Supplementary Information (SI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Design and development of sulfenylated 5-aminopyrazoles as the inhibitors of acetylcholinesterase and butyrylcholinesterase: Exploring the implication on $A\beta_{1.42}$ aggregation inhibition in Alzheimer's disease Payal Rani,¹ Sandhya Chahal,² Anju Ranolia,¹ Kiran,¹ Devendra Kumar,^{3,9} Ramesh Kataria,⁴ Parvin Kumar,⁵ Devender Singh,⁶ Anil Duhan,¹ Vibhu Jha,⁷ Muhammad Wahajuddin,⁷ Gaurav Joshi,^{7,8}, Jayant Sindhu,^{1*} ¹Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India-125004 ²Department of Chemistry, Chaudhary Ranbir Singh University, Jind, India-126102 ³School of Pharmacy, Narsee Monjee Institute of Management Studies (NMIMS) Dist. Dhule, Maharashtra- 424001 ⁴Department of Chemistry at Panjab University, Chandigarh-160014 ⁵Department of Chemistry, Kurukshetra University, Kurukshetra-136119 ⁶Department of Chemistry, Maharshi Dayanand University, Rohtak-124001 ⁷Institute of Cancer Therapeutics School of Pharmacy and Medical Sciences, University of Bradford, United Kingdom ⁸Department of Pharmaceutical Sciences, Chauras Campus, HNB Garhwal University (A Central University), Srinagar, Uttarakhand 246174, India ⁹Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India

*Address of correspondence may be addressed to:

Gaurav Joshi (Email: garvpharma29@gmail.com; <u>gjoshi@bradford.ac.uk</u>); Jayant Sindhu (Email: jayantchem@gmail.com)

Figure S 1: FT-IR of 3-methyl-1-phenyl-4-(p-tolylthio)-1H-pyrazol-5-amine (3a)

Figure S 2: ¹H NMR of 3-methyl-1-phenyl-4-(p-tolylthio)-1H-pyrazol-5-amine (3a)

Figure S 3: ¹³C NMR of 3-methyl-1-phenyl-4-(p-tolylthio)-1H-pyrazol-5-amine (3a)

Figure S 4: Mass spectrometry of 3-methyl-1-phenyl-4-(p-tolylthio)-1H-pyrazol-5-amine (3a)

Figure S 5: FT-IR of 3-methyl-4-((4-nitrophenyl)thio)-1-phenyl-1*H*-pyrazol-5-amine (3b)

Figure S 6: ¹H NMR of 3-methyl-4-((4-nitrophenyl)thio)-1-phenyl-1*H*-pyrazol-5-amine (3b)

Figure S 7: ¹³C NMR of 3-methyl-4-((4-nitrophenyl)thio)-1-phenyl-1*H*-pyrazol-5-amine (3b)

Figure S 8: Mass spectrometry of 3-methyl-4-((4-nitrophenyl)thio)-1-phenyl-1H-pyrazol-5-amine (3b)

Figure S 9: FT-IR of 4-((4-chlorophenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (3c)

Figure S 10: ¹H NMR of 4-((4-chlorophenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (3c)

Figure S 11: ¹³C NMR of 4-((4-chlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3c)

Figure S 12: Mass spectrometry of 4-((4-chlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3c)

Figure S 13: FT-IR of 4-((2,5-dichlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3d)

сичики ошо (рри)

Figure S 14: ¹H NMR of 4-((2,5-dichlorophenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (3d)

Figure S 15: ¹³C NMR of 4-((2,5-dichlorophenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (3d)

Figure S 16: Mass spectrometry of 4-((2,5-dichlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3d)

Figure S 17: FT-IR of 4-((2-chlorophenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (3e)

13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 Chemical Shift (ppm)

Figure S 18: ¹H NMR of 4-((2-chlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3e)

Figure S 19: ¹³C NMR of 4-((2-chlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3e)

Figure S 20: Mass spectrometry of 4-((2-chlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3e)

Figure S 21: FT-IR of 4-((4-bromophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3f)

Figure S 22: ¹H NMR of 4-((4-bromophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3f)

Figure S 23: ¹³C NMR of 4-((4-bromophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3f)

Figure S 25: FT-IR of 4-((3-chlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3g)

Figure S 26: ¹H NMR of 4-((3-chlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3g)

Figure S 27: ¹³C NMR of 4-((3-chlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3g)

Figure S 28: Mass spectrometry of 4-((3-chlorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3g)

Figure S 29: FT-IR of 4-((4-fluorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3h)

Figure S 30: ¹H NMR of 4-((4-fluorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3h)

Figure S 31: ¹³C NMR of 4-((4-fluorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3h)

Figure S 32: Mass spectrometry of 4-((4-fluorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3h)

Figure S 33: FT-IR of 3-methyl-1-phenyl-4-(phenylthio)-1H-pyrazol-5-amine (3i)

Figure S 34: ¹H NMR of 3-methyl-1-phenyl-4-(phenylthio)-1H-pyrazol-5-amine (3i)

Figure S 35: ¹³C NMR of 3-methyl-1-phenyl-4-(phenylthio)-1H-pyrazol-5-amine (3i)

Figure S 36: Mass spectrometry of 3-methyl-1-phenyl-4-(phenylthio)-1H-pyrazol-5-amine (3i)

Figure S 37: FT-IR of 4-((3-fluorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3j)

Figure S 38: ¹H NMR of 4-((3-fluorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3j)

Figure S 39: ¹³C NMR of 4-((3-fluorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3j)

Figure S 40: Mass spectrometry of 4-((3-fluorophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3j)

Figure S 41: FT-IR of 3-methyl-4-(naphthalen-2-ylthio)-1-phenyl-1H-pyrazol-5-amine (3k)

Figure S 42: ¹H NMR of 3-methyl-4-(naphthalen-2-ylthio)-1-phenyl-1H-pyrazol-5-amine (3k)

Figure S 43: ¹³C NMR of 3-methyl-4-(naphthalen-2-ylthio)-1-phenyl-1H-pyrazol-5-amine (3k)

Figure S 44: Mass spectrometry of 3-methyl-4-(naphthalen-2-ylthio)-1-phenyl-1H-pyrazol-5-amine (3k)

14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 Chemical Shift (ppm)

Figure S 46: ¹³C NMR of 3-methyl-1-phenyl-4-(o-tolylthio)-1H-pyrazol-5-amine (31)

Figure S 47: Mass spectrometry of 3-methyl-1-phenyl-4-(o-tolylthio)-1H-pyrazol-5-amine (31)

Figure S 48: ¹H NMR of 4-((3-methylphenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3m)

Figure S 49: ¹³C NMR of 4-((3-methylphenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (3m)

Figure S 50: Mass spectrometry of 4-((3-methylphenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (3m)

Figure S 51: ¹H NMR of 4-((2-bromophenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (3n)

Figure S 52: ¹³C NMR of 4-((2-bromophenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (3n)

Figure S 53: Mass spectrometry of 4-((2-bromophenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (3n)

Figure S 54: ¹H NMR of 4-((2,4-dimethylphenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (30)

Figure S 55: ¹³C NMR of 4-((2,4-dimethylphenyl)thio)-3-methyl-1-phenyl-1*H*-pyrazol-5-amine (30)

Figure S 56: Mass spectrometry of 4-((2,4-dimethylphenyl)thio)-3-methyl-1-phenyl-1H-pyrazol-5-amine (30)

Single crystal X-ray diffraction studies

Suitable single crystals of **3i** were selected for X-ray diffraction studies. A Supernova single source at offset/far, HyPix3000 diffractometer was used for diffraction studies. All the data was collected at 293(2) K. Olex2 program was utilised for solving X-ray structure using Charge Flipping. All the data refinements were performed using the same package by employing the Gauss-Newton minimization. The crystallographic data for structure **3i** have been deposited with the Cambridge Crystallographic Data Centre under CCDC No. 2305521.

Figure S 57: Ortep diagram of 3i

Table S1: Crysta	data and structure	refinement parameters	for 3i
------------------	--------------------	-----------------------	---------------

Empirical formula	C ₁₆ H ₁₅ N ₃ S (3i)
Formula weight	281.37
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	Pna2 ₁
a/Å	11.7569(10)
b/Å	9.4089(9)
c/Å	26.936(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2979.6(5)
Z	8
$ ho_{calc}g/cm^3$	1.254
µ/mm ⁻¹	0.211
F(000)	1184.0
Crystal size/mm ³	$0.16 \times 0.14 \times 0.12$
Radiation	Mo K α ($\lambda = 0.71073$)

20 range for data collection/°	6.318 to 52.746
Index ranges	$-13 \le h \le 14, -11 \le k \le 8, -30 \le l \le 33$
Reflections collected	11829
Independent reflections	$4866 [R_{int} = 0.2698, R_{sigma} = 0.1505]$
Data/restraints/parameters	4866/7/365
Goodness-of-fit on F ²	0.984
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0949, wR_2 = 0.2448$
Final R indexes [all data]	$R_1 = 0.1829, wR_2 = 0.3321$
Largest diff. peak/hole / e Å-3	0.41/-0.42

Scheme S1: Controlled experiments and plausible reaction mechanism for the electro-organo catalyzed sulfenylation of aminopyrazole