Supplementary Information (SI) for New Journal of Chemistry.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supporting information

Synthesis of Ni-Co Bimetallic Catalyst with High Activity and Coking Resistance for Simulated Biogas Dry Reforming in a Constant Alkaline Chemical Environment

Qixin Yang^a, Jing Di^a, Yin Li^c, Mengxuan Zhai^a, Haoquan Liang^a, Zengkun Wang^a, Qiongqiong Kan^a, Yuanyu Tian^b, Yingyun Qiao^b, Ruiqin Yang^a, Xikun Gai^{a*}

^aSchool of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China

^bState Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China

^cEcology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, Zhejiang, China

1. Supplementary Figures

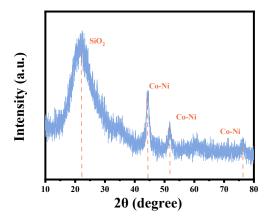


Fig S1. The characterizations of fresh catalysts: XRD patterns of 8Ni2Co/NH₃-SiO₂ catalysts after hydrogen reduction¹.

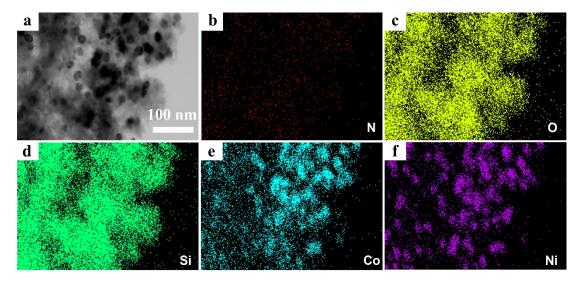


Fig S2. TEM image of the 8Ni2Co/NH₃-SiO₂ catalyst (a) and EDS elemental maps of N, O, Si, Co and Ni in 8Ni2Co/NH₃-SiO₂ catalyst after hydrogen reduction (b-f)².