.01	—	_	0.07	0.05	_	0.02	_	_	_	_
F	Ru	-	-	_	0.02	0.01	0.01	_	_	-	_	-
	Py ^{1a}	-	-	_	_	-	_	_	_	-	_	-
Tpy¹	Py ^{1b}	-	-	_	_	-	_	_	_	-	_	-
	Py ^{1b'}	-	-	_	_	-	_	_	_	-	_	-
^t Bu		_	_	_	_	_	_	_	_	_	_	_

(f) S₃₀ state

[S	63]				A	ccepto	r					
 Do	nor					Tpy ²				Tpy ¹		
00		COOH ^{2a}	COOH ^{2b}	COOH ^{2b'}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COC	OH ^{2a}	-	—	_	_	_	_	_	_	_	_	_
COC	OH ^{2b}	—	—	_	-	—	—	—	—	—	—	—
COC	OH₂₽,	—	—	_	-	—	—	—	—	—	—	—
	Py ^{2a}	0.01	—	_	-	0.04	0.04	—	—	—	—	—
Tpy ²	Py ^{2b}	—	—	_	0.07	—	0.02	—	—	—	—	—
	Py ^{2b'}	—	—	_	-	0.01	—	—	—	—	—	—
F	Ru	0.08	—	_	0.08	0.02	0.02	_	_	0.02	0.02	_
	Py ^{1a}	—	—	_	-	—	—	—	—	—	—	—
Tpy ¹	Py ^{1b}	—	—	_	-	0.01	0.01	—	—	—	—	—
	Py ^{1b'}	_	_	_	_	0.01	0.01	_	_	_	_	_
ťE	Bu	_	_	_	_	_	_	_	_	_	_	_

(g) S₃₁ state

[S	63]				ŀ	Accepto	or					
De						Tpy ²				Tpy ¹		
DO	nor	COOH ^{2a}	COOH ^{2b}	COOH ^{2b'}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COC	OH²a	_	_	_	_	_	_	_	-	_	_	_
COC	OH ^{2b}	_	_	_	-	-	_	-	_	_	_	_
COC	DH ^{2b'}	_	_	_	-	-	_	-	_	_	_	_
	Py ^{2a}	_	_	_	_	_	_	_	0.02	0.02	0.02	-
Tpy ²	Py ^{2b}	_	_	_	_	_	_	_	0.01	0.02	0.01	-
	Py ^{2b'}	_	_	_	_	_	_	_	0.01	0.02	0.01	-
R	Ru	_	_	_	_	_	_	_	0.06	0.09	0.08	—
	Py ^{1a}	_	_	_	_	_	_	0.01	_	0.08	0.06	—
Tpy ¹	Py ^{1b}	_	_	_	_	_	_	0.01	0.03	_	0.04	-
	Py ^{1b'}	_	_	_	_	_	_	0.01	0.03	0.05	_	_
ťE	Bu	-	_	_	_	_	_	_	_	_	_	_

(h) S₃₂ state

[9	3]				ŀ	Accepto	or					
	nor					Tpy ²				Tpy ¹		
DO	nor	COOH ^{2a}	COOH ^{2b}	COOH ^{2b'}	Py ^{2a}	Py ^{2b}	Py ^{2b'}	Ru	Py ^{1a}	Py ^{1b}	Py ^{1b'}	^t Bu
COO	OH ^{2a}	_	_	_	-	-	_	-	_	_	_	-
COC	OH ^{2b}	_	_	_	_	_	_	_	_	_	_	-
COC	OH ^{₂b'}	_	_	_	_	_	_	_	_	_	_	-
	Py ^{2a}	_	_	_	-	-	-	0.07	-	0.02	0.01	-
Tpy ²	Py ^{2b}	_	_	_	-	-	-	0.01	_	_	_	-
	Py ^{2b'}	_	_	_	-	-	-	0.01	_	_	_	_
F	Ru	_	_	_	0.01	0.01	0.01	-	0.03	0.09	0.08	_
	Py ^{1a}	_	_	_	_	_	-	0.02	-	-	_	-
Tpy ¹	Py ^{1b}	_	_	_	-	_	_	0.02	_	_	_	-
	Py ^{1b'}	_	_	_	_	_	_	0.02	_	_	_	_
ťE	Bu	_	_	_	_	_	_	_	_	_	_	-

(i) S₄₄ state

[S3]		Acceptor			
Donor	COOH ^{2a}	Tpy ²	Ru	Tpy ¹	^t Bu

			COOH ^{2b}	COOH ^{2b'}	Py ^{2a}	Py ^{2b}	Py ^{2b'}		Py ^{1a}	Py ^{1b}	Py ^{1b'}	
COC	OH ^{2a}	-	_	-	_	-	-	-	_	-	_	-
COC	OH ^{2b}	-	_	-	_	-	-	-	_	-	_	-
COC	DH ^{2b'}	-	_	-	_	-	-	-	_	-	_	-
Tpy ²	Py ^{2a}	-	_	-	_	-	-	-	0.01	-	_	-
	Py ^{2b}	-	_	-	_	-	_	-	0.02	0.01	0.01	-
	Py ^{2b'}	-	_	-	_	-	_	-	0.02	0.01	0.01	-
R	Ru	-	_	-	_	-	_	-	0.04	0.02	0.03	-
	Py ^{1a}	-	_	-	_	-	_	0.01	_	0.06	0.08	-
Tpy ¹	Py ^{1b}	-	_	-	_	-	_	-	0.08	_	0.06	-
	Py ^{1b'}	-	-	_	_	_	_	_	0.08	0.04	_	-
ťE	Bu	_	_	_	_	_	_	_	_	_	_	_

Figure S21. Inter-fragment charge transfer ($Ru \rightarrow tpy^A$) along with electron density difference maps (blue and orange regions correspond to charge loss and accumulation).

³MLLCT singly occupied and unoccupied molecular orbitals with energy in eV

(a) Ruthenium and ligand-based singly occupied/unoccupied of [S1] in its ³MLLCT state.

³MLLCT singly occupied and unoccupied molecular orbitals with energy in eV

(b) Ruthenium and ligand-based singly occupied/unoccupied of [S2] in its ³MLLCT state.

³MLLCT singly occupied and unoccupied molecular orbitals with energy in eV

(c) Ruthenium and ligand-based singly occupied/unoccupied molecular orbitals of [S3] in its ³MLLCT state.

Figure S22. ³MLLCT state singly occupied/unoccupied molecular orbitals (contour: 0.03) of (a) [**S1**], (b) [**S2**] and (c) [**S3**] in the acetronitrile (SMD) phase. The red and green colours of orbitals correspond to the orbitals belonging to the α - and β -electrons, respectively.

	Ruthenium atom	Donor ligand	Acceptor ligand	COOHª	СООН⁵	COOH
[S1]	0.918	0.051 (Тру)	0.962 (Тру)	0.069		
[S 2]	0.896	0.056 (Tpy)	0.969 (Tpy)	0.051	0.027	
[S 3]	0.917	0.057 (Тру)	0.950 (Тру)	0.036	0.020	0.021

(a) ³MLLCT state: *Mulliken* spin density plots (contour: 0.003) and expectation value for ground triplet states ($S^{2>}$).

(b) ³MC state: *Mulliken* spin density plot (contour: 0.001) and expectation value for ground triplet states ($<S^{2}>$).

Figure S23. *Mulliken* spin density plots and expectation values of (a) ³MLLCT state and, (b) ³MC state. The red and green regions indicate orbitals belonging to the α - and β -electrons, respectively. The donor and acceptor ligands correspond to the tpy¹ and tpy² ligands of [**S1**] – [**S3**], respectively.

(a) Relaxed triplet potential energy surface (³PES) scan curve for all complexes along the Ru–N^a bond of central pyridine ring of tpy acceptor (tpy²), starting from the optimized ³MLLCT state in the acetonitrile (SMD) phase.

(b) \triangle -SCF energies of the optimized excited ¹MLLCT state and ground ³MLLCT and ³MC states with their nuclear coordinates vs those of S₀ states in the acetonitrile phase(SMD) along with potential energy scan and ruthenium-spin density.

Mulliken spin density of triplet electronic states along with their energy (in eV) obtained from the relaxed potential energy surface (³PES) scan and those obtained from optimization of the local minima found in the ³PES.

		Electron	ic state	⊿-SCF ene	ergy (eV)
	Local	After relaxed-	After	Initially relaxed ³ MLLCT	Optimized minima
	minima	³ PES scan	optimization	state	(obtained from scan)
[64]	13	³ MC	³ MLLCT	1 770	1.770
[31]	15	³ M	С	1.770	2.158
[60]	13	³ MC		1 697	ergy (eV) Optimized minima (obtained from scan) 1.770 2.158 2.125 2.020 1.682 2.161
[32]	16	³ M	С	1.007	2.020
[62]	13	³ MC	³ MLLCT	1 692	1.682
[33]	15	³ MC		1.002	2.161

³MC singly occupied and unoccupied molecular orbitals with energy in eV

(a) Ru-based singly occupied/unoccupied molecular orbitals of [S1] in its ³MC state.

³MC singly occupied and unoccupied molecular orbitals with energy in eV

³MC singly occupied and unoccupied molecular orbitals with energy in eV

Figure S24. ³MC state singly occupied/unoccupied molecular orbitals (contour: 0.03) of (a) [**S1**], (b) [**S2**] and (c) [**S3**] in the acetronitrile (SMD) phase. The red and green colours of orbitals correspond to the orbitals belonging to the α - and β -electrons, respectively.

Figure S25. Lifetime Values of [S1] - [S3].

⁽c) Ru-based singly occupied/unoccupied molecular orbitals of [S3] in its ³MC state.

DFT-computed geometrical features of the *push-pull* $[Ru(tpy^D)(tpy^A)]^{2+}$ -based complexes [S1] - [S3] in the acetonitrile (SMD) phase.

(tpy ^b group)						-C(0	CH3)3					
(Tpy ^A groups)	СООН	2COOH	3COOH	СООН	2COOH	3COOH	СООН	2COOH	3COOH	СООН	2COOH	3COOH
Complex	[S1]	[S2]	[S3]	[S1]	[S2]	[S3]	[S1]	[S2]	[S3]	[S1]	[S2]	[S3]
States		S ₀			¹ MLLCT			³ MLLCT			³ MC	
$Ru - N^{Da}$	1.992	1.992	1.995	1.978	1.966	1.971	1.989	2.022	1.986	1.986	1.966 (1.989)	1.988
$Ru - N^{Db}$	2.070	2 080	2 090	2.076	2.079	2.080	2.071	2.074	2.081	2.107	2.085 (2.109)	2.109
Ru – N ^{Db′}	2.079	2.060	2.000	2.083	2.085	2.085	2.071	2.076	2.091	2.111	2.087 (2.114)	2.111
$Ru - N^{Aa}$	1.975	1.980	1.974	2.068	2.030	2.025	2.010	1.981	2.016	2.352	2.196 (2.340)	2.356
$Ru - N^{Ab}$	2 076	2.061	2 060	2 060	2.077	2.065	2.077	2.081	2.066	2.213	2.471 (2.602)	2.597
Ru – N ^{Ab'}	2.070	2.139	2.009	2.009	2.123	2.064	2.093	2.137	2.065	2.595	2.167 (2.239)	2.204
∠N ^{Db} – Ru – N ^{Db′}	157.88	157.85	157.75	159.95	160.42	160.18	159.43	154.67	159.55	158.33	159.29 (158.17)	158.24
∠N ^{Ab} – Ru – N ^{Ab′}	158.97	158.55	159.14	154.38	154.66	154.51	154.38	159.18	154.66	137.45	144.03 (138.25)	137.32

(a) Metal-ligand geometrical parameters, including bond lengths (in Å) and angles in degrees.

*The nitrogen atoms-N^{*a*}, N^{*b*} and N^{*b*} corresponds to the metal-coordinating N atoms of the inner and outer pyridine rings of the tpy ligand.

*The geometrical features of the second ³MC state of [S2] is in parenthesis.

(b) Geometrical features of [S1] – [S3] in all electronic states.

Electronic States	[S1]	[S2]	[S3]
	<i>R</i> -value		
S ₀	2.047	2.055	2.045
¹ MLLCT	2.048	2.060	2.048
³ MLLCT	2.052	2.062	2.051
³ MC	2.227	2.162 2.232	2.228
Octahedricity (C))-value (I	ldeal valu	e = 0)
S ₀	10.788	10.888	10.778
¹ MLLCT	11.090	11.143	11.125
³ MLLCT	11.205	11.248	11.148
³ MC	16.018	14.163 15.883	16.070

*The *R*-value is the average of all metal-ligand bond distances.

*The O-value corresponds to the mean absolute deviation of the set of all metal-ligand angles from the ideal bond angles of the octahedral structure.

The computed ground state (S₀) geometries of [S1] – [S3] in acetonitrile solution exhibit a *pseudo*octahedral coordination of terpyridine (tpy) ligands around the ruthenium (II) center with $\angle N$ –Ru–N bite angles in the range of 157.75° – 159.14°. In the solution phase, the tpy donor (tpy^D) and acceptor (tpy^A) ligands bind *meridionally* to the ruthenium center, in an orthogonal fashion. Further, these optimized solvated ground state geometries are also comparable to related complexes in the solid state.³⁹⁻⁴² The rigid tpy backbone favors shorter Ru–N^{central pyridine} and relatively longer Ru–N^{peripheral pyridine} bonds. Moreover, the Ru–N^{central pyridine} bond at the acceptor end (tpy^A) is relatively shorter than that at the donor end (tpy^D). This Ru–N bond shortening at the acceptor end is most pronounced in [S3], featuring three carboxylate anchors.

(a) Thermodynamic *Born-Haber* cycle-computed ground state oxidation potential of complexes [S1] – [S3] in the acetonitrile (SMD) phase. The table also lists excited state oxidation potentials and driving force of interfacial electron injection and dye regeneration.

	[S1]	[S2]	[S3]
${}^{a}G^{\circ}{}_{vac}$ (Ru ²⁺)	-1922.675	-2150.262	-2299.365
^a G° _{vac} (Ru ³⁺)	-1922.241	-2149.829	-2298.930
$^{b}\Delta G^{\circ vac}_{vac}^{ox}(\mathrm{Ru}^{2+}/\mathrm{Ru}^{3+})$	0.434	0.433	0.435
${}^{a}G^{\circ}{}_{solv}$ (Ru ²⁺)	-1922.902	-2150.494	-2299.604
^a G° _{solv} (Ru ³⁺)	-1922.708	-2150.297	-2299.405
$^{c/d}\Delta G^{\circ}_{solvation}$ (Ru ²⁺)	-0.228	-0.232	-0.239
$^{c/d}\Delta G^{\circ}_{solvation}$ (Ru ³⁺)	-0.467	-0.468	-0.475
$e\Delta\Delta G^{\circ \text{ox}(\text{Ru}^{2+}/\text{Ru}^{3+})}_{solvation}$	-0.239	-0.236	-0.235
$\int \Delta G_{solv}^{oox (Ru^{2+}/Ru^{3+})}$	0.194	0.197	0.199
^{gDFT} E ^{o(Ru²⁺/Ru³⁺)} (V vs SCE)	1.096	1.176	1.235
ΔE_{calc} (eV)	2.109	2.073	2.027
$\frac{DFT}{E^{\circ(Ru^{2+*}/Ru^{3+})}}$ (V vs SCE)	-1.012	-0.897	-0.792
^h D _{inj} (V vs SCE)	0.312	0.197	0.092
ⁱ D _{reg} (V vs SCE)	0.896	0.976	1.035
$j^{\text{Exp.}}E^{\circ(\text{Ru}^{2+*}/\text{Ru}^{3+})}$ (V vs SCE)	-1.23	-1.04	-0.87

^aGibbs free energy $(\overline{G}^{\circ}_{vac})$ of the singlet ground state of complexes and their oxidized doublet forms. ^b $\Delta G^{\circ xc}_{vac}^{(Ru^{2+}/Ru^{3+})} = G^{\circ Ru^{3+}}_{vac} - G^{\circ Ru^{2+}}_{vac}$ ^c $\Delta G^{\circ Ru^{2+}}_{solvation} = G^{\circ Ru^{3+}}_{solv} - G^{\circ Ru^{2+}}_{vac}$ ^d $\Delta G^{\circ xc}_{solvation} = G^{\circ Ru^{3+}}_{solvat} - G^{\circ Ru^{3+}}_{solvation} - \Delta G^{\circ Ru^{2+}}_{solvation}$ ^e $\Delta A G^{\circ xc}_{solvation} = \Delta G^{\circ xc}_{solvation} - \Delta G^{\circ xc}_{solvation}$ ^f $\Delta G^{\circ xc}_{solv}^{(Ru^{2+}/Ru^{3+})} = \Delta G^{\circ xc}_{vac}^{(Ru^{2+}/Ru^{3+})} + \Delta A G^{\circ xc}_{solvation}$ ^{gDFT} $E^{\circ (Ru^{2+}/Ru^{3+})}(vs SCE) = 27.2114 (\Delta G^{\circ xc}_{solv}^{(Ru^{2+}/Ru^{3+})}) - 4.1888 V$ ^h $D_{inj} = |^{DFT}E^{\circ (Ru^{2+*}/Ru^{3+})} - E^{TiO_2}_{CB}| = |^{DFT}E^{\circ (Ru^{2+}/Ru^{3+})} - \Delta E_{calc} - E^{TiO_2}_{CB}|$ where, $E^{TiO_2}_{CB} = -0.7 V vs SCE$ ⁱ $D_{reg} = |E^{T_3/\Gamma} - DFT E^{\circ (Ru^{2+}/Ru^{3+})}|$ where, $E^{T_3/\Gamma} = 0.2 V vs SCE$ ^j $Exp \cdot E^{\circ (Ru^{2+*}/Ru^{3+})} = Exp \cdot E^{\circ (Ru^{2+}/Ru^{3+})} - E_{0-0}$. $E_{0-0} = 1240/\lambda_{int}$, where λ_{int} corresponds to the intersection point of absorption and emission curves.^{16, 43-45}

(b) Singly unoccupied (β) and occupied (α) orbitals (contour: 0.03) of the singly oxidized and reduced doublets of complexes, respectively.

(b) Singly unoccupied (β) and occupied (α) orbitals (contour: 0.03) of the singly oxidized and reduced doublets of complexes, respectively.

(c) Spin density plot (contour: 0.001) of doubly oxidized and singly and doubly reduced triplets of [S1] – [S3].

Figure S26. Differential pulse voltammogram of [S1] – [S3]: (a) oxidation and (b) reduction peak currents.

Figure S27. Illustration of efficiency of ruthenium photosensitizers *versus* TiO₂ thickness of 9, 13, 15, and 17 μ m, respectively.

Photovoltaic and electrochemical impedance spectroscopy (after fitting experimental values with an equivalent circuit) data of devices sensitized with [S1] - [S3] with an active area of 0.36 cm²

(a). Photovoltaic data.

Dye	TiO ₂ film (µm)	Dye load (mM)	J _{max} (mA cm⁻²)	J₅c (mA cm⁻²)	V _{max} (V)	V _{oc} (V)	FF	(%) <i>L</i>
[S1]	9	0.50	0.79±0.024	0.93±0.031	0.27±0.033	0.54±0.002	0.44±0.021	0.22±0.028
	13	0.40	0.15±0.025	0.22±0.033	0.42±0.021	0.55±0.003	0.52±0.012	0.06±0.023
	15	0.40	1.78±0.030	1.80±0.034	0.38±0.041	0.48±0.005	0.78±0.013	0.68±0.022
	17	0.40	0.60±0.045	0.70±0.032	0.45±0.039	0.55±0.004	0.70±0.022	0.27±0.015
[S2]	9	0.40	2.95±0.036	3.21±0.033	0.36±0.027	0.47±0.003	0.69±0.015	1.05±0.033
	13	0.30	1.00±0.026	1.17±0.036	0.35±0.028	0.43±0.002	0.70±0.022	0.35±0.002
	15	0.20	1.19±0.031	1.48±0.055	0.28±0.025	0.38±0.005	0.59±0.011	0.33±0.001
	17	0.20	1.10±0.033	1.28±0.007	0.37±0.030	0.46±0.004	0.69±0.002	0.41±0.003
[S 3]	9	0.30	1.74±0.022	2.07±0.009	0.36±0.002	0.48±0.003	0.62±0.033	0.62±0.022
	13	0.40	3.98±0.024	4.40±0.009	0.40±0.013	0.52±0.007	0.69±0.010	1.59±0.004
	15	0.20	4.04±0.025	4.61±0.013	0.35±0.055	0.49±0.006	0.63±0.007	1.42±0.023
	17	0.40	1.43±0.026	1.55±0.020	0.42±0.002	0.52±0.002	0.75±0.023	0.60±0.031

 J_{sc} represents short circuit current density; V_{OC} corresponds to open circuit potential; *FF* denotes fill factor; PCE signifies the photon conversion efficiency.

(b). Electrochemical impedance spectroscopy data.

Dye	TiO₂ film (µm)	Dye load (mM)	ω _{max} (mA cm ⁻²)	ze (ms)	Rcτ (Ω)(×10²)	D _{eff} (×10 ⁻³ cm ² s ⁻¹)	L _n (µm)
[S1]	9	0.50	62.50	16.00	4.02	0.56	29.00
	13	0.40	27.00	37.00	35.74	3.13	10.70
	15	0.40	339.32	2.95	8.75	0.78	8.80
	17	0.40	62.50	16.02	22.81	0.12	10.90
[S 2]	9	0.40	62.50	16.00	7.08	1.89	55.00
	13	0.30	3.73	268.00	2.15	0.05	38.00
	15	0.20	62.50	16.00	6.99	3.53	7.50
	17	0.20	268.62	3.72	11.90	0.15	12.20
[S 3]	9	0.30	90.50	52.00	1.42	0.10	23.00
	13	0.40	20.00	52.00	1.40	0.18	31.00
	15	0.20	2.03, 2424.00	492.61, 0.41	0.27, 2.26	0.53, 23.70	16.29, 31.00
	17	0.40	51.79	19.30	220.83	1.23	49.00

 $\overline{R_{CT}}$ represents charge transfer resistance; ω_{max} denotes the peak frequency of the bode plot; τ_e signifies electron lifetime at the photoanode in milliseconds; D_{eff} represents the effective electron diffusion coefficient; L_n refers to the effective diffusion length of the electron.

Table S12

Photovoltaic and electrochemical impedance spectroscopy (after fitting experimental values with an equivalent circuit) data of devices sensitized with N3 dye with an active area of 0.36 cm^2

(a) Photovoltaic data

Dye	TiO₂ film (µm)	Dye load (mM)	J _{max} (mA cm ⁻²)	J₅ (mA cm ⁻²)	V (0)	V 00	FF	n (9()
					Vmax (V)	Voc (V)		1] (70)
N3	9	0.55	16.00±0.044	16.83±0.003	0.33±0.004	0.56±0.012	0.53±0.020	4.97±0.030
	13	0.56	7.66±0.002	7.72±0.030	0.72±0.002	0.80±0.002	0.68±0.002	4.07±0.022
	15	0.55	11.66±0.002	12.00±0.024	0.53±0.002	0.67±0.014	0.58±0.018	4.66±0.001
	17	0.50	8.67±0.022	9.97±0.013	0.39±0.024	0.57±0.006	0.59±0.002	3.35±0.004

(b)	Electrochemical	impedance	spectroscopy	data
-----	-----------------	-----------	--------------	------

Dye	TiO₂ film (µm)	Dye load (mM)	$\omega_{ m max}$ (Hz)	$ au_e$ (ms)	<i>R</i> _{CT} (Ω) (×10 ²)	D _{eff} (×10 ⁻³ cm²s ⁻¹)	<i>L</i> n (µm)
N3	9	0.55	84.36	11.85	2.19	0.67	28.21
	13	0.56	44.36	22.54	2.19	7.36	128.95
	15	0.55	69.90	14.30	2.08	0.62	29.80
	17	0.50	40.04	12.56	3.33	0.80	35.05

(a) Partial density of states of the optimized (TiO₂)₄₆ cluster in acetonitrile phase (SMD).

(b) Partial density of states of the optimized dye – $(TiO_2)_{46}$ assemblies of [S1] – [S3] in acetonitrile phase (SMD).

Figure S28. Partial density of states of (a) $(TiO_2)_{46}$ cluster and (b) dye – $(TiO_2)_{46}$ assemblies of [S1] – [S3].

Electron-density difference maps (contour: 0.001) of the relevant charge transfer states (with oscillator strength, $f \ge 0.02$) obtained from TDDFT featuring excitation from ruthenium center to the anchoring tpy^A mixed with Ti-based vacant 3*d* levels.

Figure S29. Inter-fragment charge transfer analysis for the dominant electronic excitations ($f \ge 0.02$) of dye – (TiO₂)₄₆ assemblies of [**S1**] – [**S3**] in acetonitrile phase(SMD).

t = 500 fs

Figure S30. Interfacial electron transfer (IET) dynamics in the dye – $(TiO_2)_{46}$ assemblies of [S1] – [S3].

Figure S31. Non-electron injecting dye-extended Hückel molecular orbitals of [S1] – (TiO₂)₄₆ assembly.

References:

- M. Schlosser and F. Cottet, Eur. J. Org. Chem., 2002, 2002, 4181-4184. 1.
- U. S. Schubert, C. Eschbaumer and M. Heller, Org. Lett., 2000, 2, 3373–3376. 2.
- J. Husson, J. Dehaudt and L. Guyard, Nat. Protoc., 2014, 9, 21-26. 3.
- E. C. Constable, N. Hostettler, C. E. Housecroft, P. Kopecky, M. Neuburger and J. A. Zampese, *Dalton Trans.*, 2012, 41, 2890–2897.
 C. Barolo, M. K. Nazeeruddin, S. Fantacci, D. Di Censo, P. Comte, P. Liska, G. Viscardi, P. Quagliotto, F. 4.
- 5. De Angelis and S. Ito, Inorg. chem., 2006, 45, 4642-4653.
- S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465. 6.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104. 7.

- 8. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, **12**, e1606.
- 9. F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
- 10. A. D. Becke, J. Chem. Phys., 1993, 98, 1372–1377.
- 11. C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785–789.
- 12. S. Kossmann and F. Neese, Chem. Phys. Lett., 2009, 481, 240–243.
- 13. A. D. Kulkarni and D. G. Truhlar, *J. Chem. Theor. Comput.*, 2011, **7**, 2325–2332.
- 14. M. Pastore, F. De Angelis and C. Angeli, *Theor. Chem. Acc.*, 2016, **135**, 108.
- 15. F. Perrella, X. Li, A. Petrone and N. Rega, *JACS Au*, 2022, **3**, 70–79.
- 16. F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.
- 17. Z.-F. Zhang and M.-D. Su, *RSC Adv.*, 2019, **9**, 2626–2640.
- 18. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B . 2009, **113**, 6378–6396.
- 19. M. P. Mitoraj, A. Michalak and T. Ziegler, J. Chem. Theory Comput., 2009, 5, 962–975.
- 20. M. P. Mitoraj, M. Parafiniuk, M. Srebro, M. Handzlik, A. Buczek and A. Michalak, *J. Mol. Model.*, 2011, **17**, 2337–2352.
- 21. G. Bistoni, S. Rampino, F. Tarantelli and L. Belpassi, J. Chem. Phys., 2015, 14, 1286–1296.
- 22. D. Sorbelli, P. Belanzoni and L. Belpassi, *Eur. J. Inorg. Chem.*, 2021, 2021, 2401–2416.
- 23. GitHub BERTHA-4c-DKS/pycubescd, can be found under <u>https://github.com/BERTHA-4c-DKS/pycubescd</u>).
- 24. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580–592.
- 25. D. R. Hamann, *Phys. Rev. B*, 2013, **88**, 085117.
- 26. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- 27. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953–17979.
- 28. D. N. Bowman, J. H. Blew, T. Tsuchiya and E. Jakubikova, *Inorg. Chem.*, 2013, **52**, 8621–8628.
- 29. D. N. Bowman, J. Chan and E. Jakubikova, in *Photoinduced Processes at Surfaces and in Nanomaterials*, American Chemical Society, 2015, vol. 1196, ch. 8, pp. 169–188.
- 30. E. Jakubikova, *Toward the Computational Design of Iron-Based Chromophores*, North Carolina State University Raleigh United States, 2018.
- 31. S. Mukherjee, D. N. Bowman and E. Jakubikova, *Inorg. Chem.*, 2015, **54**, 560–569.
- 32. S. Mukherjee, C. Liu and E. Jakubikova, *J. Phys. Chem. A*, 2018, **122**, 1821–1830.
- 33. C. R. Tichnell, J. N. Miller, C. Liu, S. Mukherjee, E. Jakubikova and J. K. McCusker, *J. Phys. Chem. C*, 2020, **124**, 1794–1811.
- 34. H. Lin, G. Fratesi, S. Selçuk, G. P. Brivio and A. Selloni, J. Phys. Chem. C, 2016, 120, 3899–3905.
- 35. E. Mosconi, A. Selloni and F. De Angelis, *J. Phys. Chem. C*, 2012, **116**, 5932–5940.
- 36. S.-H. Liu, H. Fu, Y.-M. Cheng, K.-L. Wu, S.-T. Ho, Y. Chi and P.-T. Chou, *J. Phys. Chem. C*, 2012, **116**, 16338–16345.
- 37. N. M. O'boyle, A. L. Tenderholt and K. M. Langner, J. Comput. Chem., 2008, 29, 839–845.
- 38. L. G. C. Rego and V. S. Batista, J. Am. Chem. Soc., 2003, **125**, 7989–7997.
- 39. G. Ramesh, R. K. P, M. Pillegowda, G. Periyasamy, P. A. Suchetan, R. J. Butcher, S. Foro and G. Nagaraju, *New Journal of Chemistry*, 2020, **44**, 11471-11489.
- 40. M. Abrahamsson, H. Wolpher, O. Johansson, J. Larsson, M. Kritikos, L. Eriksson, P.-O. Norrby, J. Bergquist, L. Sun, B. Åkermark and L. Hammarström, *Inorganic Chemistry*, 2005, **44**, 3215-3225.
- 41. Y.-Q. Fang, N. J. Taylor, F. Laverdière, G. S. Hanan, F. Loiseau, F. Nastasi, S. Campagna, H. Nierengarten, E. Leize-Wagner and A. Van Dorsselaer, *Inorg. Chem.*, 2007, **46**, 2854 2863.
- 42. J. M. Cole, K. S. Low and Y. Gong, ACS Applied Materials & Interfaces, 2015, 7, 27646-27653.
- 43. Y. Gao, X. Ding, J. Liu, L. Wang, Z. Lu, L. Li and L. Sun, J. Am. Chem. Soc., 2013, 135, 4219–4222.
- 44. M. R. Norris, J. J. Concepcion, D. P. Harrison, R. A. Binstead, D. L. Ashford, Z. Fang, J. L. Templeton and T. J. Meyer, *J. Am. Chem. Soc.*, 2013, **135**, 2080–2083.
- 45. S. Zhang, H. Ye, J. Hua and H. Tian, *J. Energy Chem.*, 2019, **1**, 100015.