Galvanic Corrosion Underlies Coulombic Efficiency Differences in High-Performing Lithium Metal Battery Electrolytes

Solomon T. Oyakhire^{1,2}[‡], Sang Cheol Kim³[‡], Wenbo Zhang³[‡], Sanzeeda Baig Shuchi¹[‡], Yi Cui^{3,4,5*}, Stacey F. Bent ^{1,4*}

1 Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.

2 Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA

- 3 Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
- 4 Department of Energy Science and Engineering, Stanford University, Stanford, CA 94305, USA.

5 Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

+ equal contributions.

Supplementary Figure 1: **a**, **b** Forward stepwise selection applied to low and high-performance electrolytes, respectively.

Supplementary Figure 2: Residual sum of squares as a function of number of features for the high-performance electrolytes.

Supplementary Figure 3: Prediction performance of the four-feature model on low-performing electrolytes a. Comparison of predicted CE with measured CE. b. Residual error for all low-performing electrolytes, calculated as the difference between measured and predicted CE.

Supplementary Figure 4: Prediction performance of the four-feature model on high-performing electrolytes a. Comparison of predicted CE with measured CE. b. Residual error for all high-performing electrolytes, calculated as the difference between measured and predicted CE.

Supplementary Figure 5: Cross sectional view of lithium morphology formed in our high-performing electrolytes.

Supplementary Figure 6: Replicate Nyquist plots of lithium-ion conductivity measurements in symmetric stainless-steel Swagelok cells for our new electrolytes synthesized using 1M LiFSI in **a**. EBE, **b**. DBE, **c**. DiPE, **d**. DPE, **e**. DEE solvents, respectively.

Supplementary Table 1: Complete list of derivative features (products and ratios) used for correlation analysis.

Pearson	Spearman	Feature	Feature formula
Coefficient	Coefficient	name	
-0.99	-0.9	corrosion	$\int_{0}^{48} i dt$
-0.35	-0.5	b	$\frac{Overpotential}{Impedance (t = 0h)}$
-0.18	-0.4	f	0verpotential s0
0.42	0.8	0	s0 * F/0
-0.14	-0.4	e	$\frac{Overpotential}{F/O}$
-0.25	-0.9	i	Overpotential * Impedance (t = 0h)
-0.52	-0.4	n	$\frac{F/O}{sO}$
0.52	0.8	q	SEI anion content $*\Delta R^{@}(24h)$
0.46	0.6	S	$\frac{SEI anion \ content}{F/O}$
-0.91	-0.7	v	$\frac{F/O}{\Delta R(24h)}$
0.91	0.9	x	$sO * \Delta R(24h)$
-0.81	-0.9	d	Overpotential
			$\Delta R(24h)$

@ ΔR (t) represents SEI impedance measured at time t relative to SEI impedance measured at time t = 0h