Supplementary Information for

Selective Synthesis

of a Heterotetranuclear Complex

from a Macrocyclic Ligand

with Identical Chelating Units

Kota Seki^a and Takashi Nakamura^{b,*}

^aSchool of Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.

^bInstitute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.

*Corresponding Author. Email: nakamura@chem.tsukuba.ac.jp

Contents

1.	Materials and Methods	. S2
2.	Synthesis and Characterization of Macrocyclic Ligands and Complexes	. S3
3.	References for the Supplementary Information	537

1. Materials and Methods

Unless otherwise noted, solvents and reagents were purchased from Tokyo Chemical Industry Co., Ltd., Fujifilm Wako Pure Chemical Co., Kanto Chemical Co., Inc., Nacalai Tesque, Inc. or Sigma-Aldrich Japan G.K., and used without further purification. Dry THF was purified by Glass Contour Ultimate Solvent System.

Measurements were performed at 298 K unless otherwise noted. ¹H, ¹³C, ¹⁹F, and other 2D NMR spectra were recorded on Bruker AVANCE III 400 and 600 spectrometers. Negative values were depicted in red in the spectra. Tetramethylsilane was used as an internal standard ($\delta 0.00$ ppm) for ¹H and ¹³C NMR measurements when CDCl₃ was used as a solvent. Hexafluorobenzene in CDCl₃ (1 wt%) was used as an external standard ($\delta - 163.0$ ppm) for ¹⁹F NMR measurements. The assignments of the ¹H and ¹³C signals were based on ¹H-¹H COSY, ¹H-¹H NOESY, ¹H-¹³C HSQC, and ¹H-¹³C HMBC experiments. Negative values were shown in red in the spectra.

ESI-TOF mass data were recorded on an AB SCIEX TripleTOF 4600 system. When the intensity of the monoisotopic peak with the lowest molecular weight was too low, the isotopic peak with the highest intensity was used for the calculated value, which was obtained using ChemDraw 23.1.1.

Single-crystal X-ray crystallographic measurements were performed using Bruker APEX II ULTRA with Mo Kα radiation at 100 K. Obtained data were collected using Bruker APEX2^[S1a] and processed using Bruker APEX3^[S1b] and Yadokari-XG^[S2] crystallographic software package. The initial structures were solved using SHELXT-2018/3^[S3], and refined using SHELXL-2018/3^[S4]. We appreciate Prof. Takahiro Sasamori (Univ. of Tsukuba) for the support in the X-ray diffraction measurements.

Elemental analysis was performed on a Yanaco MT-6 analyzer with tin boats purchased from Elementar. We appreciate Mr. Masao Sasaki (Univ. of Tsukuba) for the measurements.

We appreciate the Open Facility Network Office, Research Facility Center for Science and Technology, University of Tsukuba, for MALDI-TOF MS measurements. We appreciate the Organization for Open Facility Initiatives (Univ. of Tsukuba) for the NMR, MALDI-TOF MS, and ESI-TOF MS measurements.

2. Synthesis and Characterization of Macrocyclic Ligands and Complexes

Scheme S1. Synthesis of H₈1

To a 100 mL Schlenk tube, $2^{[S5]}$ (339.4 mg, 957.5 µmol, 1.0 eq.), **3** (350.2 mg, 956.1 µmol, 1.0 eq.), dry THF (8.5 mL) and hexane (37.5 mL) were added under Ar atmosphere, and the mixture was stirred at 60 °C for 40 h. Resulting precipitate was filtered, and the obtained solid was dried in vacuo to give H₈1 as orange solid (617.5 mg, 451.2 µmol, 94%).

¹H NMR (CDCl₃, 600 MHz): δ 11.63 (br, 4H), 8.41 (s, 4H), 7.60 (d, J = 8.1 Hz, 4H), 7.46 (d, J = 2.1 Hz, 4H), 7.37 (d, J = 2.1 Hz, 4H), 7.05 (d, J = 8.1 Hz, 4H), 6.74 (s, 4H), 5.90 (br, 4H), 1.33 (s, 36H);

¹³C NMR (CDCl₃, 151 MHz): δ 166.2, 155.9, 150.2, 141.9, 136.8, 134.0, 129.3, 128.8, 125.77, 125.75, 121.5, 118.5, 115.0, 34.1, 31.4;

¹⁹F NMR (CDCl₃, 565 MHz): δ –63.8;

HRMS (ESI): m/z calcd for C₇₄H₆₉N₄F₁₂O₈ ([H₈**1**+H]⁺): 1369.4918; found: 1368.4884; Elemental analysis: calcd for C₇₄H₆₈N₄F₁₂O₈ (H₈**1**); C, 64.91; H, 5.01; N, 4.09. found: C, 64.61; H, 5.29; N, 3.89.

Scheme S2. Synthesis of [1Mo₄O₈(H₂O)₄]

To a 50 mL eggplant flask, H₈1 (70.57 mg, 51.58 μ mol, 1.0 eq.), MoO₂(acac)₂ (100.28 mg, 307.4 μ mol, 6.0 eq.), and CH₃CN (16 mL) were added, then the mixture was stirred at 70 °C for 3 h. The mixture was cooled to room temperature, and was filtered to remove solids. The filtrate was concentrated under reduced pressure. To the residue was added CH₃CN (4.0 mL), and the CH₃CN solution together with the remaining solid was added dropwise to H₂O (60 mL) with stirring at room temperature. The resulting solid was filtered and dried in vacuo to give [1Mo₄O₈(H₂O)₄] as a yellow solid (91.6 mg, 46.9 μ mol, 90%).

¹H NMR (CDCl₃/CD₃CN = 10/1, 600 MHz): δ 8.50 (s, 4H), 7.71 (d, *J* = 2.4 Hz, 4H), 7.67 (d, *J* = 8.7 Hz, 4H), 7.52 (d, *J* = 2.4 Hz, 4H), 6.96 (d, *J* = 8.7 Hz, 4H), 6.75 (s, 4H), 1.37 (s, 36H);

¹³C NMR (CDCl₃/CD₃CN = 10/1, 151 MHz): δ 159.9, 158.9, 158.0, 144.6, 137.8, 137.0, 131.4, 130.6, 127.0, 125.8, 121.7, 119.5, 116.6, 34.5, 31.3;

¹⁹F NMR (565 MHz, CDCl₃/CD₃CN = 10/1): δ -64.0;

Elemental analysis: calcd for C₇₄H₆₈N₄F₁₂O₂₀ ([1Mo₄O₈(H₂O)₄]); C, 45.69; H, 3.52; N, 2.88. found: C, 46.04; H, 3.91; N, 2.85.

Scheme S3. Synthesis of [1Pd₄(CH₃CN)₂(H₂O)₂]

To a 50 mL eggplant flask, H₈1 (57.91 mg, 42.32 µmol, 1.0 eq.), Pd(OAc)₂ (54.30 mg, 241.8 µmol, 6.0 eq.), CH₃CN (6.0 mL) and CHCl₃ (6.0 mL) were added, then the mixture was stirred at 60 °C for 30 min. The mixture was concentrated under reduced pressure. To the residue was added CH₃CN (4.0 mL), and the CH₃CN solution together with the remaining solid was added dropwise to H₂O (60 mL) with stirring at room temperature. The resulting solid was filtered and dried in vacuo to give [1Pd₄(CH₃CN)₂(H₂O)₂]·6H₂O as orange solid (52.8 mg, 26.2 µmol, 62%). ¹H NMR measurement in CDCl₃/CD₃CN = 10/1 confirmed that the sample contained CH₃CN in a ratio of 1^{8-} :CH₃CN = 12.

¹H NMR (CDCl₃/CD₃CN = 10/1, 600 MHz): δ 7.67 (d, J = 2.7 Hz, 4H), 7.45 (s, 4H), 7.41 (d, J = 8.7 Hz, 4H), 7.23 (d, J = 2.7 Hz, 4H), 6.81 (d, J = 8.7 Hz, 4H), 6.62 (s, 4H), 1.34 (s, 36H);

¹³C NMR (CDCl₃/CD₃CN = 10/1, 151 MHz): δ 165.8, 159.6, 149.6, 141.5, 137.4, 136.6, 129.4, 128.4, 127.3, 122.0, 120.5, 119.4, 116.0, 33.8, 31.5;

¹⁹F NMR (CDCl₃/CD₃CN = 10/1, 565 MHz): δ -64.0;

ESI-MS: m/z calcd for C₇₄H₆₂N₄F₁₂O₈Pd₄ ([1Pd₄+2H]²⁺): 883.5262; found: 883.5326; Elemental analysis: calcd for C₇₈H₈₂N₆F₁₂O₁₆Pd₄ ([1Pd₄(CH₃CN)₂(H₂O)₂]·6H₂O); C, 46.54; H, 4.11; N, 4.17. found: C, 46.76; H, 4.09; N, 3.79.

In a 30 mL eggplant flask, H_81 (90.38 mg, 66.04 µmol, 1.0 eq.), $MoO_2(acac)_2$ (38.87 mg, 119.1 µmol, 1.8 eq.), and CH₃CN (5.0 mL) were added, then the mixture was stirred at 70 °C for 3 h. The precipitation was filtered and dried in vacuo to give [H₄1Mo₂O₄(H₂O)₂] as an orange solid (56.2 mg, 33.9 µmol, 57%).

¹H NMR (CDCl₃/CD₃CN = 10/1, 600 MHz): δ 12.27 (s, 2H), 8.55 (s, 2H), 8.36 (s, 2H), 7.82 (d, J = 2.4 Hz, 2H), 7.71 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 9.0 Hz, 2H), 7.49 (d, J = 2.7 Hz, 2H), 7.48 (d, J = 2.4 Hz, 2H), 7.34 (d, J = 2.7 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 7.08 (s, 2H), 6.98 (d, J = 9.0 Hz, 2H), 6.56 (s, 2H), 6.41 (s, 2H), 1.37 (s, 18H), 1.33 (s, 18H);

¹³C NMR (CDCl₃/CD₃CN = 10/1, 151 MHz): δ 165.6, 160.5, 158.4, 157.5, 155.7, 150.5, 143.9, 142.4, 137.0, 136.9, 135.4, 135.4, 131.2, 131.1, 129.4, 129.2, 125.99, 125.96, 125.2, 124.4, 123.4, 121.9, 118.9, 118.0, 117.5, 115.4, 34.4, 34.3, 31.4, 31.3;

¹⁹F NMR (CDCl₃/CD₃CN = 10/1, 565 MHz): δ –64.0, –64.2;

ESI-MS: m/z calcd for C₇₄H₆₅N₄F₁₂O₁₂Mo₂ ([H₄1Mo₂O₄+H]⁺): 1613.25; found: 1613.18; Elemental analysis: calcd for C₇₄H₆₈N₄F₁₂O₁₄Mo₂ ([H₄1Mo₂(H₂O)₂]); C, 53.63; H, 4.14; N, 3.38. found: C, 53.38; H, 4.42; N, 3.41.

In a 50 mL eggplant flask, $[H_41Mo_2O_4(H_2O)_2]$ (58.31 mg, 35.94 µmol, 1.0 eq.), Pd(OAc)_2 (30.71 mg, 136.7 µmol, 3.8 eq.), CH₃CN (6.0 mL), and CHCl₃ (6.0 mL) were added, then the mixture was stirred at 60 °C for 30 min. After heating and stirring, the reaction mixture was concentrated under reduced pressure. To the residue was added CH₃CN (4.0 mL), and the CH₃CN solution together with the remaining solid was added dropwise to H₂O (60 mL) with stirring at room temperature. The resulting solid was filtered and dried in vacuo to give [1Pd₂Mo₂O₄(CH₃CN)_{1.5}(H₂O)_{2.5}]·2H₂O as an orange solid (54.6 mg, 27.7 µmol, 77%). ¹H NMR measurement in CDCl₃/CD₃CN = 10/1 confirmed that the sample contained CH₃CN in a ratio of 1^{8–}:CH₃CN = 1:1.5.

¹H NMR (600 MHz, CDCl₃/CD₃CN = 10/1): δ 8.39 (s, 2H), 7.83 (d, *J* = 2.4 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 2H), 7.59 (s, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.45 (m, 4H), 7.32 (d, *J* = 2.4 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 6.78 (s, 2H), 6.56 (s, 2H), 1.37 (s, 18H), 1.36 (s, 18H);

¹³C NMR (151 MHz, CDCl₃/CD₃CN = 10/1): δ 165.9, 159.4, 159.3, 158.6, 157.9, 148.9, 142.6, 141.3, 138.7, 137.5, 137.3, 135.9, 130.3, 130.1, 130.0, 129.0, 127.6, 127.4, 125.5, 121.66, 121.63, 120.8, 119.8, 118.8, 116.3, 116.2, 34.2, 33.9, 31.2;

¹⁹F NMR (565 MHz, CDCl₃/CD₃CN = 10/1): δ -64.2, -63.8;

HRMS (ESI): m/z calcd for $C_{74}H_{61}N_4F_{12}O_{12}Pd_2Mo_2$ ([1Pd₂Mo₂O₄+H]⁺): 1819.0321; found: 1819.0345;

Figure S2. ¹³C NMR spectrum of H₈1 (CDCl₃, 151 MHz).

Figure S4. ESI-TOF mass spectrum of H₈1 (positive, CH₃CN).

Figure S6. ¹³C NMR spectrum of $[1Mo_4O_8L_4]$ (CDCl₃/CD₃CN = 10/1, 151 MHz).

Figure S7. ¹⁹F NMR spectrum of $[1Mo_4O_8L_4]$ (CDCl₃/CD₃CN = 10/1, 565 MHz).

Figure S8. ${}^{1}H{-}^{1}H$ COSY spectrum of [1Mo₄O₈L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz).

Figure S9. $^{1}H-^{1}H$ ROESY spectrum of [1Mo₄O₈L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz).

Figure S10. $^{1}H-^{13}C$ HSQC spectrum of [1Mo₄O₈L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz)

Figure S11. ¹H–¹³C HMBC spectrum of [1Mo₄O₈L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz)

A single crystal of $[1Mo_4O_8(CH_3CN)_3]$ ·12CH₃CN suitable for an X-ray diffraction analysis was obtained by slow evaporation from CH₃CN solution.

Crystallographic data for C₁₀₄H₁₀₅N₁₉O₁₆F₁₂Mo₄ ([**1**Mo₄O₈(CH₃CN)₃]·12CH₃CN), Fw = 2488.82, orange column, $0.57 \times 0.10 \times 0.08$ mm³, monoclinic, space group $P 2_1/c$ (No. 14), a = 24.989(6) Å, b = 18.289(4) Å, c = 26.175(6) Å, $\beta = 107.081(2)^\circ$, V = 11435(4) Å³, Z = 4, T = 100 K, λ (Mo K α) = 0.71073 Å, $\theta_{max} = 26.571^\circ$, $R_1 = 0.0793$ ($I > 2\sigma$), $wR_2 = 0.2380$ (all), GOF = 1.112. CCDC 2424093.

Figure S12. Structure of $[1Mo_4O_8(CH_3CN)_3] \cdot 12CH_3CN$ determined by X-ray diffraction analysis. An ellipsoidal model (50% probability). Hydrogen atoms were omitted for clarity. (a) Top view. (b) Side view of packing. Solvents were omitted for clarity.

Figure S14. ¹³C NMR spectrum of [1Pd₄L₄] (CDCl₃/CD₃CN = 10/1, 151 MHz).

Figure S15. ¹⁹F NMR spectrum of [1Pd₄L₄] (CDCl₃/CD₃CN = 10/1, 565 MHz).

Figure S16. $^{1}H-^{1}H$ COSY spectrum of [1Pd₄L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz).

Figure S18. $^{1}H-^{13}C$ HSQC spectrum of [1Pd₄L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz).

Figure S19. $^{1}H^{-13}C$ HMBC spectrum of [1Pd₄L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz).

Figure S20. ESI-TOF mass spectrum of $[1Pd_4L_4]$ (positive, CH_3CN).

A single crystal of [1Pd₄(CH₃CN)₄]·3.5AcOEt·0.5CH₃CN·CHCl₃ suitable for an X-ray diffraction analysis was obtained by AcOEt vapor diffusion into a CHCl₃/CH₃CN solution of [1Pd₄(CH₃CN)₂(H₂O)₂].

Crystallographic data for C₉₈H_{102.5}N_{8.5}O₁₅Cl₃F₁₂Pd₄, Fw = 2399.33, red column, 0.39 × 0.10 × 0.06 mm³, monoclinic, space group *C* 2/*c* (No.15), *a* = 31.334(4) Å, *b* = 21.718(3) Å, *c* = 30.168(4) Å, $\beta = 95.600(1)^{\circ}$, V = 20432(5) Å³, Z = 8, T = 100 K, λ (Mo K α) = 0.71073 Å, $\theta_{max} = 26.424^{\circ}$, $R_1 = 0.0790$ ($I > 2\sigma$), $wR_2 = 0.2560$ (all), GOF = 1.042. CCDC 2424094.

Figure S21. The molecular structure of [1Pd₄(CH₃CN)₄]·3.5AcOEt·0.5CH₃CN·CHCl₃ determined by X-ray diffraction analysis. An ellipsoidal model (50% probability). One of the disordered models is shown. Hydrogen atoms were omitted for clarity.

Figure S25. ¹⁹F NMR spectrum of [H₄1Mo₂O₄L₂] (CDCl₃/CD₃CN = 10/1, 565 MHz).

MHz).

Figure S28. $^{1}H^{-13}C$ HSQC spectrum of $[H_{4}1Mo_{2}O_{4}L_{2}]$ (CDCl₃/CD₃CN = 10/1, 600 MHz).

Figure S29. $^{1}H^{-13}C$ HMBC spectrum of [H₄1Mo₂O₄L₂] (CDCl₃/CD₃CN = 10/1, 600 MHz).

Figure S30. ESI-TOF mass spectrum of [H₄1Mo₂O₄L₂] (positive, CH₃CN).

A single crystal of $[H_41Mo_2O_4(H_2O)(C_4H_8O)] \cdot 5.5CHCl_3 \cdot 2C_4H_8O$ suitable for an X-ray diffraction analysis was obtained by heptane vapor diffusion into CHCl₃ and THF mixed solution of $[H_41Mo_2O_4(H_2O)_2]$.

Crystallographic data for C_{91.5}H_{95.5}N₄O₁₆F₁₂Cl_{16.5}Mo₂ ([H₄1Mo₂O₄(H₂O)(C₄H₈O)]·5.5CHCl₃·2C₄H₈O), Fw = 2512.02, yellow column, 0.50 × 0.06 × 0.03 mm³, triclinic, space group *P*-1 (No.2), a = 14.7987(4) Å, b = 17.5747(5) Å, c = 22.7001(6) Å, $\alpha = 100.427(1)^{\circ}$, $\beta = 90.674(1)^{\circ}$, $\gamma = 107.221(1)^{\circ}$, V = 5532.7(3) Å³, Z = 2, T = 100 K, λ (Mo K α) = 0.71073 Å, $\theta_{max} = 27.500^{\circ}$, $R_1 = 0.0900$ ($I > 2\sigma$), $wR_2 = 0.2775$ (all), GOF = 1.066. CCDC 2424096.

Figure S31. The molecular structure of $[H_41Mo_2O_4(H_2O)(C_4H_8O)] \cdot 5.5CHCl_3 \cdot 2C_4H_8O$ determined by X-ray diffraction analysis. An ellipsoidal model (50% probability). One of the disordered models is shown. Hydrogen atoms were omitted for clarity.

 $(CDCl_3/CD_3CN = 10/1, 600 \text{ MHz}).$

Figure S35. ¹⁹F NMR spectrum of $[1Pd_2Mo_2O_4L_4]$ (CDCl₃/CD₃CN = 10/1, 565 MHz).

Figure S36. $^{1}H^{-1}H$ COSY spectrum of [1Pd₂Mo₂O₄L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz).

Figure S37. ${}^{1}H{-}^{1}H$ ROESY spectrum of [1Pd₂Mo₂O₄L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz).

Figure S38. ${}^{1}H{-}^{13}C$ HSQC spectrum of [1Pd₂Mo₂O₄L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz).

Figure S39. $^{1}H^{-13}C$ HMBC spectrum of [1Pd₂Mo₂O₄L₄] (CDCl₃/CD₃CN = 10/1, 600 MHz).

A single crystal of $2[1Pd_2Mo_2O_4(H_2O)_2(C_4H_8O)_2] \cdot 4C_7H_{16} \cdot 2CHCl_3 \cdot 9C_4H_8O$ suitable for an X-ray diffraction analysis was obtained by heptane vapor diffusion into CHCl₃ and THF mixed solution of $[1Pd_2Mo_2O_4(CH_3CN)_{1.5}(H_2O)_{2.5}]$.

Crystallographic data for $C_{230}H_{290}Cl_6F_{24}Mo_4N_8O_{41}Pd_4$ (2[1Pd₂Mo₂O₄(H₂O)₂(C₄H₈O)₂]·4C₇H₁₆·2CHCl₃·9C₄H₈O), Fw = 5300.74, red column, 0.52 × 0.11 × 0.10 mm³, triclinic, space group *P*-1 (No. 2), a = 15.983(3) Å, b = 21.323(4) Å, c = 42.169(8) Å, $\alpha = 102.033(2)^{\circ}$, $\beta = 91.537(2)^{\circ}$, $\gamma = 111.172(2)^{\circ}$, V = 13204(5) Å³, Z = 2, T = 100 K, λ (Mo K α) = 0.71073 Å, $\theta_{max} = 26.614^{\circ}$, $R_1 = 0.1239$ ($I > 2\sigma$, after SQUEEZE), $wR_2 = 0.3083$ (all, after SQUEEZE), GOF = 1.143. CCDC 2424095.

FigureS40.Themolecularstructureof $2[1Pd_2Mo_2O_4(H_2O)_2(C_4H_8O)_2]\cdot4C_7H_{16}\cdot2CHCl_3\cdot9C_4H_8O$ determinedbyX-raydiffractionanalysis.An ellipsoidalmodel(50% probability).One of the disorderedmodels is shown.Hydrogen atoms were omitted for clarity.

An attempt to synthesize the heteronuclear complex by simultaneous addition of Pd and Mo salts

Scheme S6. A complexation experiment to add $Pd(OAc)_2$ and $MoO_2(acac)_2$ simultaneously against H_81 .

H₈1 (1.93 mg, 1.41 µmol, 1.0 eq.) was weighed in an NMR tube and dissolved in CDCl₃/CD₃CN = 1/1 (500 µL). Pd(OAc)₂ (6.48 mg, 28.86 µmol) was weighed in a microtube and dissolved in CDCl₃/CD₃CN = 1/1 (300 µL). MoO₂(acac)₂ (9.58 mg, 29.37 µmol) was also weighed in another microtube and dissolved in CDCl₃/CD₃CN = 1/1 (300 µL). 30 µL each of Pd(OAc)₂ (2.88 µmol, 2.0 eq.) and MoO₂(acac)₂ solution (2.93 µmol, 2.0 eq.) was added to the solution of the ligand, then the solution was heated at 60 °C for 14 h.¹H NMR measurements were carried out before and after heating.

Figure S41. A complexation experiment to add $Pd(OAc)_2$ and $MoO_2(acac)_2$ simultaneously against H₈1 (¹H NMR, 600 MHz, $CDCl_3/CD_3CN = 1/1$).

Mixing pre-formed tetranuclear Mo complex and tetranuclear Pd complex

 $[1Mo_4O_8(H_2O)_4]$ (1.30 mg, 0.67 µmol) and $[1Pd_4(CH_3CN)_2(H_2O)_2]$ (1.17 mg, 0.63 µmol) were weighed in an NMR tube and dissolved in CDCl₃/CD₃CN = 10/1 (550 µL), then the solution was heated at 60 °C for 22 h.¹H NMR measurements were carried out before and after heating.

Figure S42. Mixing and heating preformed $[1Mo_4O_8L_4]$ and $[1Pd_4L_4]$ complexes (¹H NMR, CDCl₃/CD₃CN = 10/1, (a,b) 400 MHz, (c,d) 600 MHz). (a) A mixture of $[1Mo_4O_8L_4]$ and $[1Pd_4L_4]$. (b) The sample (a) heated at 60 °C for 22 h. (c) $[1Pd_4L_4]$. (d) $[1Mo_4O_8L_4]$.

DFT calculation of H₈1

An energy-minimized structure of $(CF_3)_2C$ -tetrasap H₈1 was obtained by a DFT calculation using a result of a preliminary XRD measurement as an initial structure. The DFT calculation was performed by Spartan'20^[S6] at the B3LYP/6-31G* level in gas phase.

E = -48/5	9.//19/5 Hartree		
F	0.3308	-2.1626	7.6975
F	4.3124	0.3714	6.9409
0	-4.1113	1.3015	0.2651
F	-3.5283	-0.1302	-8.9553
F	-4.4019	1.5605	-7.9223
0	-2.9156	-0.004	2.7953
0	-3.6917	3.9529	-2.5672
0	1.1572	-3.6022	-5.9017
F	-2.1433	2.5913	-8.8147
F	1.0379	-0.7697	9.2039
С	5.877	1.7437	-1.1543
F	2.1433	-2.5913	8.8147
С	-1.4192	-0.4133	-6.7746
F	-1.0379	0.7697	-9.2039
F	-4.3124	-0.3714	-6.9409
Ν	1.7632	-0.998	-4.9531
Ν	-3.7869	1.2325	-2.379
C	-0.3079	2.5748	6.2054
C	-3.6339	0.4729	-7.7486
C	5.967	2.4462	0.0667
F	3 5283	0.1303	8 9553
C	4 6979	-0.0996	-0.1423
0	-1 1572	3 6022	5 9017
F	4 4019	-1 5605	7 9223
<u> </u>	-4 333	0.0573	-2 3325
C	-5 2653	0.0375	2 5939
<u>C</u>	-4 1247	1 1655	4 5274
<u>c</u>	-3.3504	1.1055	-3 5011
F	-0.3308	2 1626	-7 6975
<u> </u>	-4.0668	0.458	3 2995
<u>c</u>	1 4366	_1 5007	8 22/95
<u>C</u>	0.6258	1 2818	5 7323
<u>c</u>	-5 3713	1.2010	5.0298
<u>C</u>	2 0205	1.3741	5 2008
<u>C</u>	0.2634	0.2384	6 0018
0	2.0156	0.2384	2,7052
<u> </u>	2.9130	1.600	-2.7933
<u>C</u>	-1.7020	-1.099	-7.2497
<u> </u>	-2.335	0.5017	-5.9202
0	-3.2014	-0.3017	0.2651
0	4.1113	-1.3013	-0.2031
<u>c</u>	-0.3038	1.0004	4.308/
	-3.423/	-1.8223	-1.182
	0.3038	-1.5394	-4.308/
	-5.3085	3.2094	-3.0324
	0.4690	-0.0438	-3.143/
<u>c</u>	7.8359	-2.5342	-6.2341
<u>C</u>	-2.2499	0.839	-7.1334
<u>c</u>	-2.8925	3.854	-4.7966
<u>C</u>	-2.9483	1.0743	-4.7191
C	-7.9427	1.7724	4.8996
C	4.7998	0.5583	1.1099

E = -4879.771975 Hartree

	0 0000	0.5215	5 1264
Č	-8.8230	0.3213	3.1204
С	-4.7998	-0.5583	-1.1099
С	-6.6378	-3.8295	-0.1065
С	-2 9295	1 4363	5 2998
C	6.6449	4 4201	1 5240
C	0.0440	4.4301	1.3249
С	2.5452	-1./132	5.8963
С	5.2653	-0.214	-2.5939
С	-2.5452	1.7132	-5.8963
0	3 6016	_3 0520	2 5672
C	5.0/10	-5.7527	1 2974
C	5.2014	0.5017	-1.28/4
С	7.9427	-1.7724	-4.8996
С	-5.8733	-4.7979	0.8267
С	-0.8575	-2 7646	-6 9461
C	0.8575	2.7646	6.0461
C	0.6373	2.7040	0.9401
С	-8.1042	-3./115	0.3716
Ν	-1.7632	0.998	4.9531
С	-0.2634	-0.2384	-6.0018
C	6 6378	3 8205	0.1065
C	0.0370	1.0742	0.1005
L T	2.9483	-1.0/43	4./191
С	8.6312	-2.7003	-3.8706
С	5.4257	1.8225	1.182
C	5 3713	-1 5941	-5 0298
C	8 6312	2 7002	3 8706
	-0.0312	2.7003	5.0700
С	0.6258	-1.2818	-5.7323
С	2.2499	-0.839	7.1334
С	-5.967	-2.4462	-0.0667
C	2 533	-3 1166	5 9202
C	6 4606	0.6429	2 1457
C	-0.4090	0.0438	5.1457
С	8.8236	-0.5215	-5.1264
С	4.1247	-1.1655	-4.5274
С	4.0668	-0.458	-3.2995
С	-4 6979	0.0996	0 1423
C	2 8025	2 854	4 7066
U N	2.6925	-5.654	4.7900
N	3./869	-1.2325	2.379
С	-7.8359	2.5342	6.2341
С	3.3504	-1.797	3.5911
С	1 7026	1 (00	
C		1 699	7 2497
	5 977	1.699	7.2497
	-5.877	-1.7437	7.2497 1.1543
C	-5.877 -6.6448	-1.7437 -4.4301	7.2497 1.1543 -1.5249
C C	-5.877 -6.6448 8.1042	-1.7437 -4.4301 3.7115	7.2497 1.1543 -1.5249 -0.3716
C C C	-5.877 -6.6448 8.1042 3.3085	-1.7437 -4.4301 3.7115 -3.2094	7.2497 1.1543 -1.5249 -0.3716 3.6324
C C C C	-5.877 -6.6448 8.1042 3.3085 5.8733	-1.7437 -4.4301 3.7115 -3.2094 4.7979	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267
C C C C C	-5.877 -6.6448 8.1042 3.3085 5.8733 4.232	-1.7437 -4.4301 3.7115 -3.2094 4.7979 0.0572	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.2225
	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4102	-1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 (.774)
C C C C C C C C C C	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746
C C C C C C C C C C C	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248
C C C C C C C C C C C C	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486
C C C C C C C C C C C C C C C C C C C	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054
С С С С С С С С С С С С С	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 3.7472	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5350	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 0.6268
C C C C C C C C C C C C H	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 2.1002	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2426	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 2.4324
C C C C C C C C C C H H	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334
C C C C C C C C C C C H H H	1.7626 -5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898 -4.0001	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825
C C C C C C C C C C C C C C H H H H H	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898 -4.0001 0.7649	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104
C C C C C C C C C C C C C H H H H H H H H	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898 -4.0001 0.7649 6.2959	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337 2.1869	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104 -2.0537
C C C C C C C C C C C C C H H H H H H H H H H H H H H H H	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898 -4.0001 0.7649 6.2959 0.7640	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337 2.1869 4.4238	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104 -2.0537 6.2104
C C C C C C C C C C C C C H H H H H H H H H H H H H H H H H H	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898 -4.0001 0.7649 6.2959 -0.7649 -1.4364	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337 2.1869 4.4338	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104 -2.0537 6.2104
C C C C C C C C C C C C C C H H H H H H	1.7626 -5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898 -4.0001 0.7649 6.2959 -0.7649 -4.494	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337 2.1869 4.4338 -0.5196	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104 -2.0537 6.2104 -3.2509
C C C C C C C C C C C C H H H H H H H H H H H H H H H H H	1.7626 -5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898 -4.0001 0.7649 6.2959 -0.7649 -4.494 -5.3677	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337 2.1869 4.4338 -0.5196 2.1318	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104 -2.0537 6.2104 -3.2509 5.9733
C C C C C C C C C C C C C C C C C C C H H H H H H H H H H H	$\begin{array}{c} 1.7626 \\ -5.877 \\ -6.6448 \\ \hline 8.1042 \\ \hline 3.3085 \\ \hline 5.8733 \\ \hline 4.333 \\ \hline 1.4192 \\ -1.4366 \\ \hline 3.6339 \\ \hline 0.3079 \\ -3.7472 \\ -2.1898 \\ \hline -4.0001 \\ \hline 0.7649 \\ \hline 6.2959 \\ -0.7649 \\ \hline -4.494 \\ -5.3677 \\ \hline 3.0665 \end{array}$	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337 2.1869 4.4338 -0.5196 2.1318 -2.0182	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104 -2.0537 6.2104 -3.2509 5.9733 -6.2168
C C C C C C C C C C C C C C C C C C C H	$\begin{array}{c} 1.7020 \\ -5.877 \\ -6.6448 \\ \hline 8.1042 \\ \hline 3.3085 \\ \hline 5.8733 \\ \hline 4.333 \\ \hline 1.4192 \\ -1.4366 \\ \hline 3.6339 \\ \hline 0.3079 \\ -3.7472 \\ \hline -2.1898 \\ \hline -4.0001 \\ \hline 0.7649 \\ \hline 6.2959 \\ -0.7649 \\ \hline -4.494 \\ -5.3677 \\ \hline 3.0665 \\ \hline 0.0115 \\ \end{array}$	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337 2.1869 4.4338 -0.5196 2.1318 -2.0182 -0.7388	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104 -2.0537 6.2104 -3.2509 5.9733 -6.2168 5.6061
С С С С С С С С С С С С С С С С С С С	-5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898 -4.0001 0.7649 6.2959 -0.7649 -4.494 -5.3677 3.0665 0.0115 2.1898	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337 2.1869 4.4338 -0.5196 2.1318 -2.0182 -0.7388 0.2436	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104 -3.2509 5.9733 -6.2168 5.6061 2.4324
C C C C C C C C C C C C C C C C C C C H	1.7626 -5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898 -4.0001 0.7649 6.2959 -0.7649 -4.494 -5.3677 3.0665 0.0115 2.1898	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337 2.1869 4.4338 -0.5196 2.1318 -2.0182 -0.7388 -0.2436	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104 -2.0537 6.2104 -3.2509 5.9733 -6.2168 5.6061 -3.4334
C C C C C C C C C C C C C C H H H H H H H H H H H H H H H H H	1.7626 -5.877 -6.6448 8.1042 3.3085 5.8733 4.333 1.4192 -1.4366 3.6339 0.3079 -3.7472 -2.1898 -4.0001 0.7649 6.2959 -0.7649 -4.494 -5.3677 3.0665 0.0115 2.1898 -2.5739	1.699 -1.7437 -4.4301 3.7115 -3.2094 4.7979 -0.0573 0.4133 1.5997 -0.4729 -2.5748 1.5359 0.2436 3.3317 -4.4337 2.1869 4.4338 -0.5196 2.1318 -2.0182 -0.7388 -0.2436 -1.896	7.2497 1.1543 -1.5249 -0.3716 3.6324 -0.8267 2.3325 6.7746 -8.2248 7.7486 -6.2054 -0.6268 3.4334 -1.8825 -6.2104 -2.0537 6.2104 -3.2509 5.9733 -6.2168 5.6061 -3.4334 -7.8588

Н	3.7472	-1.5359	0.6268
Н	-5.4761	-2.2962	-2.1575
Н	7.374	-0.4355	-2.5804
Н	8.8359	-2.8213	-6.5783
Н	7.3811	-1.9199	-7.0199
Н	7.2461	-3.4527	-6.1335
Н	-2.8743	4.9388	-4.8135
Н	-2.9332	-0.0084	-4.6717
Н	-9.813	0.8123	5.4996
Н	-8.3666	-0.1524	5.8601
Н	-8.9717	-0.0448	4.2006
Н	-3.0665	2.0182	6.2168
Н	7.1275	5.4136	1.5085
Н	7.2014	3.8021	2.2303
Н	5.6297	4.5676	1.9152
Н	4 0001	-3 3317	1 8825
Н	-6.3419	-5.7896	0.8159
Н	-5 8676	-4 4434	1 8628
Н	-4 8308	-4 9091	0.5077
Н	-1 1019	-3 7616	-7 3091
Н	1 1019	3 7616	7 3091
Н	-8 5002	-4 6948	0.3586
Н	8 6769	3.0400	0.3380
Ц	8 1723	3 3 2 5	1 30/2
П Ц	-0.1723	-3.323	5 6061
11	-0.0115	0.7388	-5.0001
П	2.9552	2.0170	4.0/1/
П	9.0142	-3.01/9	-4.2402
Н	8.0301	-3.39/9	-3.0802
П	8.7839	-2.1989	-2.9092
H	5.4/61	2.2962	2.15/5
H	5.36//	-2.1318	-5.9/33
H	-9.6142	3.01/9	4.2402
H	-8./859	2.1989	2.9092
H	-8.0301	3.5979	3.6862
H	2.2426	-3.6521	6.8141
Н	-/.3/4	0.4355	2.5804
H	9.813	-0.8123	-5.4996
Н	8.9717	0.0448	-4.2006
Н	8.3666	0.1524	-5.8601
Н	2.8743	-4.9388	4.8135
Н	-8.8359	2.8213	6.5783
Н	-7.2461	3.4527	6.1335
Н	-7.3811	1.9199	7.0199
Н	2.5739	1.896	7.8588
Н	-6.2959	-2.1869	2.0537
Н	-7.1275	-5.4136	-1.5085
Н	-5.6297	-4.5676	-1.9152
Н	-7.2014	-3.8021	-2.2303
Н	8.5902	4.6948	-0.3586
Н	8.1723	3.325	-1.3942
Н	8.6769	3.0409	0.2795
Н	6.3419	5.7896	-0.8159
Н	4.8308	4.9091	-0.5077
Н	5.8676	4.4434	-1.8628
Н	4.494	0.5196	3.2509

3. References for the Supplementary Information

- S1. (a) Bruker, APEX2, 2014. (b) Bruker, APEX3, 2019.
- S2. (a) K. Wakita, Yadokari-XG, Software for Crystal Structure Analyses, 2001. (b) C. Kabuto, S. Akine, T. Nemoto and E. Kwon, *J. Cryst. Soc. Jpn.*, 2009, 51, 218–224.
- S3. G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
- S4. G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- S5. L. Salmon, P. Thuery, E. Riviere, S. Miyamoto, T. Yamato and M. Ephritikhine, *New J. Chem.*, 2006, **30**, 1220–1227.
- S6. Wavefunction Inc., Spartan'20, ver 1.1.2, 2021.