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Supplementary Information
1. Experimental section

Calculation Methods

) mole of initial glucose - mole of glucose in product
Glucose conversion (%) = x 100 % (S1)

mole of initial glucose

) mole of formed product
Product yield (%) = x 100 % (52)
mole of theoretical product

o FA yield (%)
FA selectivity (%) = x 100 % (S3)
Glucose conversion (%)

According to the equation of glucose oxidation to FA with H,0,:
Ce¢H 206 + 6H,0, — 6HCOOH + 6H,0.
6 mol of H,0, are required to fully oxidize 1mol of glucose. Consequently, the theoretical FA amount

was calculated by Eq.(S4):

. Initial glucose (mmol) X FA stoichiometric number (6)
Theoretical FA (mmol) = x 100 %
Glucose stoichiometric number (1)

(84)

Similarly, the production of 1 mol arabinose, 1 mol glycolic acid (GA) and 1 mol acetic acid (AA)
requires the consumption of 1 mol, 3 mol and 3 mol glucoses, respectively. Thus, theoretical by-product

amount was also determined based on the relevant chemical equation S5, S6 and S7.

Theoretical arabinose (mmol)

Initial glucose (mmol) X arabinose stoichiometric number (5)
— x 100 %

Glucose stoichiometric number (1) (S5)
. Initial glucose (mmol) X GA stoichiometric number (3)
Theoretical GA (mmol) = x 100 %
Glucose stoichiometric number (1)
(S6)

. Initial glucose (mmol) X GA stoichiometric number (3)
Theoretical AA (mmol) = — - x 100 %
Glucose stoichiometric number (1)

(S7)
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2. Supplementary Figures

Figure S1. SEM image of (a) pristine MgO, (b) (¢) Cey,9,-MgO, (d) (e) and (f) TEM image of Ce go,-

MgO.
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Figure S2. Nitrogen adsorption/desorption isotherm of MgO and Ce-MgO catalysts.
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Figure S3. Partially enlarged XRD patterns of MgO and Ce-MgO catalysts.
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Figure S4. Product yields and glucose conversion of different catalysts (reaction conditions: 10
g-L7! glucose, 120 mg catalysts, 100% H,0,, 30 °C, 4 h).

Notes:

CeO, preparation method: a calculated amount of cerium nitrate hexahydrate (Ce(NOs);-6H,0) were
dissolved into 60 mL deionized water. Then, the mixed solution was slowly added dropwise to 0.7 mol/L
(35 mL) potassium carbonate (K,CO;) solution. After stirring and precipitation, the separated precipitate
was hydrothermally heated in an oven at 180°C for 2 h. The solid was washed several times and then
calcined in a muffle furnace at 800°C for 5 h.

Ce0,/MgO preparation method: The pure MgO prepared in the study was used as a carrier and
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impregnated with a calculated amount of cerium nitrate hexahydrate (Ce(NO;);-6H,0) solution. The

resulting solid was then calcined at 800 °C in air for 5 hours.
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Figure S5. Carbon balance obtained after oxidation reaction with Ce; ¢.,-MgO

catalyst (reaction conditions: 5 g-L~! glucose, 120 mg catalysts, 100% H,0,, 30°C, 4 h).
Notes:
The total C input was 1.5 mmol. The detailed calculations are as follows:
From HPLC data, it was determined that the C-containing substances present in the liquid phase at the
end of the reaction were glucose, arabinose and formic acid. The carbon concentrations of these were
calculated separately as:
glucose (C): 0.0067 x 6 = 0.0402 mmol, 2.66% of the total C
formic acid (C): 1.405 x 1 = 1.405 mmol, 93.65% of the total C

arabinose (C): 0.0013 x 5= 0.0066 mmol, 0.44% of the total C
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Figure S6. Variation of glucose conversion with time over Ce, ¢.,-MgO and MgO at (a) 303K, (b)

308K, (c) 323K and (d) 318K (reaction conditions: 10 g-L~! glucose, 120 mg catalysts, 100% H,O, ,

Notes:

4 h).

The rate constant is calculated by the following equation:

InC, = -kt (S8)

Where Cy, is the concentration of glucose at different times.

The activation energy is calculated according to Arrhenius equation:

Where k is the reaction rate constant at different temperatures, R is the ideal gas constant, T is

-E

Ink=——+InA (S9)
RT

temperature, and A is the frequency factor.
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Figure S7. HPLC spectrum of corncob hydrothermal liquid, solution after oxidation reaction and

after dehydrogenation.
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Figure S8. Schematic diagram from corncob hydrothermal liquid to FA.
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Figure S9. GC spectra of the product gas from the dehydrogenation reaction.
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Figure S10. Proposed reaction pathway of glucose oxidation to FA over Ce-MgO catalyst (R =

—(CHOH),CH,0H, R' = -(CHOH)CH,OH).

3. Supplementary Tables
S7



Table S1. Binding energies and surface relative contents of Mn and O species over MnOy

catalysts before and after reaction

Catalyst Mg 1s (eV) Opat (€V) Ce* 3d;, (eV)
MgO 1303.96 529.71 -
Cey.50-MgO 1303.45 529.51 915.98
Cey g0,-MgO 1303.35 529.00 915.60
Cey.00,-MgO 1303.57 529.53 916.20
Cey.00-MgO 1303.70 529.50 916.20

Table S2. Quantitative analysis of NH;-TPD and CO,-TPD

CO,-TPD NH;-TPD
Catalyst total consumption total consumption
(mmol-g™") (mmol-g™")
MgO 0.183 0.780
Cey 0%,-MgO 1.393 1.959
Cey 0%-MgO 1.069 3.667

Table S3. Composition of corncob hydrolyzed solution

Components Concentration (mol/L)
Glucose 0.003
Xylose 0.021

Mannose 0.003




