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1. General synthe)c and analy)cal methods  

Materials: 1,3,5-Triformylbenzene (TFB) was purchased from Manchester Organics (UK). Other 
chemicals were purchased from Fluorochem UK, TCI UK or Sigma-Aldrich. Solvents were reagent or 
HPLC grade purchased from Fischer Scien&fic. All materials were used as received unless stated 
otherwise.  

Synthesis: All reac&ons were s&rred magne&cally using Teflon-coated s&rrer bars. Where hea&ng was 
required, the reac&ons were warmed using a s&rrer hotplate with hea&ng blocks, with the stated 
temperature being measured externally to the reac&on flask with an a@ached probe. Removal of 
solvents was done using a rotary evaporator. 

NMR: 1H NMR, 13C NMR and 19F NMR spectra were recorded in deuterated methanol, DMSO or 
chloroform at 400 MHz using a Bruker Avance 400 NMR spectrometer. Chemical shi`s are reported in 
ppm (δ) with reference to internal residual protonated species of the deuterated solvent. NMR data 
are presented as follows: chemical shi`, integra&on, peak mul&plicity (s = singlet, d = doublet, t = triplet, 
q = quartet, m = mul&plet, br = broad) and coupling constants (J / Hz).  

MALDI-TOF MS: Mass spectroscopy was measured on a BRUKER AutoFlex spectrometer. The data was 
collected by flexControl so`ware and exported from the flexAnalysis so`ware. DCTB was used as the 
matrix and CsI3 was used to calibrate the instrument each &me before measurements. Solu&ons of 
matrix and sample (10 mg/mL in methanol) were mixed in a ra&o of 10:1 before being deposited onto 
a steel plate with a micropipe@e. Samples on the steel plate were le` to evaporate to complete dryness 
before loaded to the spectrometer for test. 

TGA: Thermogravimetric analysis was performed on a Q5000IR with an automated ver&cal overhead 
thermobalance. Samples were heated in an aluminium pan at a ramp rate of 10 °C/min up to 800 °C 
under a dry nitrogen flow. 

DSC: Differen&al scanning calorimetry analysis was performed on a TA instruments Discovery DSC. 
Samples were weighed in Tzero aluminium herme&c pans and sealed with Tzero herme&c lid using the 
blue set pin hole.  Samples were measured under a dry nitrogen flow, with a hea&ng rate of 10 °C/min 
and a cooling rate of 5 °C/min, respec&vely. 

Mel:ng observa:on: Mel&ng behaviour was observed on a Stuart digital mel&ng point apparatus SMP 
10. Samples were first loaded into the capillary glass tubes (length = 100 mm; inner diameter = 1.3 
mm; wall thickness = 0.3 mm). The sample tube was then inserted into the hea&ng block, and the 
apparatus heated un&l plateau which was set at 25 °C. A`erwards the temperature was ramped at a 
rate of 2 °C/min and the samples observed through a magnifying lens.  

Gas sorp:on analysis: Gas uptakes were measured on a Quantachrome Nova 4200e. Generally, 100 
mg sample was loaded into a 9 mm sample cell with a large bulb (P/N: 74064). The sample was 
degassed under vacuum with s&rring overnight at room temperature and backfilled with helium before 
being removed from the degassing sta&on. A filler rod (P/N: 74105-L) was used with the sample cell 
during sorp&on measurements at room temperature and the adsorp&on selngs were as follows: 20 
pressure points from 0.05 to 1.0 bar in 0.05 increments; pressure tolerance = 0.05 mmHg; equilibra&on 
&me = 1800 seconds; equilibra&on &meout = 5400 seconds. 
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PXRD: Powder X-ray diffrac&on pa@erns were collected in transmission mode on samples held on a 
thin Mylar film in aluminium well plates on a Panaly&cal Empyrean diffractometer equipped with a 
high-throughput screening (HTS) XYZ stage, X-ray focusing mirror, and PIXcel detector, using Cu-Kα (λ 
= 1.541 Å) radia&on. PXRD pa@erns were recorded at room temperature, and diffrac&on pa@erns were 
measured over the range of 2−50°, in 0.013° steps, for 30-60 minutes. 

 

2. Synthesis and Characterisa)on 
 

RCC1 was synthesised according to the literature with minor 
modifica&ons.1 1,3,5-Triformylbenzene (TFB, 1.875 g, 0.0116 mol) was first 
dissolved in methanol (575 mL) in a 2 L round-bo@omed flask cooled in an 
ice bath. Ethylenediamine (1.04 g, 0.0173 mol) was dissolved in methanol 
(425 mL) and added in batches over 1 hour to the TFB solu&on under a 
nitrogen atmosphere. The reac&on mixture was then s&rred overnight 
before confirming complete consump&on of the TFB by 1H NMR 
spectroscopic analysis. On comple&on, sodium borohydride (1.53 g, 

0.0403 mol) was added, and the reac&on mixture s&rred for a further 12 hours. Water (5 mL) was then 
added and the reac&on s&rred for a further 12 hours before the solvent was removed under vacuum. 
The resul&ng colourless solid was then extracted with dichloromethane (DCM, 2 × 100 mL) and the 
remaining colourless solid removed by filtra&on. The solvent was then removed with a rotary 
evaporator (water bath at 30 °C) and RCC1 was obtained as an off-white solid (1.47 g, 62%) which was 
used without further purifica&on. 
 

1H NMR (400 MHz, CD3OD) δH 7.10 (12H, s, HA), 3.65 (24H, s, HB), 2.60 (24H, s, HC) (Figure S1); 13C NMR 
(101 MHz, CD3OD) δC 141.09, 128.37, 54.09 (Figure S2).  
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Figure S1: 1H NMR (400 MHz, CD3OD) spectra of RCC1. 

 

Figure S2: 13C NMR (101 MHz, CD3OD) spectra of RCC1. 
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[Ald-IM][NTf2] was synthesised according to the literature with minor modifica&ons.2 

 

Figure S3: Synthesis route of ionic liquid func&onalised aldehyde [Ald-IM][NTf2]. 

 

4-(3-chloropropoxy)benzaldehyde (Ald-Cl): A mixture of p-hydroxybenzaldehyde (2.44 g, 10 mmol), 
1-bromo-3-chloropropane (4.723 g, 30 mmol) and K2CO3 (5.528 g, 40 mmol) in acetonitrile (150 mL) 
was heated at reflux for 3 hours, during which the reac&on was monitored by TLC. On comple&on, the 
acetonitrile was removed by evapora&on, and the residue dispersed in DCM and filtered. The organic 
layer was then evaporated and purified by column chromatography (silica gel, 100% DCM) to obtain 
the targeted product Ald-Cl as a light-yellow oil (3.65 g, 92%).  

1H NMR (400 MHz, CDCl3) δH 9.89 (1H, s, CHO), 7.84 (2H, m, ArH), 7.01 (2H, m, ArH), 4.21 (2H, t, J = 6 
Hz, OCH2), 3.76 (2H, t, J = 6 Hz, CH2), 2.28 (2H, q, J = 6 Hz, CH2); 13C NMR (101 MHz, CDCl3) δC 190.91, 
163.84, 132.14, 130.25, 130.25, 114.89, 64.74, 41.33, 32.11. 

[Ald-IM][Cl]: A mixture of Ald-Cl (1.986 g, 10 mmol) and 1-methylimidazole (1.231 g, 15 mmol) was 
heated at 80 °C for 6 h to give a thick viscous liquid. The viscous liquid was then washed with diethyl 
ether (3 × 30 mL) to obtain the crude product [Ald-IM][Cl] (2.02 g, 72%) which was used without further 
purifica&on.  

1H NMR (400 MHz, CD3OD) δH 9.85 (1H, s, CHO), 9.02 (1H, s, C=NH), 7.87 (2H, m, ArH), 7.65 (2H, m, 
ArH), 7.07 (2H, m, ArH), 4.48 (2H, t, J = 7.2 Hz, OCH2), 4.20 (2H, t, J = 6 Hz, CH2), 3.93 (3H, s, CH3), 2.43 
(2H, m, CH2); 13C NMR (101 MHz, CDCl3) δC 192.78, 165.02, 138.19, 133.11, 131.73, 125.06, 123.92, 
115.93, 66.20, 48.22, 36.50. 

[Ald-IM][NTf2]: [Ald-IM][Cl] (1.00 g, 3.56 mmol) was dissolved in acetonitrile (50 mL) and lithium 
bis(trifluoromethanesulfonyl)imide (LiNTf2, 1.148 g, 4.00 mmol) was added. The mixture was then 
s&rred at room temperature for 24 hours before the solu&on was diluted with DCM (100 mL), washed 
with water, and dried (MgSO4). The mixture was filtered and the filtrate concentrated to yield [Ald-
IM][NTf2] as an off-white waxy solid (1.53 g, 82%) which was used without further purifica&on.  

1H NMR (400 MHz, CD3OD) δH 9.84 (1H, s, CHO), 7.87 (2H, m, ArH), 7.62 (2H, dd, J = 36, 2 Hz, IM-H), 
7.07 (2H, m, ArH), 4.46 (2H, t, J = 7.2 Hz, CH2), 4.19 (2H, t, J = 5.6 Hz, CH2), 3.01 (3H, s, CH3), 2.42 (2H, 
m, CH2) (Figure S4); 13C NMR (101 MHz, CD3OD) δC 192.82, 165.01, 133.12, 131.73, 125.02, 123.86, 
122.80, 115.91, 66.12, 36.43, 30.51 (Figure S5); 19F NMR (376 MHz, CD3OD) δF 80.70 (Figure S6). 
Elemental analysis (%): C, 36.86; H, 3.22; N, 8.05 (Calculated: C, 36.57; H, 3.26; N, 8.00).  
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Figure S4: 1H NMR (400 MHz, CD3OD) spectra of [Ald-IM][NTf2]. 

 

 
Figure S5: 13C NMR (101 MHz, CD3OD) spectra of [Ald-IM][NTf2]. 
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Figure S6: 19F NMR (376 MHz, CD3OD) spectra of [Ald-IM][NTf2]. 

 

 

Figure S7: DSC trace of [Ald-IM][NTf2]. 
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[RCC1-IM][NTf2]6: General method of tying RCC1 with [Ald-IM][NTf2] via aminal forma&on was as 
follows. RCC1 (30 mg, 0.037 mmol, 1 equiv.) was dissolved in DCM (2 mL) to which was added a solu&on 
of  [Ald-IM][NTf2] (175 mg, 0.333 mmol, 9 equiv.) in DCM (2 mL). The solu&on typically became opaque 
a`er a few minutes and was kept s&rring overnight. The reac&on mixture was then le` to stand un&l 
phase separa&on occurred, where the lower layer of oily phase was the aminal-&ed product. The upper 
DCM layer was decanted, and the lower product was washed with DCM several &mes to afford the 
product [RCC1-IM][NTf2]6 which was characterised and studied without further purifica&on. 

1H NMR (400 MHz, DMSO-d6) - due to the flexible nature and ionic character of the cage, broad peaks 
were observed (Figure S8). δH 9.26 (6H, br, HA), 7.91-7.28 (24H, br m, HB/HC), 7.20-6.38 (24H, br m, 
HD/HE), 4.36 (12H, br, HF), 4.02 (12H, br, HG), 3.84 (24H, br, HH), 3.58 (6H, br, HI), 3.20-2.85 (12H, br m, 
HJ), 2.27 (24H, br, HK); 13C NMR (101 MHz, DMSO-d6) δC 137.27, 124.76, 124.04, 122.90, 121.56, 118.36, 
115.16, 64.91, 46.80, 36.18, 29.64 – low intensity peaks but key signals from both RCC1 and [Ald-
IM][NTf2] present (Figure S9); 19F NMR (376 MHz, CD3OD) δF 78.69 (Figure S10); MALDI-TOF MS (RP) 
m/z: accurate mass calculated for C142H160F30N29O26S10

+
 ([RCC1-IM]+[NTf2]5) 3577.89, found [M-NTf2]+ 

3578.08; MALDI-TOF MS (RN) m/z: accurate mass calculated for [NTf2] C2F6NO4S2
- 279.92, found [NTf2]- 

279.89; Comparison of MALDI-TOF spectra of samples before and a`er DSC study shown in Figure S11. 
Elemental analysis results shown in Table S1. 

 

 

Figure S8: 1H NMR (400 MHz, DMSO-d6) of isolated and washed [RCC1-IM][NTf2]6. 
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Figure S9: 13C NMR (101 MHz, DMSO-d6) of isolated and washed [RCC1-IM][NTf2]6. 

 

Figure S10: 19F NMR (376 MHz, DMSO-d6) of isolated and washed [RCC1-IM][NTf2]6. 
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Table S1: Elemental analysis of [RCC1-IM][NTf2]6. 

[RCC1-IM][NTf2]6 

C144H162F36N30O30S12 
%C %H %N %S 

Calculated value 44.79 4.23 10.88 9.96 
Analysis 1 44.04 4.19 10.78 - 
Analysis 2 43.75 4.13 10.76 - 

 

 

 

Figure S11: Comparison of MALDI-TOF spectra of [RCC1-IM][NTf2]6 before and a`er DSC study (un&l 
150 °C) in RP mode. 
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3. Computa)onal Modelling 
 

3.1 Structure and simula:on box construc:on 

Here, we describe the structure genera&on and simula&on box construc&on workflow; the full 
workflow is detailed and may be reproduced using the corresponding GitHub repository.3 

The atomis&c structure of the [RCC1-IM]6+ cage was generated using the stk so`ware package.4 Owing 
to the ionic nature of the cage, the system is manually atom-typed using a combina&on of the IL.FF5–8 
and OPLS-AA9 force fields, Figure S12a. The individual LAMMPS input files were generated with the 
)ool package.10 

The atomis&c structure of the [NTf2]- ion from previously reported studies is used; this structure is 
described by the IL.FF forcefield, 5–8 an extension of the OPLS-AA forcefield parameterized specifically 
for ionic liquids, Figure S12b. Star&ng LAMMPS input files were generated with the )ool so`ware 
package.10  

The simula&on box is then constructed, Figure S12c. To do this, a single, charge neutral simula&on box 
featuring 1 cage molecule and 6 ions is generated using the packmol so`ware package.11,12 Then this 
small simula&on box is &led in the x, y, and z direc&ons using moltemplate.13 This results in the final 
simula&on box consis&ng of 48 cages and 288 ion molecules. 

 

 

Figure S12: (a) [RCC1-IM]6+ atom types used in simula&ons. Two types of H atoms are used; HC (blue) 
and HA (orange). (b) [NTf2]- atom types used in simula&ons; these are from the IL.FF presented by 
Padua et al. 5–8 (c) Illustra&on of the simula&on box construc&on; individual cage and ions are packed 
in a single cell at a cage:solvent ra&o of 1:6 to maintain charge neutrality using packmol.11,12 The single 
cell is &led using moltemplate13 to generate the full simula&on box. 

 

3.2 System equilibra:on procedure 

MD simula&ons were carried out using LAMMPS; the input files were generated with the moltemplate 
so`ware package13 in the final simula&on box construc&on step.  

To arrive at a reasonable star&ng geometry, the lalce generated by moltemplate (Figure S12c) was 
slowly relaxed. A poten&al cutoff of 12 Å is used; the par&al charges from the IL.FF and OPLS-AA force 
fields are used to calculate the electrosta&c interac&ons. An NPT ensemble was used with a Nose-
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Hoover barostat and thermostat. Simula&ons were performed at 363 K and 1 atm. Four simula&ons 
were performed at increasing &me steps: i) 50 fs simula&on with a &me step of 0.001 fs, ii) 1000 fs 
simula&on with a &mestep of 0.01 fs, iii) 5000 fs with a &mestep of 0.1 fs, and iv) 0.9 ns with a &mestep 
of 1.0 fs. The simula&on box is then thermally annealed using a NVT ensemble. Here, a 1 fs &mestep 
and 100 ps runs, the temperature is stepped from 600 K to 500 K to 400 K to 363 K. Finally, the 
simula&on box was equilibrated for 50 ps using an NPT ensemble and a 1 fs &mestep. A produc&on run 
of 10 ns was then performed at 363 K and 1 atm. Figure S13 presents the density profile over the 10 
ns produc&on run; the density converges to 1.342 ± 0.005 g/cm3. 

 

Figure S13. Density profile for the 10 ns produc&on run. The density converges to 1.342 ± 0.005 g/cm3 

 

Experimental densi&es of known NTf2-based ionic liquids featuring ca&ons containing imidazolium 
mo&fs were used, as presented by IL distributor, Ionic Liquid Technologies;14 specifically, [EMIM][NTf2], 
[BMIM][NTf2] and [HMIM][NTf2], Table S2. The density of [RCC1-IM][NTf2]6 equilibrated to 1.342 +/- 
0.006 g/cm3. Table S2 details the ca&onic component of each ionic liquid, the associated density; the 
density reported for [RCC1-IM][NTf2]6 is calculated from the full liquid simula&on. Considering the 
addi&on of the cage pores in the PIL, we expect the density to be less than known ionic liquids. 
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Table S2: Experimental densi&es for analogous ionic liquids, [EMIM][NTf2], [BMIM][NTf2] and 
[HMIM][NTf2], as reported by the distributor, Ionic Liquid Technologies.14 The simulated density for 
[RCC1-IM][NTf2]6 is also reported. 

 

Ionic Liquid Cation Density (g/cm3) 

[EMIM][NTf2] 

 

1.52 

[BMIM][NTf2] 

 

1.44 

[HMIM][NTf2] 

 

1.37 

[RCC1-IM][NTf2]6 

 

1.34 (simulated) 
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3.3 Radial distribu:on func:ons 

The radial distribu&on func&on (RDF) of several atom pairs is calculated from the 10 ns trajectory, 
Figure S14. We examine the same atom pairs previously reported for [BMIM][NTf2] simula&ons.15 The 
similari&es between the RDFs for these two systems suggests that the liquid structure of the [RCC1-
IM][NTf2]6 simula&on is reasonable. Further, from the ca&on-anion RDFs, we observe that the 
imidazolium rings of the [RCC1-IM]6+ cage and the imide of the [NTf2]- ion are close; this is further 
supported by the reported trajectory of the [NTf2]- counterions in Figure 4b of the main text. 

 

Figure S14 Radial distribu&on func&on for the [RCC1-IM][NTf2]6 simula&on comparing anionic and 
ca&onic component distribu&ons. 

 

3.4 Porosity assessment 

Table S3: Criteria used to determine were the [NTf2]- ions were over the course of the simula&on; 
distances are measured from the centre of the cage cavity. 

Location Cutoff distance from cage cavity centre (Å) Average frequency (%) 
In bulk solvent > 20 86.47 
Surrounding the cage 5.5 < [solvent location] < 20 13.45 
In the cage window 3 < [solvent location] < 5.5 0.09 
Within the cage cavity < 3 0 
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