Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary information

New bis-pyrazolate zinc(II) complexes as a potential anticancer drugs: from structure to anticancer activity

Rušid Hasić^a, Majda Kolenović Serezlić^a, Angelina Caković^b, Jovana Bogojeski^b, Danijela Nikodijević^b, Milena Milutinović^b, Aleksandra Stanojević^c, Milena Čavić^c, Andrei V. Egorov^d, Andrei V. Komolkin^d, Ilya V. Kornyakov^d, Andreas Scheurer^e, Ralph Puchta^{e,f,g,h} Tanja V. Soldatović^a*

^aDepartment of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia

^bFaculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia

^c Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia

^d St.Petersburg State University, 7/9 Universitetskaya nab., 199034, St.Petersburg, Russia

eInorganic Chemistry, Department of Chemistry and Pharmacy, University of

Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany

^fStaatliche Fachoberschule Nürnberg, Lothar-von-Faber-Schule, Schafhofstr. 25, 90411 Nürnberg, Germany

^gUniversity of Erlangen-Nuremberg, Department of Chemistry and Pharmacy, Computer

Chemistry Center, Nägelsbachstr. 25, 91052 Erlangen, Germany

^hUniversity of Erlangen-Nuremberg, Zentralinstitute for Scientific Computing (ZISC),

Martensstr. 5a, 91058 Erlangen, Germany

*Corresponding author:

Prof. Dr. Tanja Soldatović Phone: +381(0)20-317-754, Fax: +381(0) 20-337-0669, e-mail: <u>tsoldatovic@np.ac.rs</u> ORCID ID: <u>http://orcid.org/0000-0003-3010-6503</u>

$[ZnCl_2(H_2L^{tBu})]$

¹H NMR

*Peaks from the solvent MeOD

*Peak from the solvent MeOD

¹H–¹H COSY

UV-Vis

Fig. S1 Characterization spectra of $[ZnCl_2(H_2L'^{Bu})]$ complex.

[ZnCl₂(Me₂L^{tBu})]

¹H NMR

*Peaks from the solvent MeOD

FT-IR

UV-Vis

Fig. S2 Characterization spectra of $[ZnCl_2(Me_2L^{tBu})]$ complex.

[ZnCl₂(H₂L^{CatBiPyPh})]

*Peaks from the solvent MeOD

¹H–¹H COSY

Fig. S3 Characterization spectra of $[ZnCl_2(H_2L^{CatBiPyPh})]$ complex.

Fig. S4 Fluorescent titration spectra of HAS (2 μ M) solution in absence and presence of the examined complex [ZnCl₂(H₂L^{tBu})]. The arrow shows changes in the spectral band with the increasing complex concentration (added up to ratio 5). Insert graph: Stern-Volmer plots for HSA fluorescence titration in presents of the examined complex [ZnCl₂(H₂L^{tBu})].

Fig. S5 Fluorescent titration spectra of HAS (2 μ M) solution in absence and presence of the examined complex [ZnCl₂(Me₂L^{tBu})]. The arrow shows changes in the spectral band with the increasing complex concentration (added up to ratio 5). Insert graph: Stern-Volmer plots for HSA fluorescence titration in presents of the examined complex [ZnCl₂(Me₂L^{tBu})].