Supporting Information

Circularly polarized narrowband phosphorescent organic lightemitting diodes

Shaohua Wu^{a, b#}, Ping Chen^{b, #}, Xiaoyang Xia^{c, #}, Wenya Wang^a, Qifei Xie^b, Yanyu Qi^{a, *},

Huabo Han ^{d,} *, Liang Zhou ^{c,} *, and Guangzhao Lu ^{b,} *

^a Hebei Key Laboratory of Organic Functional Molecules, Hebei Engineering Research Center of Thin Film Solar Cell Materials and Devices, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.

^b Shenzhen Institute of Information Technology, Shenzhen 518172, China.

^c State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

^d Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and

Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.

[#] These authors contributed equally to this work.

Corresponding Authors

Yanyu Qi, Email: hbsdqyy@hebtu.edu.cn

Huabo Han, Email: 1412272575@qq.com

Liang Zhou, Email: zhoul@ciac.ac.cn

Guangzhao Lu, Email: lugz@sziit.edu.cn

1. General information

1.1 Materials and Measurements

All reagents and chemicals were purchased from commercial sources and used without further purification. ¹H NMR spectra were recorded by Bruker JEOL JNM-ECZ400S/L1 (400 MHz) spectrometers using DMSO-d6 as solvent and tetramethylsilane (TMS) as the internal standards. High resolution mass spectra (HRMS) were measured by Bruker MTQ III q-TOF

mass spectrometer. Thermo gravimetric analyses (TGA) were performed on a TGA2 (METTLER, Switzerland) instrument under nitrogen with a heating rate of 20 °C min⁻¹. Decomposition temperature (T_d , corresponding to 5% weight loss) of 374.6 °C was observed for Δ/Λ -(mpincz)₂Ir(*R*-camphor) phosphors. Absorption and photoluminescence spectra were measured on a UV-3100 spectrophotometer and a Hitachi F-7100 (HITACHI, Japan) photoluminescence spectrophotometer, respectively. The decay lifetimes and PLQY were measured with an Edinburgh Instruments FLS-1000 (England, Edinburgh) fluorescence spectrometer at room temperature. The absolute PLQYs were measured on a Quantaurus-QY measurement system equipped with a calibrated integrating sphere and all the samples were excited at 360 nm. The circular dichroism (CD) spectra were measured on a Jasco J-810 circular dichroism spectrometer with 'Low' sensitivity. The scan speed was set as 200 nm/min with 1 nm resolution and a respond time of 1.0 s. The circularly polarized photoluminescence (CPPL) spectra were measured on a Jasco CPL-300 spectrophotometer with 'Standard' sensitivity at 200 nm/min scan speed and respond time of 2.0 s employing "slit" mode.

1.2 X-ray Crystallography

The single crystal of the Δ -(mpincz)₂Ir(*R*-camphor) is obtained from slow evaporation of methanol/CH₂Cl₂ solution at room temperature. And the X-ray-diffraction data were carried out on a Bruker APEX2 SMART CCD diffractometer using monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at room temperature. Cell parameters were retrieved using SMART software and refined using SAINT on all observed reflections. Data were collected using a narrow-frame method with scan widths of 0.30° in ω and an exposure time of 10 s/frame. Crystal structures were solved by direct methods using the SHELXL-2018/3 software. Nonehydrogen atoms were refined anisotropically by full-matrix least-squares calculations on F^2 using SHELXL-2018/3, while the hydrogen atoms were directly introduced at calculated position and refined in the riding mode.

1.3 Details of theoretical calculations and cyclic voltammetry measurements

Cyclic voltammograms (CV) were acquired in dichloromethane at room temperature with a CHI600e electrochemical analyzer (Chenhua, China) at 25 °C and a sweep speed of 100 mV s $^{-1}$. Tetrabutylammonium hexafluorophosphate (0.1 M) was applied as the supporting electrolyte. The conventional three-electrode configuration consisted of a platinum working electrode, a platinum wire auxiliary electrode and an Ag/Ag⁺ reference electrode with

ferroceniumferrocene (Fc⁺/Fc) as the internal standard. The HOMO energy levels of the compounds were calculated according to the formula: E_{HOMO} (eV) = - [4.8 + ($E_{1/2(\text{ox/red})}$ - $E_{1/2(\text{Fc+/Fc})}$)] eV. The LUMO energy levels of the compounds were then deduced from the HOMO levels and the UV-Vis absorption on-sets of the longer wavelength.

We perform theoretical calculations employing Gaussian09 software with B3LYP function. The basis set of 6-31G(d, p) was used for C, H, N, O, and F atoms while the LanL2DZ basis set was employed for Ir atoms. The solvent effect of CH_2Cl_2 was taken into consideration using conductor like polarizable continuum model (C-PCM).

1.4 OLEDs fabrication and measurement

All the devices were grown on glass substrates pre-coated with a 180 nm thick layer of indium tin oxide (ITO) with a sheet resistance of 10 Ω per square. Before loading into the deposition system, the ITO substrates were pre-cleaned carefully and the surface was treated by oxygen plasma for 15 minutes. After UV ozone treatment, hole-injection material HATCN (6 nm) was firstly thermally deposited on, followed by the hole-transporting material HATCN (0.2%): TAPC (50 nm), emissive layer1 (the phosphors doped in the host TCTA, 10 nm), emissive layer2 (the phosphors doped in the host 26DCzPPy, 10 nm) and electrontransporting material Tm3PyP26PyB (60 nm). Finally, a cathode composed of lithium fluoride (LiF, 1 nm)/aluminum (Al, 100 nm) were sequentially deposited onto the substrate in the vacuum of 10⁻⁶ Pa. The current density-voltage-luminance (J-V-L) characteristics were measured using a Keithey 2400 Source meter and a Keithey 2000 Source multimeter equipped with a calibrated silicon photodiode. The EL spectra were measured by JY SPEX CCD3000 spectrometer. All measurements were carried out at room temperature under ambient conditions. The circularly polarized electroluminescence (CPEL) spectra were measured on a Jasco CPL-300 spectrophotometer with 'Standard' sensitivity at 200 nm/min scan speed and respond time of 2.0 s employing "slit" mode.

2. Experimental Section.

2.1 Synthetic routes for Δ/Λ -(mpincz)₂Ir(*R*-camphor).

2.1.1 Synthesis of main ligand 2-(6-methylpyridazin-3-yl)indolo[3,2,1-jk]carbazole.

A mixture of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indolo[3,2,1-jk]carbazole (1.2eq, 2g) and 3-chloro-6-methylpyridazine (1eq, 0.58g) in mixed solution of THF and 4M K₂CO₃ (2:1, v/v) was degassed before Pd(PPh₃)₄ (0.02eq, 0.125g) was added. And the mixture was refluxed under Ar for one day. After the reaction was finished, the organic layer was separated, washed with water, dried with Na₂SO₄, filtered and moved out with rotary evaporator. The residue was chromatographically purified on silica gel column with DCM/EA (5: 1, v/v) to give 2-(6-methylpyridazin-3-yl)indolo[3,2,1-jk]carbazole as a white solid (Yield : 85%). Mass (HRMS): m/z, calcd. for C₂₃H₁₆N₃⁺: 334.1344; found: 334.1348.

2.1.2 Synthesis of chiral iridium(III) complexes Δ/Λ -(mpincz)₂Ir(*R*-camphor).

The IrCl₃ (0.26 g, 0.75 mmol) and 2.4 equivalent of cyclometalated ligand (0.6 g, 1.80 mmol) were added in a 2-ethoxyethanol and water mixture. Then, the solution was heated for 16 h at 110 °C. After the addition of water, precipitated yellow powder of $[(C^N)_2 Ir(\mu-Cl)]_2$ chloridebridged dimmer was filtered and reacted with *R*-camphor for 12 h at 110 °C. The solution was concentrated and the resulting residue was purified by silica gel column chromatography CH₂Cl₂ and vacuum sublimation gave yellow power. (Yield : 60%). The isomers Δ/Λ -(mpincz)₂Ir(*R*-camphor) are separated into Δ -(mpincz)₂Ir(*R*-camphor) and Λ -(mpincz)₂Ir(*R*-camphor) by chiral column chromatography, respectively.

 Δ -(mpincz)₂Ir(*R*-camphor): ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.08 (s, 1H), 9.05 (s, 1H), 8.97 (dd, *J* = 9.1, 3.6 Hz, 2H), 8.21 (dd, *J* = 7.7, 3.2 Hz, 2H), 8.13 (d, *J* = 8.4 Hz, 2H), 8.01 (d, *J* = 8.0 Hz, 2H), 7.96 (d, *J* = 7.7 Hz, 2H), 7.51 (t, *J* = 7.9 Hz, 2H), 7.39 (dt, *J* = 7.9, 3.8 Hz, 2H), 7.23 (d, *J* = 7.7 Hz, 2H), 6.65 (td, *J* = 7.9, 4.2 Hz, 2H), 6.26 (dd, *J* = 13.1, 8.1 Hz, 2H), 2.41 (s, 3H), 2.35 (s, 3H), 1.49 (s,

1H), 1.31 (d, J = 15.0 Hz, 4H), 0.74 (s, 3H), 0.50 (s, 3H), 0.35 (s, 3H). Mass (HRMS): m/z, calcd. for $C_{58}H_{43}F_3IrN_6O_2^+$: 1105.3029; found: 1105.3035.

Λ-(mpincz)₂Ir(*R*-camphor): ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.08 (s, 1H), 9.05 (s, 1H), 8.97 (dd, J = 9.1, 3.6 Hz, 2H), 8.21 (dd, J = 7.7, 3.2 Hz, 2H), 8.13 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 8.0 Hz, 2H), 7.96 (d, J = 7.7 Hz, 2H), 7.51 (t, J = 7.9 Hz, 2H), 7.41 - 7.36 (m, 2H), 7.24 (t, J = 7.8 Hz, 2H), 6.66 (td, J = 7.4, 3.7 Hz, 2H), 6.26 (dd, J = 13.1, 8.1 Hz, 2H), 2.41 (s, 3H), 2.35 (s, 3H), 1.49 (s, 1H), 1.31 (d, J = 15.0 Hz, 4H), 0.74 (s, 3H), 0.50 (s, 3H), 0.35 (s, 3H). Mass (HRMS): m/z, calcd. for C₅₈H₄₃F₃IrN₆O₂⁺: 1105.3029; found: 1105.3027.

Figures and Tables

Fig. S1 The chiral HPLC profile of Δ/Λ -(mpincz)₂Ir(*R*-camphor).

Fig. S2 The chiral HPLC profile of Δ -(mpincz)₂Ir(*R*-camphor).

Fig. S3 The chiral HPLC profile of Λ -(mpincz)₂Ir(*R*-camphor).

Fig. S4 The HR-MS spectrum of 2-(6-methylpyridazin-3-yl)indolo[3,2,1-jk]carbazole.

Fig. S5 The ¹H NMR spectrum in DMSO-d6: (a) for Δ -(mpincz)₂Ir(*R*-camphor); (b) for Λ -(mpincz)₂Ir(*R*-camphor).

Fig. S6 The HR-MS spectrum of Δ -(mpincz)₂Ir(*R*-camphor).

Fig. S7 The HR-MS spectrum of Λ -(mpincz)₂Ir(*R*-camphor).

Fig. S8 The crystal structure of Δ -(mpincz)₂Ir(*R*-camphor).

Fig. S9 The photoluminescence spectra of Δ/Λ -(mpincz)₂Ir(*R*-camphor) recorded in solvents of distinctive polarity.

Fig. S10 Thermal gravimetric analysis (TGA) curves of Δ/Λ -(mpincz)₂Ir(*R*-camphor).

Fig. S11 The lifetime curves of chiral iridium complexes in degassed toluene solution.

Fig. S12 The lifetime curves of chiral iridium complexes in 6 wt% TCTA doped films by evaporation.

Fig. S13 The PLQYs of the isomers in 6 wt% TCTA doped films by evaporation: (a) for Δ -(mpincz)₂Ir(*R*-camphor); (b) for Λ -(mpincz)₂Ir(*R*-camphor).

Fig. S14 The isodensity surface plots and HOMO/LUMO orbital levels of Δ/Λ -(mpincz)₂Ir(*R*-camphor).

Fig. S15 The cyclic voltammograms of complex Δ/Λ -(mpincz)₂Ir(*R*-camphor).

Fig. S16 The CPEL plots of three different testing points of devices D1 and D2, which were measured at different voltages of 7 V, 8 V, and 9V, respectively.

Fig. S17 The EQE - luminance curves based on Δ/Λ -(mpincz)₂Ir(*R*-camphor) with different doping concentrations: (a) for Δ -(mpincz)₂Ir(*R*-camphor); (b) for Λ -(mpincz)₂Ir(*R*-camphor).

Table. S1 Crystal data and structure refinement for Δ -(mpincz) ₂ Ir(<i>R</i> -camphor).				
Identification code	Δ -(mpincz) ₂ Ir(<i>R</i> -camphor)			
Empirical formula	$C_{61}H_{48}Cl_6F_3IrN_6O_2$			
Formula weight	1358.95			
Temperature/K	223.00			
Crystal system	monoclinic			
Space group	P2 ₁			
a/Å	17.2107(5)			
b/Å	17.8095(4)			
c/Å	18.4348(3)			
$\alpha/^{\circ}$	90			
β/°	92.706(2)			
$\gamma^{/\circ}$	90			
Volume/Å ³	5644.2(2)			
Z	4			
$\rho_{calc}g/cm^3$	1.599			
μ/mm ⁻¹	7.689			
F(000)	2712.0			
Crystal size/mm ³	0.15 imes 0.13 imes 0.12			
Radiation	Cu Ka ($\lambda = 1.54178$)			
2Θ range for data collection/°	4.798 to 138.13			
Index ranges	$-20 \le h \le 20, -17 \le k \le 21, -17 \le l \le 22$			
Reflections collected	35867			
Independent reflections	16919 [$R_{int} = 0.0443$, $R_{sigma} = 0.0598$]			
Data/restraints/parameters	16919/155/1488			
Goodness-of-fit on F ²	1.049			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0365, wR_2 = 0.0865$			
Final R indexes [all data]	$R_1 = 0.0413, wR_2 = 0.0901$			
Largest diff. peak/hole / e Å ⁻³	0.74/-0.97			

Flack parameter

Complex	Orbital	Energy/eV (Calculated)	Energy/eV (Experiment)	Composition (%)		
				Main	Ir	Ancillary
				ligand		Ligand
Δ/Λ -	НОМО	-5.64	-5.56	70.3	26.8	2.7
(mpincz) ₂ ir(<i>R</i> -	LUMO	-1.99	-3.18	94.2	4.2	1.6

Table. S2 The electronic cloud density distribution.