Amino-ionic liquids assisted highly compatible mixed matrix membrane of ZIF-8 and PIM-1 for efficient CO₂/N₂ seperation

Zhaojie Wang,^a Xinle Sun,^a Qinglong Liu,^a Caifeng Xia,^a Qikang Yin,^b Siyuan Liu,^a

Xiaoqing Lu,^a Hongyu Chen,*^b

^aShandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China

^bCollege of Science, China University of Petroleum (East China), Qingdao 266580, P.

R. China

Corresponding Authors:

*E-mail: hychen1226@163.com

Keywords: PIM-1, AFIL, ZIF-8, Mixed matrix membrane, CO₂/N₂ separation

Figure S1. ¹H NMR spectrum of AFIL.

Figure S2. ¹H NMR spectrum of AFIL@ZIF-8.

Figure S3. ¹H NMR spectrum of PIM-1.

Figure S4. The molecular weight distribution curve of PIM-1 measured by GPC system.

Figure S5. XRD patterns of 5 wt.% AFIL@ZIF-8/PIM-1, 20 wt.% AFIL@ZIF-8/PIM-1, and 30 wt.% AFIL@ZIF-8/PIM-1.

Figure S6. XRD pattern of 10 wt.% AFIL@ZIF-8/PIM-1 after the gas separation experiments.

Figure S7. SEM image of 10 wt.% AFIL@ZIF-8/PIM-1 after the gas separation experiments.

 Membranes
 Tensile strength/MPa
 Elongation at break/%

 PIM-1
 33.43
 15.66

 10 wt.% ZIF-8/PIM-1
 44.49
 6.93

 10 wt.% AFIL@ZIF-8/PIM-1
 47.52
 6.86

Table S1. The mechanical properties of PIM-1, 10 wt.% ZIF-8/PIM-1, and 10 wt.%AFIL@ZIF-8/PIM-1.

Membranes	CO ₂ Permeability (Barrer)	N ₂ Permeability (Barrer)	CO ₂ /N ₂ selectivity
PIM-1	3988	218	18.22
10 wt.% ZIF-8/PIM-1 MMM	4597	220	20.82
5 wt.% AFIL@ZIF-8/PIM-1	5004	172	29.42
MMM			
10 wt.% AFIL@ZIF-8/PIM-1	7864	264	29.66
MMM			
20 wt.% AFIL@ZIF-8/PIM-1	4416	168	26.17
MMM			
30 wt.% AFIL@ZIF-8/PIM-1	4696	196	24.18
MMM			

 Table S2. The gas separation performance of MMMs with different packing loadings.

Table	S3 .	Comparison	of	gas	separation	performance	with	the	previously	reported
memb	ranes	S.								

Mambuana	Loading	Oper: condi	ation tions	P (CO)	α	Ref.	
wiembrane	(wt.%)	Т (°С)	P (bar)	[Barrer]	(CO ₂ / N ₂)		
ZIF-8/PPEES	30	30	1	50	24.5	S1	
ZIF-8/P[vbim][Tf ₂ N]	18.9	25	3.5	198.8	19.5	S2	
[emim][Tf ₂ N]/ZIF- 8/P[vbim][Tf ₂ N]	23.7	35		693.6	19.6		
[Emim][Ac]/ZIF-8/CS	10	50	2	5413	11.5	S3	
[Bmim][NTf ₂]ZIF- 8/Pebax1657	15	23	1	231.4	27.06	S4	
[Bmim][NTf ₂]@ZIF- 8/Pebax1657	15	25	1	104.9	83.9	S5	
[C ₃ NH ₂ bim][NTf ₂]@ MIL-101(Cr)- NH ₂ /PIM-1	5	25	3	2979	37	S6	
[Bmim]NTf ₂]@MOF- 801/PIM	5	34	4	9420	29	S7	
[Bmim]NTf ₂]@UiO- 66-NH ₂ /PIM-1	10	20	1	8283.4	22.5	S 8	
DnBMCl/ZIF- 8/Pebax1657	8	30	2	261	71	S9	
IL- NH ₂ @GO/Pebax1657	0.2	254	4	11836	71	S10	
ZIF-8/Matrimd	50	25	2.7	4.7	26.2	S11	
ZIF-8/6FDA-durene	30	25	6	2185	17	S12	
ZIF-8/ Pebax	35	25	6	1287	32.3	S13	
[C ₆ mim] [Tf ₂ N]/PIM- 1	10	30	0.5	800	30	S14	
PIM-1	~	30	0.5	7440	19	514	
PIM-1	~	25	1	4770	21.8	S15	

UiO-66/PIM-1	9.1	25	1	5940	13.2	
UiO-66-NH ₂ /PIM-1	9.1	25	1	4810	22.3	
UiO-66- (COOH) ₂ /PIM-1	9.1	25	1	4600	21	
ZIF-67/PIM-1	20	30	2	5206	23.7	S16
Mg-MOF-74/PIM-1	10	30	~	1935	16.4	
MIL-53/PIM-1	4	31	~	953	17	S17
TIFSIX-3/PIM-1	4	32	~	1000	19.2	
Zn ₂ (bim) ₄ /PIM-1	10	33	~	1900	19	
AFIL@ZIF-8/PIM-1	10	25	1	7864	29.66	This
AFIL@ZIF-8/PIM-1	10	25	2	6108	34.79	work

References

- K. Díaz, M. López-González, L. F. del Castillo and E. Riande, *J. Membr. Sci.*, 2011,
 383, 206-213.
- 2 L. Hao, P. Li, T. Yang and T. S. Chung, J. Membr. Sci., 2013, 436, 221-231.
- C. Casado-Coterillo, A. Fernández-Barquín, B. Zornoza, C. Téllez, J. Coronas and
 Á. Irabien, *RSC Adv.*, 2015, 5, 102350-102361.
- M. Li, X. Zhang, S. Zeng, L. bai, H. Gao, J. Deng, Q. Yang and S. Zhang, *RSC Adv.*, 2017, 7, 6422-6431.
- 5 H. Li, L. Tuo, K. Yang, H.-K. Jeong, Y. Dai, G. He and W. Zhao, *J. Membr. Sci.*, 2016, 511, 130-142.
- J. Ma, Y. Ying, X. Guo, H. Huang, D. Liu and C. Zhong, *J. Mater. Chem. A*, 2016,
 4, 7281-7288.
- 7 W. Chen, Z. Zhang, C. Yang, J. Liu, H. Shen, K. Yang and Z. Wang, *J. Membr. Sci.*, 2021, 636, 119581.
- 8 J. Lu, X. Zhang, L. Xu, G. Zhang, J. Zheng, Z. Tong, C. Shen and Q. Meng, Membranes, 2021, 11, 35.
- 9 A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi and A. Kargari, J. Membr. Sci., 2017, 524, 652-662.
- G. Huang, A. P. Isfahani, A. Muchtar, K. Sakurai, B. B. Shrestha, D. Qin, D. Yamaguchi, E. Sivaniah and B. Ghalei, *J. Membr. Sci.*, 2018, 565, 370-379.
- M. J. C. Ordoñez, K. J. Balkus, J. P. Ferraris and I. H. Musselman, *J. Membr. Sci.*, 2010, **361**, 28-37.

- 12 V. Nafisi and M.-B. Hägg, Sep. Purif. Technol., 2014, 128, 31-38.
- 13 V. Nafisi and M.-B. Hägg, J. Membr. Sci., 2014, 459, 244-255.
- 14 K. Halder, M. M. Khan, J. Grünauer, S. Shishatskiy, C. Abetz, V. Filiz and V. Abetz, J. Membr. Sci., 2017, 539, 368-382.
- M. R. Khdhayyer, E. Esposito, A. Fuoco, M. Monteleone, L. Giorno, J. C. Jansen,M. P. Attfield and P. M. Budd, *Sep. Purif. Technol.*, 2017, **173**, 304-313.
- 16 X. Wu, W. Liu, H. Wu, X. Zong, L. Yang, Y. Wu, Y. Ren, C. Shi, S. Wang and Z. Jiang, J. Membr. Sci., 2018, 548, 309-318.
- E. Aliyev, J. Warfsmann, B. Tokay, S. Shishatskiy, Y. J. Lee, J. Lillepaerg, N. R.Champness and V. Filiz, ACS Sustainable Chem. Eng., 2020, 9, 684-694.