Electronic Supplementary Information

for

A chiral Si(IV) complex bearing a 1,2,4-triazole-2,2'diphenol ligand: synthesis, (chiro-)optical properties and computational investigation

Valerio Giuso,†^a Thibault Thierry,†^a Christophe Gourlaouen,^b Pierluigi Mercandelli,^c Nicolas Vanthuyne,^d Matteo Mauro^{*a} and Stéphane Bellemin-Laponnaz^{*a}

^a Université de Strasbourg & CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504, F-67034 Strasbourg, France

^b Laboratoire de Modélisation et Simulation Moléculaire, UMR7140 Chimie de la Matière Complexe, Institut Le Bel, F-67081 Strasbourg, France

^c Università degli Studi di Milano, Dipartimento di Chimica, 20133 Milan, Italy.

^d Aix-Marseille Université, CNRS Centrale Marseille, iSm2, 13284 Marseille, France

* Corresponding authors Email of corresponding authors: Stéphane Bellemin-Laponnaz: <u>bellemin@unistra.fr</u> Matteo Mauro: <u>mauro@unistra.fr</u> †T.T. and V.G. have equally contributed to this work.

Contents

Supplementary NMR Spectra	3
Supplementary figures and tables	6

Table S 1 - Photophysical properties of $Si(ONO)_2$ and $(ONO)H_2$ in dilute air-equilibrated	
organic solvents (2.0×10^{-5} M) at room temperature. Radiative and non-radiative rate	
constants were determined with the equations $kr = PLQY/\tau$ and $knr = (1 - PLQY)/\tau$	
respectively. sh denotes a shoulder. br denotes a broad signal	10
Table S 2 - Optical rotation values obtained for the two Si(ONO) ₂ enantiomers	10
Table S 3 - Experimental electronic circular dichroism data of the two Si(O ¹ NO ²) ₂	
enantiomers in dilute CH ₃ CN (2×10 ⁻⁴ M).	11
Table S 4 - Computed electronic transition for the (ONO)H ₂ ligand	13
Table S 5 - Computed electronic transition for the GS _a and GS _b structures of Si(ONO) ₂	
complex.	15
Table S 6 - Computed electronic transition for the GS_{i1} and GS_{i2} structures of Si(ONO) ₂	
complex.	16
Table S 7 - Computed electronic transition for Delta GS _a and Delta GS _b structures of	
Si(ONO) ₂ complex	17
Table S 8 - Computed electronic transition for Delta GS _{i1} and Delta GS _{i2} structures of	
Si(ONO) ₂ complex.	18

Figure S 1 - ¹ H NMR spectrum of Si(ONO) ₂ in CDCl ₂ 3
Figure S 2 - ${}^{13}C{}^{1}H$ NMR spectrum of Si(ONO) ₂ in CDCl ₂
Figure S 3 - ²⁹ Si NMR spectrum of Si(ONO) ₂ in CDCl ₂
Figure S4. ¹ H- ¹ H COSY NMR spectrum of Si(ONO) ₂ in CDCl ₂
Figure S5. ¹ H- ¹³ C HSQC NMR spectrum of Si(ONO) ₂ in CDCl ₂
Figure S6. ¹ H- ¹³ C HMBC NMR spectrum of Si(ONO) ₂ in CDCl ₂
Figure S 7 - Stereochemistry assignment of Λ and Λ enantiomers, where the atoms of the A-
B-C style O^N^O tridentate ligand are numbered 1 to 3 according to Cahn-Ingold-Prelog
(CIP) rules
Figure S 8 - Crystal structure and TGA/DSC analysis for Si(ONO), HPI C purified and
recrystallized TGA Q50 from TA instruments (5°C/min_air) (top) POM [•] Weight loss from
degradation becomes significant above ca. 300° C 5% weight loss temperature T _{eV} = 366°C
The slight weight loss below 170°C is related to the release of a small volatile fraction DSC
Q1000 from TA instruments (5°C/min endotherm up) cycle 1 (bottom left) and cycle 2
(bottom right) Si(ONO) is an amorphous solid that crystallizes on first heating at 230-240°C.
No melting is observed on POM until 300°C. No phase change occurs on cooling and second
heating 7
Figure S 9 - UV-vis absorption and photoluminescence emission in dilute solvents of
increasing polarity $(2 \times 10^{-5} \text{ M})$ for Si(ONO) ₂ . Colour code: toluene (vellow). THF (pink).
$CH_{2}CI_{2}$ (black), $CH_{2}CN$ (blue), MeOH (green), Emission spectra were recorded upon
excitation at $\lambda_{\text{ave}} = 320 \text{ nm}$
Figure S 10 - <i>Top</i> : experimental electronic circular dichroism spectra of Λ -Si(O ¹ NO ²) ₂ (first
eluted blue trace) and Δ -Si(O ¹ NO ²), (second eluted red trace) in dilute CH ₂ CN at
concentration of 2×10^{-4} M <i>Bottom</i> : experimental UV-vis electronic absorption spectra of rac -
Si $(O^1NO^2)_0$ in dilute CH ₂ CN at concentration of 2×10 ⁻⁵ M
Figure S 11 - Electronic circular dichroism spectra in dilute $CH_{0}Cl_{0}$ (2×10 ⁻⁴ M) of the first
eluted (blue trace) second eluted (red trace) and second diluted best-treated (black dashed
trace) enantiomer
Figure S 12 - Circularly polarized luminescence spectra (top) and photoluminescence
emission (bottom) of Λ -Si($\Omega^1 N \Omega^2$), (first eluted, blue trace) and Λ -Si($\Omega^1 N \Omega^2$), (second eluted
red trace) in dilute $CH_2CL_2(1\times10^{-5} \text{ M})$ Emission spectra were recorded upon excitation at
$\lambda = 325 \text{ pm}$ with 9 accumulations. The two enantiomers of Si(ONO) , show pedicible
$\Lambda_{exc} = 525$ mm, with 9 accumulations. The two enantiomers of Sil(ONO) ₂ show negligible (CPL et) = 400.450 pm with a local part higher than 5×10^{-4}
Figure S 12 Computed interconversion path for the Si(ONO) complex. Cibbs free operation
rigure 5 15 - Computed Interconversion path for the Si(ONO) ₂ complex. Globs free energies
Figure S 44 Electronic density difference mana (EDDMa) computed for S S (left) S S
Figure 5 14 - Electronic density difference maps (EDDMs) computed for $S_0 \rightarrow S_1$ (left), $S_0 \rightarrow S_2$ (contex), and $S_1 \rightarrow S_2$ (right) at Erappic Conden geometry for (ONO) . Ligand, Electronically
(center), and $S_0 \rightarrow S_3$ (light) at Franck–Condon geometry for (ONO) Π_2 light. Electronically
Figure S 45. Computed ECD encotre of the different conformers of Si(ONO), complex. The
Figure 5 15 - Computed ECD spectra of the different comomers of $Si(ONO)_2$ complex. The
configuration of GO _a is $\Lambda(\Lambda,\Lambda)$ (black), GO _{i1} is $\Lambda(\Lambda,0)$ (red), GO _{i2} is $\Lambda(0,\Lambda)$ (green) and GO _b is
14 Figure S 46 Computed ECD expectes of the different exertisment of the conference of
Figure 5 to - Computed ECD spectra of the uniferent enantiomers of the conformers of S (CNO) complex. The configuration of CS is $A(\overline{S}, \overline{S})$ (values), CS is $A(\overline{S}, \overline{S})$ (teal), CS is
Sigma Up 2 complex. The configuration of GS_a is $\Delta(0,0)$ (yellow), GS_{i1} is $\Delta(0,\Lambda)$ (teal), GS_{i2} is $\Delta(1, \Sigma)$ (deals mean) and OO is $\Delta(1, \Sigma)$ (herein).
$\Delta(\Lambda, o)$ (dark green) and GS_b is $\Delta(\Lambda, \Lambda)$ (brown)14

Figure S 1 - ¹H NMR spectrum of Si(ONO)₂ in CDCl₃.

Figure S 2 - ¹³C{¹H} NMR spectrum of Si(ONO)₂ in CDCl₃.

Figure S 3 - ²⁹Si NMR spectrum of Si(ONO)₂ in CDCl₃.

Figure S4. ¹H-¹H COSY NMR spectrum of Si(ONO)₂ in CDCl₃

Figure S5. ¹H-¹³C HSQC NMR spectrum of Si(ONO)₂ in CDCl₃

Figure S6. ¹H-¹³C HMBC NMR spectrum of Si(ONO)₂ in CDCl₃

Supplementary figures and tables

Figure S 7 - Stereochemistry assignment of Δ and Λ enantiomers, where the atoms of the A-B-C style O^N^O tridentate ligand are numbered 1 to 3 according to Cahn-Ingold-Prelog (CIP) rules.

Figure S 8 - Crystal structure and TGA/DSC analysis for **Si(ONO)**₂, HPLC purified and recrystallized. TGA Q50 from TA instruments (5°C/min, air) (top). POM: Weight loss from degradation becomes significant above ca. 300°C. 5% weight loss temperature $T_{5\%}$ = 366°C. The slight weight loss below 170°C is related to the release of a small volatile fraction. DSC Q1000 from TA instruments (5°C/min endotherm up), cycle 1 (center) and cycle 2 (bottom). **Si(ONO)**₂ is an amorphous solid that crystallizes on first heating at 230-240°C. No melting is observed on POM until 300°C. No phase change occurs on cooling and second heating.

Analytical chiral HPLC separation

The sample is dissolved in a mixture of ethanol, CH_2CI_2 and heptane, injected on a Chiralpak IB N-5 chiral column, and detected with an UV detector at 290 nm and a circular dichroism detector at 254 nm. The flow-rate is 1 mL/min.

RT [min]	Area	Area%	Capacity Factor	Enantioselectivity	Resolution (USP)
3.67	2091	50.48	0.24		
5.15	2051	49.52	0.75	3.07	7.03
Sum	4142	100.00			

Preparative separation

Sample preparation: About 74 mg of compound Si(ONO)₂ are dissolved in 3 mL of a mixture of CH_2Cl_2 and hexane (50/50).

Chromatographic conditions: Chiralpak IB N-5 (250 x 10 mm), hexane / ethanol / CH_2CI_2 (60/20/20) as mobile phase, flow-rate = 5 mL/min, UV detection at 290 nm.

Injections: 35 times 90 µL, every 5.4 minutes.

First fraction: 32 mg of the first eluted enantiomer with ee >99.5%

Second fraction: 32 mg of the second eluted enantiomer with ee >99.5 %

Intermediate: 6 mg of racemate

Photophysical and chiroptical studies

Figure S 9 - UV-vis absorption and photoluminescence emission in dilute solvents of increasing polarity (2×10⁻⁵ M) for Si(ONO)₂. Colour code: toluene (yellow), THF (pink), CH₂Cl₂ (black), CH₃CN (blue), MeOH (green). Emission spectra were recorded upon excitation at λ_{exc} = 320 nm.

Table S 1 - Photophysical properties of Si(ONO) ₂ and (ONO)H ₂ in dilute air-equilibrated organic solvents (2.0×10)-
⁵ M) at room temperature. Radiative and non-radiative rate constants were determined with the equations	
$k_r = PLQY/\tau$ and $k_{nr} = (1 - PLQY)/\tau$ respectively. sh denotes a shoulder. br denotes a broad signal.	

compound	solvent	λ _{max} (ε) [nm, (10 ³ M ⁻¹ cm ⁻¹)]	λ _{em} [nm]	PLQY (%)	T _{obs} [ns]	τ _{obs} [ns]	<i>k</i> r [10 ⁸ s⁻¹]	<i>k</i> _{nr} [10 ⁸ s ⁻¹]
(ONO)H ₂	CH ₂ Cl ₂	298 <i>sh</i> (12.81), 308 (14.60)	519	1	2.49 (65%) 11.3 (35%)	8.76	0.01	1.13
	Toluene	325 (23.72) 348 (15.36)	410	21	3.30	-	0.64	2.39
	THF	242 <i>sh</i> (44.78) 324 (23.09) 349 <i>sh</i> (13.86)	414	9	2.74	-	0.33	3.32
Si(ONO) ₂	CH_2CI_2	322 (21.53) 345 <i>sh</i> (13.61)	414	12	3.26	-	0.37	2.70
	CH₃CN	239sh (45.87) 322 (22.85) 346sh (12.75)	417	2	2.18 (13%) 0.77 (87%)	1.19	0.17	8.25
	МеОН	238 <i>sh</i> (42.81) 251 <i>sh</i> (33.55) 317 (21.27)	413	2	1.44 (29%) 0.87 (69%)	1.10	0.18	8.91

Table S 2 - Optical rotation values obtained for the two Si(ONO)₂ enantiomers.

	∧-Si(ONO)₂	∆-Si(ONO) ₂				
λ (nm)	[α] _λ ²⁵	[α] _λ 25				
. ,	(1.6 g/mL in CH ₂ Cl ₂)	(1.6 g/mL in CH ₂ Cl ₂)				
589	+ 5	- 5				
578	+ 5	- 5				
546	+ 6	- 6				
436	+ 8	- 8				
405	+ 17	- 17				

Figure S 10 - *Top*: experimental electronic circular dichroism spectra of Λ -Si(O¹NO²)₂ (first eluted, blue trace) and Δ -Si(O¹NO²)₂ (second eluted, red trace) in dilute CH₃CN at concentration of 2×10⁻⁴ M. *Bottom*: experimental UV-vis electronic absorption spectra of *rac*-Si(O¹NO²)₂ in dilute CH₃CN at concentration of 2×10⁻⁵ M.

Figure S 11 - Electronic circular dichroism spectra in dilute CH_2Cl_2 (2×10^{-4} M) of the first eluted (blue trace), second eluted (red trace) and second diluted heat-treated (black dashed trace) enantiomer.

Electronic Supplementary Information for A chiral Si(IV) complex bearing a 1,2,4-triazole-2,2'-diphenol ligand: synthesis, (chiro-)optical properties and computational investigation

Figure S 12 - Circularly polarized luminescence spectra (*top*) and photoluminescence emission (*bottom*) of **A**-Si(O¹NO²)₂ (first eluted, blue trace) and **Δ**-Si(O¹NO²)₂ (second eluted, red trace) in dilute CH₂Cl₂ (1×10⁻⁵ M). Emission spectra were recorded upon excitation at λ_{exc} = 325 nm, with 9 accumulations. The two enantiomers of Si(ONO)₂ show negligible CPL at λ_{em} = 400-450 nm with a Ig_{lum}I not higher than 5×10⁻⁴.

Figure S 13 - Computed interconversion path for the $Si(ONO)_2$ complex. Gibbs free energies are given in kcal mol⁻¹.

Figure S 14 - Electronic density difference maps (EDDMs) computed for $S_0 \rightarrow S_1$ (left), $S_0 \rightarrow S_2$ (center), and $S_0 \rightarrow S_3$ (right) at Franck–Condon geometry for **(ONO)H**₂ ligand. Electronically enriched and depleted areas are colored in green and red, respectively.

State	E _{abs} (eV)	λ _{abs} (nm)	f _{osc} −
S1	4.003	310	1.87E-01
S2	4.169	297	1.29E-01
S3	4.337	286	3.02E-01
S4	4.558	272	3.24E-02
S5	4.626	268	1.70E-03
S6	4.654	266	1.68E-02
S7	4.779	259	1.48E-02
S8	4.931	251	8.96E-02
S9	4.965	250	3.40E-01
S10	4.997	248	1.05E-01
S11	5.079	244	4.10E-03
S12	5.096	243	4.50E-03
S13	5.167	240	5.76E-02
S14	5.278	235	1.18E-02
S15	5.355	232	2.54E-02
S16	5.421	229	2.72E-02
S17	5.492	226	1.57E-02
S18	5.523	224	7.15E-02
S19	5.573	222	7.00E-03
S20	5.614	221	1.24E-01

Table S 4 - Computed electronic transition for the $(ONO)H_2$ ligand.

Figure S 15 - Computed ECD spectra of the different conformers of Si(ONO)₂ complex. The configuration of GS_a is $\Lambda(\lambda,\lambda)$ (black), GS_{i1} is $\Lambda(\lambda,\delta)$ (red), GS_{i2} is $\Lambda(\delta,\lambda)$ (green) and GS_b is $\Lambda(\delta,\delta)$ (blue).

Figure S 16 - Computed ECD spectra of the different enantiomers of the conformers of **Si(ONO)**₂ complex. The configuration of GS_a is $\Delta(\delta, \delta)$ (yellow), GS_{i1} is $\Delta(\delta, \lambda)$ (teal), GS_{i2} is $\Delta(\lambda, \delta)$ (dark green) and GS_b is $\Delta(\lambda, \lambda)$ (brown).

	GS _a Λ(λ,λ)				GS _b Λ(δ,δ)				
State	E _{abs} (eV)	λ _{abs} (nm)	f _{osc}	R		E _{abs} (eV)	λ _{abs} (nm)	f _{osc}	R
S1	3.429	362	2.06E-01	108.2		3.447	360	2.05E-01	-0.7
S2	3.530	351	6.50E-03	-136.0		3.544	350	2.01E-02	-79.9
S3	3.718	333	3.00E-04	-13.1		3.713	334	1.36E-02	203.9
S4	3.841	323	3.28E-02	-323.3		3.839	323	1.00E-03	8.3
S5	3.854	322	7.70E-03	37.2		3.873	320	1.45E-01	-267.1
S6	3.901	318	1.41E-01	407.5		3.891	319	1.36E-01	218.8
S7	3.953	314	1.35E-02	-114.5		3.943	314	3.38E-02	-145.8
S8	3.970	312	2.36E-01	140.9		3.951	314	6.87E-02	-13.3
S9	4.051	306	7.13E-02	20.3		3.995	310	1.00E-04	0.9
S10	4.128	300	1.25E-02	-74.4		4.114	301	8.07E-02	42.9
S11	4.265	291	1.17E-02	-83.0		4.289	289	2.64E-02	3.5
S12	4.275	290	1.30E-01	169.1		4.291	289	1.66E-01	-260.5
S13	4.327	287	7.28E-02	-30.1		4.324	287	3.87E-02	127.1
S14	4.364	284	1.00E-04	0.3		4.353	285	3.40E-03	2.4
S15	4.382	283	1.26E-01	126.8		4.356	285	1.10E-01	124.5
S16	4.388	283	5.62E-02	-239.0		4.365	284	2.90E-03	-2.7
S17	4.406	281	3.66E-02	37.5		4.407	281	4.14E-02	19.8
S18	4.455	278	3.00E-03	-11.8		4.445	279	2.31E-02	47.3
S19	4.480	277	1.90E-03	-12.0		4.495	276	3.36E-02	-23.9
S20	4.493	276	3.48E-02	24.2		4.500	276	9.24E-02	-85.7
S21	4.514	275	1.30E-03	-3.0		4.514	275	1.60E-03	-4.6
S22	4.532	274	4.49E-02	32.3		4.560	272	4.83E-02	-11.9
S23	4.541	273	1.30E-03	-2.9		4.588	270	3.50E-03	6.7
S24	4.592	270	2.59E-02	-29.4		4.607	269	4.70E-03	13.5
S25	4.723	263	3.00E-03	2.4		4.740	262	6.00E-04	-0.2
S26	4.724	262	6.10E-03	4.1		4.743	261	2.00E-03	-2.0
S27	4.783	259	2.80E-03	-11.5		4.782	259	4.10E-03	4.2
S28	4.793	259	6.40E-03	1.6		4.784	259	2.00E-04	0.6
S29	4.812	258	1.00E-04	0.4		4.806	258	3.85E-02	143.9
S30	4.830	257	4.29E-02	49.8		4.830	257	1.11E-01	15.8
S31	4.832	257	3.42E-02	-118.4		4.840	256	6.33E-02	70.0
S32	4.842	256	1.82E-01	22.3		4.856	255	8.62E-02	-22.0
S33	4.887	254	3.19E-02	-130.9		4.861	255	2.15E-02	17.8
S34	4.894	253	2.36E-01	191.1		4.871	255	3.58E-02	-69.5
S35	4.905	253	1.60E-03	-0.7		4.907	253	3.15E-02	25.5
S36	4.914	252	1.61E-02	-0.8		4.916	252	1.35E-01	-158.4
S37	4.974	249	2.13E-02	4.2		4.960	250	3.00E-04	2.9
S38	4.989	249	4.00E-04	-4.5		4.974	249	2.19E-02	-9.8
S39	4.997	248	1.80E-03	-16.8		4.987	249	7.90E-03	25.8
S40	5.006	248	1.70E-03	-1.5		5.000	248	9.00E-03	20.5
S41	5.007	248	1.00E-02	-5.1		5.004	248	1.30E-03	6.1
S42	5.010	247	1.90E-03	-2.7		5.008	248	3.60E-03	-11.0
S43	5.018	247	7.74E-02	9.7		5.010	247	1.00E-04	-0.9
S44	5.034	246	3.50E-03	-27.5		5.021	247	6.50E-03	12.4
S45	5.041	246	7.40E-03	21.1		5.027	247	7.00E-02	-49.1
S46	5.075	244	1.93E-02	24.5		5.045	246	3.69E-02	39.9
S47	5.085	244	6.00E-04	-6.0		5.094	243	9.70E-03	4.8
S48	5.110	243	5.67E-02	28.6		5.105	243	2.28E-02	-55.6
S49	5.113	243	2.69E-02	-49.3		5.127	242	5.56E-02	19.5
S50	5.123	242	3.63E-01	63.1		5.127	242	3.34E-01	-71.3

Table S 5 - Computed electronic transition for the GS_a and GS_b structures of Si(ONO)₂ complex.

	GS _{i1} Λ(λ,δ)				GS _{i2} Λ(δ,λ)					
State	E _{abs} (eV)	λ_{abs} (nm)	f _{osc}	R	E _{abs} (eV)	λ_{abs} (nm)	f _{osc}	R		
S1	3.545	350	2.76E-02	-131.6	3.542	350	2.27E-02	-128.3		
S2	3.556	349	1.18E-01	122.6	3.552	349	1.24E-01	119.8		
S3	3.779	328	8.43E-02	103.1	3.776	328	8.64E-02	111.5		
S4	3.792	327	3.62E-02	-89.2	3.788	327	3.10E-02	-95.9		
S5	3.844	323	7.55E-02	-185.9	3.842	323	6.94E-02	-404.3		
S6	3.850	322	8.95E-02	226.0	3.845	322	9.74E-02	443.4		
S7	3.948	314	5.90E-03	4.3	3.945	314	3.80E-03	-3.4		
S8	3.951	314	5.30E-03	-27.1	3.949	314	7.80E-03	-20.2		
S9	3.993	310	2.52E-01	125.5	3.992	311	2.69E-01	209.9		
S10	3.996	310	7.79E-02	-173.6	3.994	310	6.17E-02	-258.2		
S11	4.210	294	8.24E-02	-212.7	4.208	295	8.18E-02	-217.7		
S12	4.227	293	1.52E-01	252.8	4.226	293	1.53E-01	258.6		
S13	4.367	284	8.00E-04	-0.5	4.366	284	1.00E-03	-0.3		
S14	4.374	283	1.94E-02	1.1	4.373	283	2.36E-02	-1.2		
S15	4.387	283	2.15E-02	-15.7	4.386	283	2.14E-02	-15.0		
S16	4.392	282	4.96E-02	-11.3	4.391	282	4.99E-02	-14.2		
S17	4.419	281	2.66E-02	27.5	4.418	281	3.07E-02	26.3		
S18	4.425	280	1.25E-02	-12.0	4.425	280	1.16E-02	-10.1		
S19	4.448	279	2.57E-02	-23.3	4.446	279	2.65E-02	-28.7		
S20	4.451	279	3.99E-02	17.5	4.450	279	3.24E-02	24.8		
S21	4.514	275	5.00E-03	-2.2	4.512	275	5.00E-03	-4.5		
S22	4.523	274	7.10E-03	6.8	4.518	274	6.70E-03	8.8		
S23	4.538	273	1.87E-02	2.2	4.538	273	1.95E-02	2.2		
S24	4.543	273	1.40E-03	-4.2	4.544	273	1.00E-03	-4.2		
S25	4.664	266	5.20E-03	1.7	4.667	266	5.90E-03	2.6		
S26	4.671	265	3.10E-03	-0.9	4.673	265	2.30E-03	-1.8		
S27	4.755	261	1.20E-03	1.2	4.760	260	1.10E-03	2.7		
S28	4.760	260	2.10E-03	-0.4	4.760	260	2.40E-03	-1.8		
S29	4.775	260	1.05E-02	-23.1	4.776	260	1.08E-02	-20.4		
S30	4.781	259	1.43E-02	27.4	4.783	259	1.53E-02	25.6		
S31	4.851	256	5.62E-02	16.0	4.850	256	5.55E-02	-10.8		
S32	4.856	255	5.06E-02	4.5	4.852	256	7.21E-02	28.5		
S33	4.869	255	2.12E-01	221.7	4.868	255	2.02E-01	209.0		
S34	4.873	254	1.99E-01	-227.3	4.872	254	1.88E-01	-213.5		
S35	4.890	254	9.00E-04	2.1	4.894	253	2.70E-03	2.0		
S36	4.897	253	5.40E-03	-0.7	4.899	253	5.00E-03	-4.7		
S37	4.906	253	6.91E-02	40.0	4.904	253	6.65E-02	45.3		
S38	4.907	253	4.71E-02	-60.4	4.906	253	4.72E-02	-62.6		
S39	4.981	249	4.50E-03	4.5	4.980	249	5.00E-03	5.8		
S40	4.988	249	1.96E-02	4.6	4.987	249	2.09E-02	3.8		
S41	4.997	248	1.20E-03	1.2	4.996	248	2.20E-03	1.8		
S42	5.003	248	8.70E-03	2.9	5.003	248	9.70E-03	3.2		
S43	5.011	247	5.10E-03	1.2	5.009	248	8.70E-03	-2.7		
S44	5.014	247	7.20E-03	-6.5	5.013	247	1.00E-03	-3.4		
S45	5.027	247	2.30E-03	1.7	5.024	247	2.90E-03	5.9		
S46	5.030	246	2.20E-03	0.7	5.026	247	1.80E-03	-3.1		
S47	5.075	244	1.61E-02	-60.7	5.073	244	1.57E-02	-62.1		
S48	5.086	244	1.93E-02	70.0	5.085	244	2.21E-02	73.0		
S49	5.145	241	6.42E-02	-38.5	5.145	241	6.62E-02	-39.6		
S50	5.174	240	8.54E-02	14.8	5.173	240	8.73E-02	13.8		

Table S 6 - Computed electronic transition for the GS_{i1} and GS_{i2} structures of Si(ONO)₂ complex.

	$GS_{2} \Lambda(\delta, \delta)$				$GS_{h} \Lambda(\lambda,\lambda)$					
State	Eaka (eV)	$\lambda_{\rm abs}$ (nm)	f	R		Easta (eV)	λ_{aba} (nm)	f	R	
S1	3.429	362	2.06F-01	-108.2		3.447	360	2.05F-01	0.7	
S2	3.530	351	6.50F-03	136.0		3.544	350	2.01F-02	79.9	
 	3.718	333	3.00F-04	13.1		3.713	334	1.36F-02	-203.9	
S4	3.841	323	3.28F-02	323.3		3,839	323	1.00F-03	-8.3	
	3.854	322	7.70F-03	-37.2	_	3.873	320	1.45F-01	267.1	
S6	3 901	318	1 41F-01	-407.5		3 891	319	1.36E-01	-218.8	
	3 953	314	1.35E-02	114.5		3 943	314	3 38E-02	145.8	
	3.970	312	2.36F-01	-140.9		3.951	314	6.87F-02	13.3	
	4.051	306	7.13F-02	-20.3	_	3,995	310	1.00F-04	-0.9	
S10	4.128	300	1.25F-02	74.4	_	4.114	301	8.07F-02	-42.9	
S11	4.265	291	1.17F-02	83.0		4,289	289	2.64F-02	-3.5	
S12	4.275	290	1.30F-01	-169.1		4.291	289	1.66F-01	260.5	
S13	4.327	287	7.28F-02	30.1		4.324	287	3.87F-02	-127.1	
S14	4.364	284	1.00F-04	-0.3		4.353	285	3.40F-03	-2.4	
S15	4.382	283	1.26F-01	-126.8		4.356	285	1.10F-01	-124.5	
S16	4.388	283	5.62F-02	239.0		4.365	284	2.90F-03	2.7	
S17	4 406	281	3.66F-02	-37.5		4 407	281	4 14F-02	-19.8	
S18	4 455	278	3.00E-03	11.8		4 445	279	2 31F-02	-47.3	
S19	4 480	277	1.90E-03	12.0		4 495	276	3 36E-02	23.9	
S20	4 493	276	3 48F-02	-24.2		4 500	276	9 24F-02	85.7	
S21	4 514	275	1.30E-03	30	_	4 514	275	1.60E-03	4.6	
S22	4 532	274	4 49F-02	-32.3		4 560	272	4 83E-02	11.9	
S23	4 541	273	1.30E-03	2.9		4 588	270	3 50E-03	-6.7	
S24	4 592	270	2.59E-02	29.4		4 607	269	4 70E-03	-13.5	
S25	4,723	263	3.00F-03	-2.4		4,740	262	6.00F-04	0.2	
S26	4.724	262	6.10E-03	-4.1	_	4.743	261	2.00E-03	2.0	
S27	4.783	259	2.80E-03	11.5	_	4.782	259	4.10E-03	-4.2	
S28	4.793	259	6.40E-03	-1.6		4.784	259	2.00E-04	-0.6	
S29	4.812	258	1.00E-04	-0.4		4.806	258	3.85E-02	-143.9	
S30	4.830	257	4.29E-02	-49.8		4.830	257	1.11E-01	-15.8	
S31	4.832	257	3.42E-02	118.4		4.840	256	6.33E-02	-70.0	
S32	4.842	256	1.82E-01	-22.3		4.856	255	8.62E-02	22.0	
S33	4.887	254	3.19E-02	130.9		4.861	255	2.15E-02	-17.8	
S34	4.894	253	2.36E-01	-191.1		4.871	255	3.58E-02	69.5	
S35	4.905	253	1.60E-03	0.7		4.907	253	3.15E-02	-25.5	
S36	4.914	252	1.61E-02	0.8		4.916	252	1.35E-01	158.4	
S37	4.974	249	2.13E-02	-4.2		4.960	250	3.00E-04	-2.9	
S38	4.989	249	4.00E-04	4.5		4.974	249	2.19E-02	9.8	
S39	4.997	248	1.80E-03	16.8		4.987	249	7.90E-03	-25.8	
S40	5.006	248	1.70E-03	1.5		5.000	248	9.00E-03	-20.5	
S41	5.007	248	1.00E-02	5.1		5.004	248	1.30E-03	-6.1	
S42	5.010	247	1.90E-03	2.7		5.008	248	3.60E-03	11.0	
S43	5.018	247	7.74E-02	-9.7		5.010	247	1.00E-04	0.9	
S44	5.034	246	3.50E-03	27.5		5.021	247	6.50E-03	-12.4	
S45	5.041	246	7.40E-03	-21.1		5.027	247	7.00E-02	49.1	
S46	5.075	244	1.93E-02	-24.5		5.045	246	3.69E-02	-39.9	
S47	5.085	244	6.00E-04	6.0		5.094	243	9.70E-03	-4.8	
S48	5.110	243	5.67E-02	-28.6		5.105	243	2.28E-02	55.6	
S49	5.113	243	2.69E-02	49.3		5.127	242	5.56E-02	-19.5	
S50	5.123	242	3.63E-01	-63.1		5.127	242	3.34E-01	71.3	

Table S 7 - Computed electronic transition for Delta GS_a and Delta GS_b structures of Si(ONO)₂ complex.

	$GS_{i1} \Lambda(\delta \lambda)$				$GS_{i2} \Lambda(\lambda, \delta)$					
State	Easta (eV)	$\lambda_{\rm abs}$ (nm)	(0,,1) f	R		Esta (eV)	$\lambda_{\rm abs}$ (nm)	f	R	
S1	3545	350	2 76F-02	131.6		3542	350	2 27F-02	128.3	
S2	3 556	349	1 18F-01	-122.6		3 552	349	1 24F-01	-119.8	
<u>S3</u>	3.779	328	8.43F-02	-103.1		3.776	328	8.64F-02	-111.5	
S4	3 792	327	3.62E-02	89.2		3 788	327	3 10F-02	95.9	
	3.844	323	7.55E-02	185.9		3.842	323	6.94F-02	404.3	
S6	3 850	322	8.95E-02	-226.0		3 845	322	9 74F-02	-443.4	
	3 948	314	5 90E-03	-4.3		3 945	314	3 80E-03	34	
	3.951	314	5.30F-03	27.1		3.949	314	7.80F-03	20.2	
 S9	3,993	310	2.52F-01	-125.5		3,992	311	2.69F-01	-209.9	
S10	3,996	310	7.79F-02	173.6		3,994	310	6.17F-02	258.2	
S11	4.210	294	8.24F-02	212.7		4.208	295	8.18F-02	217.7	
S12	4.227	293	1.52F-01	-252.8		4.226	293	1.53F-01	-258.6	
S13	4.367	284	8.00F-04	0.5		4.366	284	1.00F-03	0.3	
S14	4.374	283	1.94F-02	-1.1		4.373	283	2.36F-02	1.2	
S15	4.387	283	2.15F-02	15.7		4.386	283	2.14F-02	15.0	
S16	4.392	282	4.96F-02	11.3		4.391	282	4.99F-02	14.2	
S17	4 4 1 9	281	2.66F-02	-27.5		4 4 1 8	281	3.07E-02	-26.3	
S18	4.425	280	1.25F-02	12.0		4.425	280	1.16F-02	10.1	
S19	4.448	279	2.57E-02	23.3		4.446	279	2.65F-02	28.7	
S20	4,451	279	3.99F-02	-17.5		4.450	279	3.24F-02	-24.8	
S21	4.514	275	5.00F-03	2.2		4.512	275	5.00F-03	4.5	
S22	4 523	274	7 10F-03	-6.8		4 518	274	6 70E-03	-8.8	
S23	4.538	273	1.87F-02	-2.2		4.538	273	1.95F-02	-2.2	
S24	4.543	273	1.40F-03	4.2		4.544	273	1.00F-03	4.2	
S25	4.664	266	5.20E-03	-1.7		4.667	266	5.90E-03	-2.6	
S26	4.671	265	3.10E-03	0.9		4.673	265	2.30E-03	1.8	
S27	4.755	261	1.20E-03	-1.2		4.760	260	1.10E-03	-2.7	
S28	4.760	260	2.10E-03	0.4		4.760	260	2.40E-03	1.8	
S29	4.775	260	1.05E-02	23.1		4.776	260	1.08E-02	20.4	
S30	4.781	259	1.43E-02	-27.4		4.783	259	1.53E-02	-25.6	
S31	4.851	256	5.62E-02	-16.0		4.850	256	5.55E-02	10.8	
S32	4.856	255	5.06E-02	-4.5		4.852	256	7.21E-02	-28.5	
S33	4.869	255	2.12E-01	-221.7		4.868	255	2.02E-01	-209.0	
S34	4.873	254	1.99E-01	227.3		4.872	254	1.88E-01	213.5	
S35	4.890	254	9.00E-04	-2.1		4.894	253	2.70E-03	-2.0	
S36	4.897	253	5.40E-03	0.7		4.899	253	5.00E-03	4.7	
S37	4.906	253	6.91E-02	-40.0		4.904	253	6.65E-02	-45.3	
S38	4.907	253	4.71E-02	60.4		4.906	253	4.72E-02	62.6	
S39	4.981	249	4.50E-03	-4.5		4.980	249	5.00E-03	-5.8	
S40	4.988	249	1.96E-02	-4.6		4.987	249	2.09E-02	-3.8	
S41	4.997	248	1.20E-03	-1.2		4.996	248	2.20E-03	-1.8	
S42	5.003	248	8.70E-03	-2.9		5.003	248	9.70E-03	-3.2	
S43	5.011	247	5.10E-03	-1.2		5.009	248	8.70E-03	2.7	
S44	5.014	247	7.20E-03	6.5		5.013	247	1.00E-03	3.4	
S45	5.027	247	2.30E-03	-1.7		5.024	247	2.90E-03	-5.9	
S46	5.030	246	2.20E-03	-0.7		5.026	247	1.80E-03	3.1	
S47	5.075	244	1.61E-02	60.7		5.073	244	1.57E-02	62.1	
S48	5.086	244	1.93E-02	-70.0		5.085	244	2.21E-02	-73.0	
S49	5.145	241	6.42E-02	38.5		5.145	241	6.62E-02	39.6	
S50	5.174	240	8.54E-02	-14.8		5.173	240	8.73E-02	-13.8	

Table S 8 - Computed electronic transition for Delta GS_{i1} and Delta GS_{i2} structures of Si(ONO)₂ complex.