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1. Crystal Phase Analysis 

These equations (Eq. S1 to Eq. S6) are used to measure various crystallographic parameters of 
the synthesized ZnO-NPs.
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Within the above equations, the variables h, k, and l correspond to the Miller indices of the 
crystal plane, while a and c represent the lattice parameters. The full width at half maximum 
(FWHM), crystallite size, peak height, shape factor, diffraction angle and density is denoted by 
β (in radians), Dc, Hhkl, k (0.9), θ (in degree) and ρ, respectively.
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2. Crystal size estimation using different XRD models.

2.1. Williamson–Hall Model

2.1.1 Uniform deformation model (UDM)

The UDM of the W-H approach is implemented when the stress arises from isotropic crystal 
deformation, resulting in the strain being consistently distributed across all crystallographic 
lattices. The equation representing the strain within a crystal is given in Eq. S7, and upon 
rearrangement with the Scherrer equation (Eq. 3), it yields the expression shown in Eq. S8.

βstrain = 4.ε.tan(θ) (7)

cos(θ) βtotal = (Kλ)/D + 4.ε.sin(θ) (8)
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Within this expression, ε refers to strain, and the other parameters remain the same as previously 
denoted. The crystallite size can be determined from the intercept of the line by plotting 4sin(θ) 
on the X-axis and cos(θ)βtotal on the Y-axis, while the strain can be obtained from the slope by 
comparing Eq. 8 with the straight-line equation, y = mx + c and the obtained data were depicted 
in Fig. S1.

Fig. S1. Uniform deformation model for a. PZO b. AgZO c. CuZO d. CoZO e. FeZO and f. 
CaZO

2.1.2. Uniform stress deformation model (USDM)

The UDM makes the assumption that the crystal is the same in all directions because real 
crystals are not isotropic. In order to address this, the Uniform Stress Deformation Model 
(USDM) is created by updating the model to incorporate strain variations. The USDM approach 
posits that stress-induced deformation is equally distributed throughout the lattice in all 



directions within the crystallites. Hooke's Law describes a direct relationship between strain (ε) 
and stress (σ), as shown in Eq. S9.                                     

                                                                                                                                   (9)𝜎 = 𝑌ℎ𝑘𝑙.  𝜀

Eq. S10, a revised form of Eq. S8, is obtained by incorporating the strain term into the equation. 
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A comparison of Eq. 3 (Fig. S2) with the straight-line equation, y = mx + c, yields the stress 
from the slope, while the crystallite size can be found from the intercept of the line by plotting 

 on the X-axis and  on the Y-axis.
4.𝑠𝑖𝑛(𝜃)

𝑌ℎ𝑘𝑙 𝑐𝑜𝑠(𝜃) 𝛽𝑡𝑜𝑡𝑎𝑙

Fig. S2. Uniform stress deformation model for a. PZO b. AgZO c. CuZO d. CoZO e. FeZO 
and f. CaZO



2.1.3 Uniform deformation energy density model (UDEDM)

UDM and USDM are the methods based on the uniform strain and uniform strain, respectively. 
UDEDM is a method for studying stress and strain distribution, assuming evenly spread 
deformation energy to predict material behavior under stress 1. Hooke's Law associated with 
energy density is presented as Eq. S11.
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By rearranging Eq. S8 and plotting the value of strain ( ) in the equation, another equation, Eq. 𝜀

S12, is formed that includes the energy density term.
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By using the line’s intercept ( ) and slope ( ), where  plotted on the X-axis and 
𝐾𝜆
𝐷 2𝜇

4.𝑠𝑖𝑛(𝜃)
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plotted on the Y-axis, the crystallite size and energy density can be found by 𝑐𝑜𝑠(𝜃)𝛽𝑡𝑜𝑡𝑎𝑙 

comparing Eq. 12 with the straight-line equation, y = mx + c, portrayed in Fig. S3.  



F
ig. S3. Uniform deformation energy density model for a. PZO b. AgZO c. CuZO d. CoZO e. 
FeZO and f. CaZO

2.2. Scherrer's Model with a linear straight-line method.

The linear straight-line method of Scherrer's equation (LSLMSE) improves the usual way of 
determining crystallite size by using numerous diffraction peaks to increase accuracy instead 
of only one, as in the standard Scherrer equation 2. In the LSLMSE method, the broadening of 
diffraction peaks is linearly related to factors such as the Bragg angle and wavelength. By 
plotting the full width at half maximum (FWHM) against a function of the Bragg angle, the 
slope of the resulting line can be used to determine the average crystallite size.

                                                                                                                                 (13)
𝑐𝑜𝑠𝜃 =
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The crystal size, denoted by DL in this formula, is computed using the linear equation that comes 
from the Scherrer model. With the X-axis representing 1/β in radians and the Y-axis indicating 
cos(θ) in degrees, the values were produced using Eq. S13 (Fig. S4). The crystal sizes displayed 



in Table 2 were determined using the slope, which is defined as m = Kλ/(DL), and this equation, 
which represents the linear form of a straight line (y = mx + c).

Fig. S4. Scherrer's Model with a linear straight-line method for a. PZO b. AgZO c. CuZO d. 
CoZO e. FeZO and f. CaZO

2.3. Monshi–Scherrer method

The Monshi-Scherrer model is particularly effective for assessing the crystallite sizes of 
nanoparticles because it emphasizes reducing errors and incorporates all diffraction peaks in 
the calculation which uses logarithmic values shown in Eq. S14 3.
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In this context,  refers to the crystallite sizes determined using this particular method, with 𝐷𝑀

the associated parameters remaining consistent with those outlined previously. A graph was 
constructed (Fig. S5), from which the values were derived, plotting the natural logarithm of β 
on the X-axis and the natural logarithm of 1/Cosθ on the Y-axis, with measurements in radians 
and degrees, respectively.



Fig. S5. Monshi–Scherrer method for a. PZO b. AgZO c. CuZO d. CoZO e. FeZO and f. 
CaZO

2.4. Shahadat-Scherrer Model

In the SSM technique, peak broadening as a consequence of instrumental effects and strain is 
deemed insignificant. Peak widening related to the crystal size is used to calculate the crystallite 
size using the Eq. S15 that passes through the coordinate origin 4. 
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graph was projected in Fig. S6. Another straight line is drawn by selecting a point at the 
origin, which is used to determine the crystallite size summarized in Table 2.



Fig. S6. Shahadat-Scherrer Model for a. PZO b. AgZO c. CuZO d. CoZO e. FeZO and f. 
CaZO

2.5. Size-Strain plot method

From the previous analysis, it is clear that peak broadening is linked to size and strain 
components, which are represented by the Lorentzian ) and Gaussian (  functions, as (𝛽𝐿 𝛽𝐺)

described in the published article (Eq. 16) 5. This approach is ideal for XRD analysis, where 
minimal peak overlap occurs at lower angles in the powder diffraction method, making the 
defined low-angle range sufficient for predicting crystallite size and strain.

                                  (16)  𝛽𝑡𝑜𝑡𝑎𝑙 = 𝛽𝐿 + 𝛽𝐺



According to Eq. (16), Eq. (17) illustrates the size-strain graph shown in Fig. S7 utilized for 
determining mean strain and crystallite size.

                                   (17)
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Average strain and size can be determined from the intercept of the line by plotting 
 on the X-axis and  on the Y-axis, while the size can be obtained (𝑑 2

ℎ𝑘𝑙 𝛽ℎ𝑘𝑙 𝑐𝑜𝑠𝜃) (𝑑ℎ𝑘𝑙𝛽ℎ𝑘𝑙 𝑐𝑜𝑠𝜃)2

from the slope by comparing Eq. (17) with the straight-line equation, y = mx + c.



Fig. S7. Size-Strain plot method for a. PZO b. AgZO c. CuZO d. CoZO e. FeZO and f. CaZO
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3.1. EDAX analysis

Fig. S8. EDAX analysis for a. PZO b. AgZO c. CuZO d. CoZO e. FeZO and f. CaZO
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