Supplementary Information (SI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

for

Visible-light-Induced Photoredox-Catalyzed Dearomative

Dicarboxylation of Arenes with Formate and CO₂

Jiayuan Li^a, Zeyu Zhang^a, Yaping Yi^a, Chanjuan Xi*^{ab}

^aMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China ^bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

*E-mail: cjxi@tsinghua.edu.cn

Contents

1. General information	S2
2. General procedure	S3
3. Mechanism studies	S4
3.1 Radical capture experiment with TEMPO	S4
3.2 D-labeling experiment with D ₂ O	S5
3.3 ¹³ C-labeling experiment with H ¹³ CO ₂ Na	S8
3.4 ¹³ C-labeling experiment with ¹³ CO ₂	S9
3.5 Stern-Volmer fluorescence quenching experiments	S11
3.6 Light on/off experiments	S13
4. X-ray crystallographic data	S14
5. Cyclic Voltammetry Measurements	S17
6. NMR data of products	S18
7. NMR spectra of products	S27
8. References	S55

1. General information

All the reactions were carried out in pre-dried Schlenk tube. Boc-indoles in this work were synthesized as the literatures reported.¹ The other reagents were purchased from commercially available suppliers and used without further purification. All of the solvents were dried prior to use. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum ether, ethyl acetate, and alcohol.

All NMR spectra are collected on 400 MHz or 600 MHz spectrometer at ambient temperature with CDCl₃ as the solvent. All chemical shifts are reported in δ -scale as parts per million [ppm] (multiplicity, coupling constant *J*, number of protons) relative to TMS (Me₄Si) and d-solvent peaks, respectively. Coupling constants (*J*) are given in Hertz [Hz]. Abbreviations used for signal multiplicity. ¹H and ¹⁹F NMR: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, ddd = doublet of doublets of doublets, tt = triplet, and m = multiplet.

Information about the photoreactor: the photoreactor (Type H106065) used in this research was purchased from GeAo Chem, Wuhan, China. The photoreactor was made up of 8 blue LED bulbs (5 W for each) with a cooler fan to keep room temperature. Spectral distribution: 415 - 430 nm. In the reaction, each Schlenk tube is mainly irradiated by one of the light bulbs. The approximate distance of the tube to the closest light bulb is 2 cm. A magnetic stirrer is placed under the photoreactor to keep the reaction being stirred.

2. General procedure

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added **1** or **3** (0.2 mmol), 4DPAIPN (3.2 mg, 0.004 mmol), DABCO (11.2 mg, 0.1 mmol), HCO₂K (50.4 mg, 0.6 mmol) and K₂CO₃ (82.8 mg, 0.6 mmol), the tube was evacuated and filled CO₂ for three times. Then the anhydrous DMSO (2 mL) was added to the tube under the CO₂ atmosphere. The solution was bubbled with CO₂ for 5 min. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 24 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with 5 mL dichloromethane for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The yields were determined by crude ¹H NMR using dibromomethane (CH₂Br₂) or dichloroethylene (C₂H₂Cl₂) as the internal standard. Then the crude product was esterified to allow for further characterization and isolation.

3. Mechanism studies

3.1 Radical capture experiment with TEMPO

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added **1a** (35.6 mg, 0.2 mmol), 4DPAIPN (3.2 mg, 0.004 mmol), DABCO (11.2 mg, 0.1 mmol), HCO₂K (50.4 mg, 0.6 mmol) and K₂CO₃ (82.8 mg, 0.6 mmol), the tube was evacuated and filled CO₂ for three times. Then the anhydrous DMSO (2 mL) and TEMPO (157 mg, 1 mmol) were added to the tube under the CO₂ atmosphere. The solution was bubbled with CO₂ for 5 min. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 24 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with 5 mL dichloromethane for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The yields were determined by crude ¹H NMR using dichloroethylene (C₂H₂Cl₂) as the internal standard. After esterification, the crude product was tested by HRMS(ESI).

3.2 D-labeling experiment with D₂O

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added **1a** (35.6 mg, 0.2 mmol), 4DPAIPN (3.2 mg, 0.004 mmol), DABCO (11.2 mg, 0.1 mmol), HCO₂K (50.4 mg, 0.6 mmol) and K₂CO₃ (82.8 mg, 0.6 mmol), the tube was evacuated and filled N₂ for three times. Then the anhydrous DMSO (2 mL) and D₂O (13.2 μ L, 0.6 mmol) were added to the tube under the N₂ atmosphere. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 24 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with 5 mL dichloromethane for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. After purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent, the deuterium ratio was determined by ¹H NMR.

¹H NMR (the reaction system of 3 equiv. of D_2O , **1a**, in standard condition without CO_2):

Figure S1

¹³C NMR (the reaction system of 3 equiv. of D_2O , **1a**, in standard condition without CO_2):

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added **1a** (35.6 mg, 0.2 mmol), 4DPAIPN (3.2 mg, 0.004 mmol), DABCO (11.2 mg, 0.1 mmol), HCO₂K (50.4 mg, 0.6 mmol) and K₂CO₃ (82.8 mg, 0.6 mmol), the tube was evacuated and filled CO₂ for three times. The solution was bubbled with CO₂ for 5 min. Then the anhydrous DMSO (2 mL) and D₂O (13.2 μ L, 0.6 mmol) were added to the tube under the CO₂ atmosphere. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 24 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with 5 mL dichloromethane for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated

under reduced pressure. After purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent, the deuterium ratio was determined by ¹H NMR.

¹H NMR (the reaction system of 3 equiv. of D₂O, **1a**, in standard condition):

--8-----

For the validation experiment, the reaction conditions were the same as the labeling experiment, except that D₂O was replaced with more equivalents of H₂O (40 μ L, 2 mmol) to gain the reduced product 9, 10-dihydroanthracene. Then 9, 10-dihydroanthracene underwent the D-labeling reaction in the same conditions. The deuterium ratio was determined by ¹H NMR.

¹H NMR (the reaction system in 3 equiv. of D₂O, 9, 10-dihydroanthracene):

3.3 ¹³C-labeling experiment with H¹³CO₂Na

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added **1a** (35.6mg, 0.2 mmol), 4DPAIPN (3.2 mg, 0.004 mmol), DABCO (11.2 mg, 0.1 mmol), H¹³CO₂Na (41.4 mg, 0.6 mmol) and K₂CO₃ (82.8 mg, 0.6 mmol), the tube was evacuated and filled CO₂ for three times. Then the anhydrous DMSO (2 mL) was added to the tube under the CO₂ atmosphere. The solution was bubbled with CO₂ for 5 min. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 24 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with 5 mL dichloromethane for 3 times. The combined organic layers were

dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Then the crude product was esterified to allow for further characterization and isolation. After purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent, the ¹³C ratio was determined by quantitative ¹³C NMR.

Quantitative ¹³C NMR (H¹³CO₂Na):

Assume that the ¹³C labeling ratio of the base is *x*, and the natural abundance of ¹³C is known to be 1.11%, so there are:

$$\frac{1.11\%(1-x)+x}{1.11\%} = \frac{34.64}{2}$$

Solution $x = 18.3\% \approx 20\%$

3.4¹³C-labeling experiment with ¹³CO₂

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added **1a** (35.6 mg, 0.2 mmol), 4DPAIPN (3.2 mg, 0.004 mmol), DABCO (11.2 mg, 0.1 mmol), HCO₂K (50.4 mg, 0.6 mmol) and K₂CO₃ (82.8 mg, 0.6 mmol), the above feeding steps

are all completed in the N₂ atmosphere of the glove box. Then the anhydrous DMSO (2 mL) was added to the tube under the N₂ atmosphere. The solution was bubbled with $^{13}CO_2$ for 5 min. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W) for 24 h. After completion, the reaction was carefully quenched with 2 N HCl and the mixture was extracted with 5 mL dichloromethane for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. Then the crude product was esterified to allow for further characterization and isolation. After purified by silica gel column chromatography with petroleum ether/ethyl acetate as the eluent, the ¹³C ratio was determined by quantitative ¹³C NMR.

Quantitative ¹³C NMR (¹³CO₂):

Figure S6

The calculation was performed as follows:

Assume that the ¹³C labeling ratio of the base is *x*, and the natural abundance of ¹³C is known to be 1.11%, so there are:

$$\frac{1.11\%(1-x)+x}{1.11\%} = \frac{180.99}{2}$$

Solution $x \approx 1$

3.5 Stern-Volmer fluorescence quenching experiments

Fluorescence quenching experiments were tested on a LS (PERKINELMER(HK)LTD) Spectrofluorophotometer with a 4 mL quartz cuvette with a cap. 4DPAIPN was irradiated at 430 nm and the emission intensity at about 530 nm was observed. In a typical experiment, the emission spectrum of a 10⁻⁵ M solution of 4DPAIPN in anhydrous DMSO was collected.

DABCO: A stock solution of DABCO (0.05 M) was prepared. Then, different amounts of this stock solution were added to 2 mL of 4DPAIPN in DMSO (10^{-5} M).

1a (anthracene): A stock solution of **1a** (0.02 M) was prepared. Then, different amounts of this stock solution were added to 2 mL of 4DPAIPN in DMSO (10^{-5} M).

HCO₂K: A stock solution of HCO₂K (0.05 M) was prepared. Then, different amounts of this stock solution were added to 2 mL of 4DPAIPN in DMSO (10^{-5} M).

1h (phenanthrene), **1m** (naphthalene), **3d** (Boc-indole): A stock solution of **1h/1m/3d** (0.02 M) was prepared. Then, different amounts of this stock solution were added to 3 mL of 4DPAIPN in DMSO (10⁻⁵ M).

Figure S7

The results of Stern-Volmer fluorescence quenching experiments suggested that **1a**, **1j**, **1p** and **3d** are all able to quench the PC* (4DPAIPN*). Considering that the S11

phenanthrene ($E_0^{\text{red}} = -2.49 \text{ V}$ in DMSO *vs.* SCE), Boc-indole ($E_0^{\text{red}} = -2.70 \text{ V}$ in DMSO *vs.* SCE), benzothiophene ($E_0^{\text{red}} = -2.80 \text{ V}$ in DMSO *vs.* SCE) and benzofuran ($E_0^{\text{red}} = -2.87 \text{ V}$ in MeCN *vs.* SCE) cannot be directly reduced by PC⁻⁻ [$E_{1/2}$ (PC/PC⁺⁻) = -1.52 V *vs.* SCE] or CO₂⁻⁻ ($E_{1/2} = -2.21 \text{ V}$ in DMF *vs.* SCE) because of their high E_0^{red} , we believe that these substrates might quench the PC^{*} or potentially generated PC'* (4DPA-Me-IBN*) by energy transfer instead of electron transfer, despite no diradicals detected.

Figure S8

3.6 Light on/off experiments

To a 25 mL Schlenk tube equipped with a magnetic stir bar was added **1a** (35.6 mg, 0.2 mmol), 4DPAIPN (3.2 mg, 0.004 mmol), DABCO (11.2 mg, 0.1 mmol), HCO₂K (50.4 mg, 0.6 mmol) and K₂CO₃ (82.8 mg, 0.6 mmol), the tube was evacuated and filled CO₂ for three times. Then the anhydrous DMSO (2 mL) was added to the tube under the CO₂ atmosphere. The solution was bubbled with CO₂ for 5 min. The reaction tube was sealed and stirred at room temperature under blue LEDs (5 W). Turn on/off the blue LEDs every 2 hours and quenched one reaction with 2 N HCl at the same time until all the reactions were quenched. Each reaction mixture was extracted with 5 mL dichloromethane for 3 times. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The yields were determined by crude ¹H NMR using dichloroethylene (C₂H₂Cl₂) as the internal standard. **Table S1.** Light on/off experiment (**1h**)^{*a*}

C	+	4DPAIPN (2 HCO ₂ K (3 DMSO	2 4DPAIPN (2 mol%), DABCO (50 mol%) HCO ₂ K (3 equiv.), K ₂ CO ₃ (3 equiv.) DMSO (0.1 M), Blue LEDs, rt then 2 N HCI			
•	Entry	time (h)	reaction time (h)	Yield (%) ^b		
	0	2	2	14		
	1	4	2	14		
	2	6	4	37		
	3	8	4	37		
	4	10	6	53		
	5	12	6	53		

COLH

^{*a*}Reaction conditions: **1a** (0.2 mmol), 4DPAIPN (2 mol%), DABCO (50 mol%), HCO₂K (3 equiv.), K₂CO₃ (3 equiv.), DMSO (0.1 M), 5 W blue LEDs, room temperature, 1 atm CO₂ atmosphere. ^{*b*}Crude ¹H NMR yield.

Figure S9

4. X-ray crystallographic data

4.1 X-ray crystallographic data of 2a

Crystal data and structure refinement for 2a

Empirical formula	$C_{18}H_{16}O_4$			
Formula weight	296.31			
Temperature/K	169.9(3)			
Crystal system	triclinic			
Space group	P-1			
a/Å	7.4833(6)			
b/Å	8.3504(7)			
c/Å	13.1170(8)			
α/\circ	87.703(6)			
β/°	79.960(6)			
$\gamma/^{\circ}$	63.498(8)			
Volume/Å ³	721.64(11)			
Z	2			
$\rho_{calc}g/cm^3$	1.364			
μ/mm^{-1}	0.788			
F(000)	312.0			
Crystal size/mm ³	$0.42 \times 0.35 \times 0.25$			
Radiation	$Cu K\alpha (\lambda = 1.54184)$			
2Θ range for data collection/° 6.85 to 151.772				
Index ranges	$-9 \le h \le 8, -10 \le k \le 9, -16 \le l \le 15$			
Reflections collected	8294			
Independent reflections	2898 [$R_{int} = 0.0268, R_{sigma} = 0.0271$]			
Data/restraints/parameters	2898/0/202			
Goodness-of-fit on F ²	1.062			
Final R indexes [I>= 2σ (I)]	$R_1=0.0381,wR_2=0.1012$			
Final R indexes [all data]	$R_1 = 0.0410, wR_2 = 0.1032$			
Largest diff. peak/hole / e Å ⁻³ 0.25/-0.17				

4.2 X-ray crystallographic of (1R,2R)-1,2data

dihydroacenaphthylene-1,2-dicarboxylic acid

Crystal data and structure refinement for (1R,2R)-1,2-dihydroacenaphthylene-				
1,2-dicarboxylic acid				
Empirical formula	$C_{14}H_{10}O_4$			
Formula weight	121.11			
Temperature/K	170.0(4)			
Crystal system	orthorhombic			
Space group	Pccn			
a/Å	5.56956(10)			
b/Å	10.83565(18)			
c/Å	18.2517(3)			
$\alpha/^{\circ}$	90			
β/°	90			
$\gamma/^{\circ}$	90			
Volume/Å ³	1101.49(3)			
Z	8			
$\rho_{calc}g/cm^3$	1.461			
μ/mm^{-1}	0.901			
F(000)	504.0			
Crystal size/mm ³	$0.25 \times 0.22 \times 0.18$			
Radiation	Cu Ka ($\lambda = 1.54184$)			
2Θ range for data collection/°	9.692 to 151.362			
Index ranges	$-6 \le h \le 7, -13 \le k \le 12, -22 \le l \le 21$			
Reflections collected	11646			
Independent reflections	1135 [$R_{int} = 0.0298$, $R_{sigma} = 0.0146$]			
Data/restraints/parameters	1135/0/85			
Goodness-of-fit on F ²	1.034			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0332, wR_2 = 0.0890$			
Final R indexes [all data]	$R_1 = 0.0345, wR_2 = 0.0900$			
Largest diff. peak/hole / e Å ⁻³	0.25/-0.16			

5. Cyclic Voltammetry Measurements

Cyclic voltammetry (CV) was performed with CHI-660E electrochemical workstation with a three-electrode system. A glassy carbon served as the working electrode, a platinum wire served as the counter electrode and a saturated calomel reference electrode was employed. The scan rate for the experiment was $0.2 \text{ V} \cdot \text{s}^{-1}$. The scan direction was negative. The cyclic voltammetry was carried out with 100 mM DMSO solution of ⁿBu₄N·ClO₄ containing 2 mM of phenanthrene and heteroarenes under a argon gas atmosphere at room temperature.

6. NMR data of products

Dimethyl (9S,10S)-9,10-dihydroanthracene-9,10-dicarboxylate (2a)² (**d.r.** = **8:1**): white solid, 52.7 mg, 89% yield, (PE: EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (dd, *J* = 5.6, 3.2 Hz, 4H), 7.32 (dd, *J* = 5.6, 3.2 Hz, 4H), 4.97 (s, 2H), 3.57 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.6, 133.6, 129.6, 127.7, 52.5, 52.0.

Dimethyl (9R,10S)-2,3-dimethyl-9,10-dihydroanthracene-9,10-dicarboxylate (2b) (d.r. > 20:1): colorless liquid, 55.1 mg, 85% yield, (PE: EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 (dd, *J* = 5.6, 3.3 Hz, 2H), 7.31 (dd, *J* = 5.6, 3.3 Hz, 2H), 7.21 (s, 2H), 4.91 (s, 2H), 3.57 (s, 6H), 2.27 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.0, 136.2, 133.9, 130.9, 130.6, 129.6, 127.6, 52.6, 51.6, 19.6.

HRMS (ESI) calculated m/z $[M+Na]^+$ for $C_{20}H_{20}NaO_4$ 347.1259, found 347.1257.

Dimethyl (9R,10S)-2-(tert-butyl)-9,10-dihydroanthracene-9,10-dicarboxylate (2c) (**d.r.** > **20:1):** colorless liquid, 66.2 mg, 94% yield, (PE: EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.40 (m, 3H), 7.40 – 7.33 (m, 2H), 7.30 (dd, *J* = 5.8, 3.3 Hz, 2H), 4.96 (s, 1H), 4.94 (s, 1H), 3.58 (s, 3H), 3.56 (s, 3H), 1.34 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.8, 150.5, 133.9, 133.9, 133.2, 130.6, 129.6, 129.4, 129.2, 127.6, 126.4, 124.9, 52.5, 52.4, 52.4, 51.6, 34.6, 31.4.

HRMS (ESI) calculated m/z $[M+Na]^+$ for C₂₂H₂₄NaO₄ 375.1572, found 375.1569.

Dimethyl 2,6-dimethoxy-9,10-dihydroanthracene-9,10-dicarboxylate (2d) (d.r. > **20:1):** yellow liquid, 37.0 mg, 52% yield, (PE: EA = 5:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.34 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 2.6 Hz, 2H), 6.88 (dd, *J* = 8.4, 2.6 Hz, 2H), 4.88 (s, 2H), 3.83 (s, 6H), 3.58 (s, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 171.9, 159.0, 135.1, 130.4, 125.8, 114.5, 113.8, 55.5, 52.5, 51.5.

HRMS (ESI) calculated $m/z [M+Na]^+$ for $C_{20}H_{20}NaO_6$ 379.1158, found 379.1157.

Dimethyl (9R,10S)-2,6-dimethoxy-9,10-dihydroanthracene-9,10-dicarboxylate (2e) (d.r. > 20:1): colorless liquid, 43.9 mg, 62% yield, (PE: EA = 2:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (d, *J* = 1.8 Hz, 1H), 8.01 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.46 (td, *J* = 6.0, 3.3 Hz, 2H), 7.36 (dd, *J* = 6.0, 3.3 Hz, 2H), 5.04 (s, 1H), 5.03 (s, 1H), 3.93 (s, 3H), 3.59 (s, 3H), 3.58 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.2, 138.8, 133.3, 133.1, 130.9, 129.9, 129.7, 128.8, 128.0, 52.7, 52.4, 52.1, 52.0, 29.8.

HRMS (ESI) calculated m/z $[M+Na]^+$ for C₂₀H₁₈NaO₆ 377.1001, found 377.1000.

Dimethyl (9R,10S)-2-phenyl-9,10-dihydroanthracene-9,10-dicarboxylate (2f) (d.r. > **20:1):** colorless liquid, 43.2 mg, 58% yield, (PE: EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 (d, *J* = 1.9 Hz, 1H), 7.61 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.55 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.40 (m, 4H), 7.37 – 7.31 (m, 3H), 5.03 (s, 1H), 5.00 (s, 1H), 3.59 (d, *J* = 7.8 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.6, 171.6, 140.7, 140.7, 134.1, 133.6, 132.7, 130.0, 129.7, 129.6, 128.9, 128.2,

127.8, 127.5, 127.3, 126.5, 52.6, 52.6, 52.2, 51.7.

HRMS (ESI) calculated m/z $[M+Na]^+$ for $C_{24}H_{20}NaO_4$ 395.1259, found 395.1256.

Dimethyl (9R,10S)-2-fluoro-9,10-dihydroanthracene-9,10-dicarboxylate (2g)² (d.r. > 20:1): white solid, 51.5 mg, 82% yield, (PE: EA = 5:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.44 (dt, *J* = 6.0, 3.2 Hz, 2H), 7.40 (dd, *J* = 8.4, 6.0 Hz, 1H), 7.34 (dd, *J* = 6.0, 3.2 Hz, 2H), 7.16 (dd, *J* = 6.0, 2.7 Hz, 1H), 7.03 (td, *J* = 8.4, 2.7 Hz, 1H), 4.95 (s, 1H), 4.93 (s, 1H), 3.60 (s, 3H), 3.58 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 171.5, 171.1, 162.1 (d, *J* = 246.13 Hz), 135.8 (d, *J* = 7.6 Hz), 133.5, 133.0, 131.0 (d, *J* = 7.6 Hz), 129.6, 129.5, 127.9 (d, *J* = 6.0 Hz), 116.4, 116.2, 115. 0, 114.8, 52.7, 52.6, 52.0, 51.4. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -114.9.

Dimethyl (5R,12S)-5,12-dihydrotetracene-5,12-dicarboxylate (2h)² (d.r. > 20:1): white solid, 49.1 mg, 71% yield, (PE: EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (s, 2H), 7.86 (dd, J = 5.9, 3.3 Hz, 2H), 7.50 (ddd, J = 9.4, 5.9, 3.3 Hz, 4H), 7.38 (dd, J = 5.9, 3.3 Hz, 2H), 5.14 (s, 2H), 3.60 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.7, 133.9, 132.7, 131.6, 129.8, 128.5, 127.8, 127.6, 126.2, 52.6, 52.3.

Dimethyl (9S,10S)-9,10-diphenyl-9,10-dihydroanthracene-9,10-dicarboxylate (2i) (**d.r.** > 20:1): white solid, 38.5 mg, 43% yield, (PE: EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.28 (m, 6H), 7.18 (dd, *J* = 7.9, 2.0 Hz, 4H), 7.14 (dd, *J* = 6.0, 3.4 Hz, 4H), 6.94 (dd, *J* = 6.0, 3.4 Hz, 4H), 3.63 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.9, 145.7, 138.7, 131.1, 130.1, 128.2, 127.0, 61.7, 52.8. HRMS (ESI) calculated m/z [M+Na]⁺ for C₃₀H₂₄NaO₄ 471.1572, found 471.1566.

Dimethyl 9,10-dihydrophenanthrene-9,10-dicarboxylate $(2j)^3$ (d.r. > 20:1): colorless liquid, 41.5 mg, 70% yield, (PE: EA = 5:1). ¹H NMR (400 MHz, Chloroformd) δ 7.74 (dd, J = 7.7, 1.5 Hz, 2H), 7.38 – 7.34 (m, 4H), 7.31 – 7.26 (m, 2H), 4.41 (s, 2H), 3.55 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 172.1, 133.3, 131.6, 130.2, 128.6, 128.1, 124.1, 52.6, 47.1.

Dimethyl 5,6-dihydrochrysene-5,6-dicarboxylate (2k) (d.r. > 20:1): colorless liquid, 54.7 mg, 79% yield, (PE: EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 – 8.49 (m, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.88 – 7.84 (m, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.51 – 7.44 (m, 4H), 7.41 (td, J = 7.6, 1.6 Hz, 1H), 7.36 – 7.31 (m, 1H), 4.50 (d, J = 3.2 Hz, 1H), 4.42 (d, J = 3.2 Hz, 1H), 3.52 (s, 3H), 3.49 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) & 171.8, 171.8, 134.6, 133.8, 133.0, 131.2, 131.2, 130.0, 129.8, 129.2, 128.8, 128.4, 127.7, 127.6, 127.4, 126.5, 125.9, 125.8, 52.6, 48.4, 47.6.

HRMS (ESI) calculated m/z [M+Na]⁺ for C₂₂H₁₈NaO₄ 369.1103, found 369.1101.

Dimethyl 1,2,3,10b-tetrahydrofluoranthene-1,2-dicarboxylate (2l) (d.r. = 1.2:1): colorless liquid, 21.9 mg, 34% yield, (PE: EA = 5:1). ¹H NMR (400 MHz, Chloroform*d*) δ 7.75 (d, *J* = 7.4 Hz, 1H), 7.63 (d, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 1H), 7.40– 7.37 (m, 2H), 7.29 – 7.26 (m, 1H), 7.26 – 7.22 (m, 1H), 4.14 (t, J = 9.7 Hz, 1H), 4.05 – 3.96 (m, 1H), 3.89 (m, 3H), 3.78 – 3.70 (m, 3H), 2.84 – 2.67 (m, 1H), 2.59 – 2.49 (m, 1H), 2.42 (dtd, J = 27.4, 11.2, 4.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.1, 175.4, 174.0, 145.5, 143.7, 141.4, 140.2, 130.9, 128.4, 127.7, 127.2, 126.0, 125.3, 120.6, 118.9, 52.2, 46.3, 43.6, 42.1, 40.9, 31.4.

HRMS (ESI) calculated m/z $[M+Na]^+$ for C₂₀H₁₈NaO₄ 345.1103, found 345.1095.

Methyl 1,2,3,10b-tetrahydrofluoranthene-1-carboxylate (2l'): colorless liquid, 16.4 mg, 31% yield, (PE: EA = 30:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 7.4 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.25 (t, *J* = 6.3 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 4.00 (d, *J* = 10.7 Hz, 1H), 3.87 (s, 3H), 3.15 (dt, *J* = 16.7, 4.8 Hz, 1H), 2.90 – 2.79 (m, 1H), 2.38 – 2.26 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.6, 145.9, 143.4, 141.7, 139.7, 134.1, 128.0, 127.6, 126.9, 125.6, 125.1, 120.6, 117.5, 52.1, 46.7, 43.2, 28.4, 26.2. HRMS (ESI) calculated m/z [M+Na]⁺ for C₁₈H₁₆NaO₂ 287.1048, found 287.1045.

Dimethyl 1,2-dihydroacenaphthylene-1,2-dicarboxylate $(2m)^2$ (d.r. > 20:1): yellow solid, 30.2 mg, 56% yield, (PE: EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 8.1 Hz, 2H), 7.59 (d, *J* = 7.0 Hz, 2H), 7.51 (dd, *J* = 8.1, 7.0 Hz, 2H), 5.13 (s, 2H), 3.83 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.2, 139.8, 136.8, 31.6, 28.2, 124.4, 121.0, 52.8, 51.8.

Methyl 1,2-dihydroacenaphthylene-1-carboxylate (2m'): colorless liquid, 7.6 mg, 18% yield, (PE: EA = 30:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (dd, *J* = 6.7, 2.2 Hz, 1H), 7.62 (d, *J* = 8.3 Hz, 1H), 7.51 – 7.44 (m, 3H), 7.32 (d, *J* = 6.9 Hz, 1H), 4.59 (dd, *J* = 8.8, 4.1 Hz, 1H), 3.87 (dd, *J* = 17.4, 4.1 Hz, 1H), 3.79 (s, 3H), 3.62 (dd, *J* = 3.2 Hz, 1H), 3.87 (dd, *J* = 17.4, 4.1 Hz, 1H), 3.79 (s, 3H), 3.62 (dd, *J* = 3.2 Hz, 1H), 3.87 (dd, *J* = 17.4, 4.1 Hz, 1H), 3.79 (s, 3H), 3.62 (dd, *J* = 3.2 Hz, 1H), 3.87 (dd,

= 17.4, 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 143.4, 142.3, 138.3, 131.7, 128.2, 128.0, 124.1, 122.8, 120.5, 119.7, 52.5, 48.5, 34.3.

HRMS (ESI) calculated m/z $[M+Na]^+$ for C₁₄H₁₂NaO₂ 235.0735, found 235.0730.

Methyl 10-phenyl-9,10-dihydrophenanthrene-9-carboxylate (2o') (d.r. > 20:1): colorless liquid, 20.1 mg, 32% yield, (PE: EA = 15:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (ddd, J = 7.9, 4.3, 1.3 Hz, 2H), 7.35 (qd, J = 7.5, 1.4 Hz, 2H), 7.24 - 7.19 (m, 2H), 7.17 (d, J = 2.2 Hz, 1H), 7.17 - 7.13 (m, 2H), 7.13 - 7.07 (m, 2H), 7.13 -7.06 - 7.02 (m, 2H), 4.69 (d, J = 5.0 Hz, 1H), 4.11 (d, J = 5.0 Hz, 1H), 3.55 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 173.2, 142.0, 137.0, 134.2, 133.8, 132.0, 129.7, 129.5, 128.6, 128.5, 128.3, 128.0, 127.9, 126.9, 124.0, 52.8, 52.3, 47.1.

HRMS (ESI) calculated m/z $[M+Na]^+$ for C₂₂H₁₈NaO₂ 337.1204, found 337.1199.

1-(*tert*-Butyl) 2,3-dimethyl 7-cyanoindoline-1,2,3-tricarboxylate (4a) (d.r. > 20:1): yellow liquid, 39.6 mg, 55% yield, (PE: EA = 10:1). ¹H NMR (600 MHz, Chloroformd) δ 7.58 – 7.56 (m, 2H), 7.11 (t, J = 7.7 Hz, 1H), 5.51 (d, J = 2.8 Hz, 1H), 4.19 (d, J = 2.8 Hz, 1H), 3.79 - 3.77 (m, 6H), 1.59 (d, J = 1.7 Hz, 9H). ¹³C NMR (151 MHz, Chloroform-d) § 170.6, 169.6, 151.5, 143.2, 134.6, 130.0, 129.9, 124.1, 117.2, 102.1, 84.3, 64.5, 53.4, 53.2, 49.5, 28.2.

HRMS (ESI) calculated m/z $[M+Na]^+$ for C₁₈H₂₀N₂NaO₆ 383.1219, found 383.1213.

1-(tert-Butyl) 2,3-dimethyl 5-(trifluoromethyl) indoline-1,2,3-tricarboxylate (4b) (d.r. > 20:1): yellow liquid, 67.7 mg, 84% yield, (PE: EA = 10:1). ¹H NMR (400 MHz,

Chloroform-*d*) δ 8.01 (s, 1H), 7.60 – 7.52 (m, 2H), 5.48 – 5.34 (m, 1H), 4.20 (d, *J* = 4.0 Hz, 1H), 3.82 (s, 3H), 3.78 (s, 3H), 1.54 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.8, 169.8, 151.2, 145.3, 127.3, 127.3, 125.0 (q, *J* = 32.3 Hz), 124.3 (q, *J* = 272.7 Hz), 122.6, 114.9, 82.7, 63.0, 53.4, 52.8, 49.4, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -61.8.

HRMS (ESI) calculated m/z $[M+Na]^+$ for $C_{18}H_{20}F_3NNaO_6$ 426.1140, found 426.1136.

1-(*tert*-Butyl) 2,3-dimethyl 5-fluoroindoline-1,2,3-tricarboxylate (4c)⁴ (d.r. > 20:1): yellow liquid, 55.1 mg, 78% yield, (PE: EA = 10:1). ¹H NMR (400 MHz, Chloroform*d*) δ 7.87 (s, 1H), 7.06 (dd, J = 8.1, 2.8 Hz, 1H), 6.97 (td, J = 8.9, 2.8 Hz, 1H), 5.36 (s, 1H), 4.15 (d, J = 4.1 Hz, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 1.51 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.1, 169.9, 158.8 (d, J = 242.4 Hz), 151.3, 138.5, 126.6, 116.0 (d, J = 23.2 Hz), 115.7 (d, J = 7.1 Hz), 112.6 (d, J = 25.3 Hz), 82.0, 62.9, 53.3, 52.7, 49.6, 28.2. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -120.6.

1-(*tert*-Butyl) **2,3-dimethyl indoline-1,2,3-tricarboxylate** $(4d)^5$ (d.r. > 20:1): colorless liquid, 20.8 mg, 31% yield, (PE: EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.36 – 7.31 (m, 1H), 7.30 – 7.24 (m, 1H), 6.98 (td, *J* = 7.5, 1.1 Hz, 1H), 5.35 (s, 1H), 4.17 (d, *J* = 4.1 Hz, 1H), 3.79 (s, 3H), 3.76 (s, 3H), 1.52 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.6, 129.6, 125.2, 122.9, 115.1, 62.8, 53.2, 52.7, 29.8, 28.4.

1-(tert-butyl) 2-methyl indoline-1,2-dicarboxylate (4d')⁶: colorless liquid, 15.0 mg,

27% yield, (PE: EA = 20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 7.10 (dd, *J* = 7.5, 1.3 Hz, 1H), 6.94 (td, *J* = 7.5, 1.1 Hz, 1H), 4.87 (s, 1H), 3.75 (s, 3H), 3.50 (dd, *J* = 16.6, 11.4 Hz, 1H), 3.11 (dd, *J* = 16.6, 4.7 Hz, 1H), 1.50 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.6, 128.0, 124.5, 122.7, 114.8, 81.4, 60.5, 52.4, 32.8, 29.8, 28.4.

Dimethyl 2,3-dihydrobenzo[b]thiophene-2,3-dicarboxylate (4e) (d.r. > 20:1): colorless liquid, 21.2 mg, 42% yield, (PE: EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.17 – 7.13 (m, 1H), 7.09 (td, *J* = 7.5, 1.4 Hz, 1H), 4.99 (d, *J* = 6.1 Hz, 1H), 4.81 (d, *J* = 6.1 Hz, 1H), 3.80 (s, 3H), 3.78 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.4, 171.0, 139.3, 135.3, 129.1, 126.0, 125.1, 121.9, 54.7, 53.2, 53.0, 50.2.

HRMS (ESI) calculated $m/z [M+Na]^+$ for $C_{12}H_{12}NaO_4S$ 275.0354, found 275.0351.

Dimethyl 6-cyano-2,3-dihydrobenzo[b]thiophene-2,3-dicarboxylate (4f) (d.r. > **20:1):** yellow liquid, 17.2 mg, 31% yield, (PE: EA = 10:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (s, 1H), 7.50 – 7.46 (d, *J* = 8.1 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 1H), 5.04 (d, *J* = 5.5 Hz, 1H), 4.86 (d, *J* = 5.5 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.7, 169.8, 146.5, 136.6, 132.8, 129.5, 122.4, 118.8, 108.7, 54.1, 53.5, 50.3, 45.8.

HRMS (ESI) calculated m/z [M+Na]⁺ for C₁₃H₁₁NNaO₄S 300.0306, found 300.0301.

Dimethyl 2,3-dihydronaphtho[2,3-b] thiophene-2,3-dicarboxylate (4g) (d.r. > 20:1): colorless liquid, 25.4 mg, 42% yield, (PE: EA = 15:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.42 (m, 2H), 7.34 – 7.32 (m, 2H), 7.28 (d, *J* = 5.2 Hz, 1H),

7.06 (d, J = 5.2 Hz, 1H), 5.14 (d, J = 1.9 Hz, 1H), 5.05 (d, J = 1.9 Hz, 1H), 3.64 (s, 3H), 3.61 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.5, 171.2, 133.3, 133.0, 132.8, 132.5, 129.8, 129.6, 127.9, 127.7, 126.9, 125.1, 52.8, 52.6, 48.2, 47.4. HRMS (ESI) calculated m/z [M+Na]⁺ for C₁₆H₁₄NaO₄S 325.0510, found 325.0505.

7. NMR spectra of products

 $^{13}C\{^{1}H\}^{6}$ NMR (101 MHz, Chloroform-*d*) spectrum of **2a**

 $^{13}C{^{1}H}$ NMR (101 MHz, Chloroform-*d*) spectrum of **2b**

S29

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) spectrum of **2d**

¹H NMR (400 MHz, Chloroform-*d*) spectrum of **2e**

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) spectrum of **2e**

¹H NMR (400 MHz, Chloroform-*d*) spectrum of **2f**

 $^{13}C{^{1}H} NMR$ (101 MHz, Chloroform-*d*) spectrum of **2f**

 $^{13}C\{^{1}H\}$ NMR (151 MHz, Chloroform-d) spectrum of 2g

$^{19}\mathrm{F}$ NMR (565 MHz, Chloroform-*d*) spectrum of $\mathbf{2g}$

 $^{13}C\{^{1}H\}$ NMR (101 MHz, Chloroform-*d*) spectrum of **2h**

 $^{13}C\{^{1}H\}$ NMR (101 MHz, Chloroform-d) spectrum of **2i**

S37

S38

 $^{13}C{^{1}H}$ NMR (101 MHz, Chloroform-*d*) spectrum of **2**

 $^{13}C{^{1}H}$ NMR (101 MHz, Chloroform-*d*) spectrum of **2**I'

 $^{13}C\{^{1}H\}$ NMR (101 MHz, Chloroform-*d*) spectrum of **2m**

 $^{13}C{^{1}H}$ NMR (101 MHz, Chloroform-*d*) spectrum of **2m'**

¹H NMR (400 MHz, Chloroform-*d*) spectrum of **20'**

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) spectrum of **20'**

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) spectrum of **4a**

 $^{13}C{^{1}H}$ NMR (101 MHz, Chloroform-*d*) spectrum of **4b**

¹³C{¹H} NMR (101 MHz, Chloroform-*d*) spectrum of **4c**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹⁹F NMR (376 MHz, Chloroform-d) spectrum of **4**c

 $^{13}C{^{1}H}$ NMR (101 MHz, Chloroform-*d*) spectrum of **4d**

 $^{13}C\{^{1}H\}$ NMR (101 MHz, Chloroform-*d*) spectrum of **4d'**

 $^{13}C\{^{1}H\}$ NMR (101 MHz, Chloroform-*d*) spectrum of **4f**

 $^{13}C\{^{1}H\}$ NMR (101 MHz, Chloroform-d) spectrum of 4g

8. References

1. Yi, Y.; Fan, Z.; Xi, C., Photoredox-catalyzed intermolecular dearomative trifluoromethylcarboxylation of indoles and heteroanalogues with CO₂ and fluorinated radical precursors. *Green Chemistry* **2022**, *24*, 7894-7899.

2. Ju, T.; Zhou, Y.-Q.; Cao, K.-G.; Fu, Q.; Ye, J.-H.; Sun, G.-Q.; Liu, X.-F.; Chen, L.; Liao, L.-L.; Yu, D.-G., Dicarboxylation of alkenes, allenes and (hetero)arenes with CO₂ via visible-light photoredox catalysis. *Nature Catalysis* **2021**, *4*, 304-311.

3. Quintana, I.; Boersma, A. J.; Peña, D.; Pérez, D.; Guitián, E., Metal-Catalyzed Cotrimerization of Arynes and Alkenes. *Organic Letters* **2006**, *8*, 3347-3349.

4. Xu, P.; Wang, S.; Xu, H.; Liu, Y.-Q.; Li, R.-B.; Liu, W.-W.; Wang, X.-Y.; Zou, M.-L.; Zhou, Y.; Guo, D.; Zhu, X., Dicarboxylation of Alkenes with CO₂ and Formate via Photoredox Catalysis. *ACS Catalysis* **2023**, *13*, 2149-2155.

5. Zhang, X.; Li, Z.; Chen, H.; Shen, C.; Wu, H.; Dong, K., Pairing Electrocarboxylation of Unsaturated Bonds with Oxidative Transformation of Alcohol and Amine. *ChemSusChem* **2023**, *16*, e202300807.

6. Mangaonkar, S. R.; Hayashi, H.; Takano, H.; Kanna, W.; Maeda, S.; Mita, T., Photoredox/HAT-Catalyzed Dearomative Nucleophilic Addition of the CO₂ Radical Anion to (Hetero)Aromatics. *ACS Catalysis* **2023**, *13*, 2482-2488.