A fluorescent probe based on benzothiazole and benzoindole for

detecting hydrazine in various applications

Junjie Yang,^a Xianjun Xu,^a Liqiang Yan,^{a*} Xiongzhi Wu,^a

^a College of Chemistry and Bioengineering, Guilin University of Technology, Guilin,

Guangxi 541006, P.R. China

*Corresponding author, E-mail: liqiangyan@glut.edu.cn

probe	solvent	λex	λem	LOD	smartphone	application	Ref.
					app		
	DMSO/HEPES (1/99, v/v,	420 nm	568 nm	6.3 nM	No	Soil, human serum, human urine plants	19
	pH 7.4)					foods, beverages, HeLa cells	
	DMF/H ₂ O (1/1, v/v, pH	383 nm	435 nm	1.85	No	Soil, Water, gaseous hydrazine	46
	7.4)			μΜ			
~ }8 ,~0	DMSO/PBS (9/1, v/v, pH	342 nm	556 nm	0.29	No	Soil, HepG-2 cells, zebrafish, water, test strips	47
	7.4)			μΜ			
	DMSO/PBS (1/99, v/v, pH	405 nm	656 nm	0.18	No	Soil, water, plants	48
	7.4)			μΜ			
ζ	DMSO/PBS (1/3, v/v, pH	445 nm	535 nm	0.85	No	test strips, beverages, water, human urine	49
a:a-}o	7.4)			nM			
	THF/H ₂ O (4/6, v/v, pH 7.3)	365/430	469/630	58 nM	No	food, test strips, HeLa cells, zebrafish	50
		nm	nm				
CT N CN N	DMSO/PBS (1/1, v/v,	365 nm	523 nm	0.15	No	Soil, water, test strips, HeLa cells	15
	pH 7.4)			μΜ			
0 	H ₂ O	334/345	392/517	0.1 mM	No	Soil, test strips	43
		nm	nm				
	DMSO/PBS (9/1, v/v, pH	455 nm	501/561	0.184	No	HepG2 cells, soil, Zebrafish, water	51
	7.4)		nm	μΜ			
	DMSO/PBS (4/1, v/v,	375 nm	486 nm	0.025	Yes	water, beverages, test strips, cotton swabs,	This
	pH 7.4)			μΜ		hydrogel, soil, plant, food	work

Table S1. Comparison of the detection performance of some recent fluorescent probes.

S1. Reagents and Instruments

Instrument Name	Model number	Source	
NMR	Ascend TM NMR 500	Bruker (Beijing) Technology	
	MHz	Co.	
UV-Vis	Lambda 750	PerkinElmer	
Fluorescence	Cary Eclipse FL 1005	VARIAN USA	
spectrophotometer			
FTIR spectrometer	Nicolet Is5	Thermo Fisher Scientific	
Electronic Analytical Balance	EL204	Mettler Toledo Instruments Ltd	

Table S2. The instruments and their parameters.

Table S3. The reagents and their specifications					
Reagent	Grade or purity	Source			
5-Methylsalicylaldehyde	96%	Energy Chemmical			
2-Aminothiophenol	96%	Aladdin			
Hexamethylene tetramine	AR	Aladdin			
Allyl bromide	98%	Aladdin			
1,1,2-Trimethyl-11H-b3na[e]indole	98%	Energy Chemmical			
Iodoethane	99%	RHAWN			
Hydrazine hydrate	80%	XIHUA			

d the in an eaifi activ T-1-1- C2 Th

S2. Fluorescence spectra test

All test samples of probe 1 (10 μ M) were prepared in the mixture of DMSO/PBS (4:1, v/v, 10 mM, pH 7.4). The emission spectra were recorded at room temperature with the excitation wavelength of 375 nm and slit width of 10/10 nm.

S3. Water analysis

The detection data for N₂H₄ in actual water samples were obtained using the spiked recovery method. The water samples, including pond water and drinking water, were collected from Guilin University of Technology, and were subjected to centrifugation and filtration. Then they were mixed with DMSO at 7:3 (v/v), and the pH was adjusted to 7.4.

S4. Preparation of test strips and swabs

The filter paper was cut into a circle of 1 cm \times 1 cm and subsequently immersed in a dichloromethane solution containing the probe 1 (200 μ M), and the probecontaining test paper was obtained after the solvent was completely evaporated.

For the detection of N_2H_4 in water samples, 15 µL of test solution containing different concentrations of N_2H_4 (0, 1%, 5%, 10%, 20%, 30%, 60%) was added dropwise onto the test paper, respectively. 1 min later, the color change of the test papers was observed under 365 nm UV light. 15 µL of Different beverages (milk, coconut milk, cola, orange juice, Sprite, white wine, pond water) without and with N_2H_4 (200 µM) were added dropwise onto the test papers to observe the fluorescence changes.

For N_2H_4 gas, the test papers loaded with probe 1 (200 μ M) was placed at the mouth of the bottle of N_2H_4 solution at different concentrations (0, 1%, 5%, 10%, 20%, 30%, 40%) and waited for the volatilization of N_2H_4 , and then the fluorescence change of the papers was detected by taking pictures with a smartphone under a handheld UV lamp at 365 nm after 1 min.

The cotton swabs, soaked with probe 1 (200 μ M), were directly placed into reagent bottles containing N₂H₄ at various concentrations (0, 20, 40, 60, 80, and 100 μ M). Subsequently, the samples were heated to expedite the volatilization of N₂H₄. The images were taken using a smartphone under 365 nm UV light to monitor alterations in the fluorescence color.

S5. Soil analysis

The soil samples were collected form Guilin University of Technology campus, and treated with different concentrations of N_2H_4 from 0 to 200 μ M for 6 h. Then 1g of each concentration of sample was added directly to 3 mL of the probe solution (20 μ M) and reacted for about 20 min. Finally, the color values were extracted by capturing images for color identification using a smartphone application under 365 nm UV light.

S6. Plant analysis

The onions were grown in water for 7 days. The control group was treated with water for 8 h. The probe group underwent pre-treatment with the water containing probe 1 (10 μ M) for 4 h. The N₂H₄ group was pretreated with N₂H₄ (50 μ M) solution for 4 h and then transferred to water containing probe 1 (10 μ M) for an additional 4 h. Then the onion root tips were washed three times with PBS buffer (pH 7.4).

S7. Food analysis

The food samples, comprising rice and mung beans, were procured from local supermarkets. The mung beans were germinated in a controlled humid environment for 48 h. Germinated mung bean sprouts and rice grains were subsequently soaked in the probe solution (20 μ M) for 2 h and then divided into two groups. One group was soaked in distilled water; while the other was treated with N₂H₄ solution (200 μ M) for 1h. Photographs of the samples were taken using a smartphone and analyzed with a color recognition application.

S8. Preparation of hydrogel-coated test paper and glove

The polyethylene glycol (2 g) and polyvinyl alcohol (2 g) were dissolved in 20 mL of a mixture of ethanol and water (v/v, 1:1), followed by stirring for 3 h. Subsequently, 5 mg of the probe was added to 5 mL of the aforementioned solution and stirred thoroughly to obtain an aqueous gel solution. Some circular filter papers with a diameter of 1 cm were immersed in the prepared aqueous gel solution and air-dried at room temperature to produce fluorescent hydrogel-coated test papers. Additionally, hydrogel-coated gloves were obtained by immersing laboratory latex gloves in the prepared hydrogel solution containing probe 1.

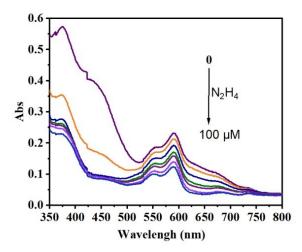


Fig. S1. Absorbance spectra of probe 1 (10 μ M) with different concentrations of N₂H₄ (0–100 μ M).

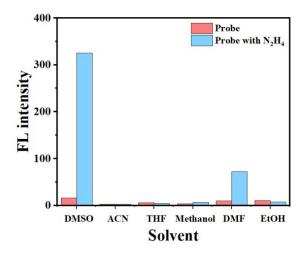


Fig. S2. Effect of different solvent on the fluorescence of probe 1.

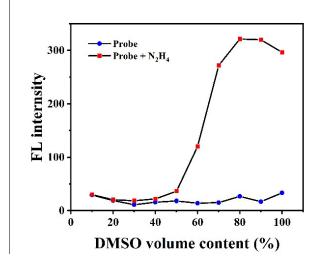


Fig. S3. Effect of solvent system (H₂O/DMSO) on the fluorescence of probe 1.

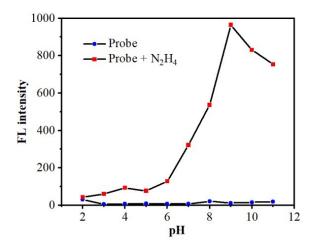


Fig. S4. The fluorescence intensity (I_{486}) of probe 1 (10 μM) changed with pH before and after adding N_2H_4 .

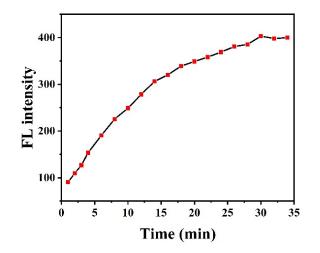
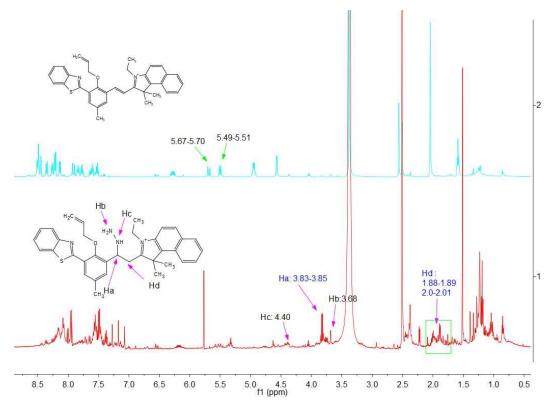
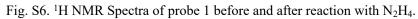




Fig. S5. Fluorescence intensity (I_{486}) of probe 1 (10 μM) changed with time before and after adding $N_2H_4.$

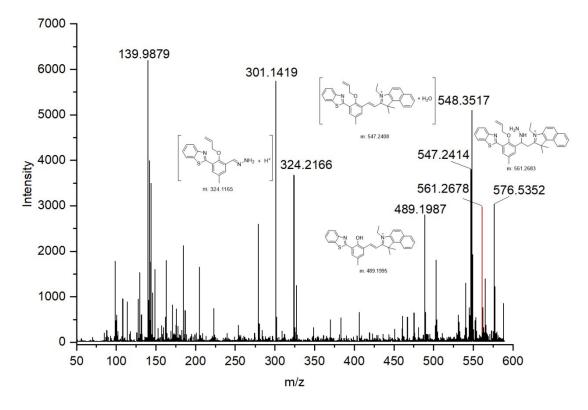


Fig. S7. HRMS of probe 1 treated with N_2H_4 in CH_3OH .

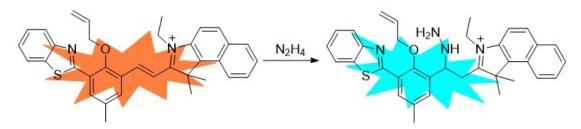


Fig. S8. A possible binding model of probe 1 to N₂H₄.

Samples	Addition (µM)	Detection (µM)	Recovery (%)	RSD (%)
	2	2.01±0.08	100.50	4.00
River water	3	3.07±0.03	102.33	1.00
	10	9.87±0.24	98.70	2.40
	2	1.96±0.1	98.00	5.00
Drinking water	3	3.04±0.13	101.33	4.33
	10	10.46±0.63	104.60	6.30

Table S4. Recovery of N₂H₄ in water samples achieved using probe 1.

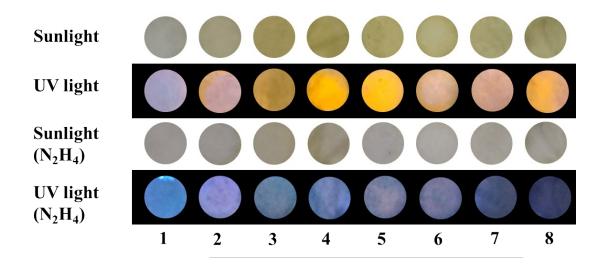


Fig. S9. Pictures of the test papers prepared with probe 1 after dropwise adding various beverages (200 μ M). Analytes 1-8: Milk, coconut milk, Coca-Cola, Orange juice, Sprite, white wine, Chinese liquor and pond water.

Fig. S10. The fluorescence color of the test glove loaded with hydrogel containing the probe changed before and after exposure to N_2H_4 contamination under 365 nm ultraviolet light.

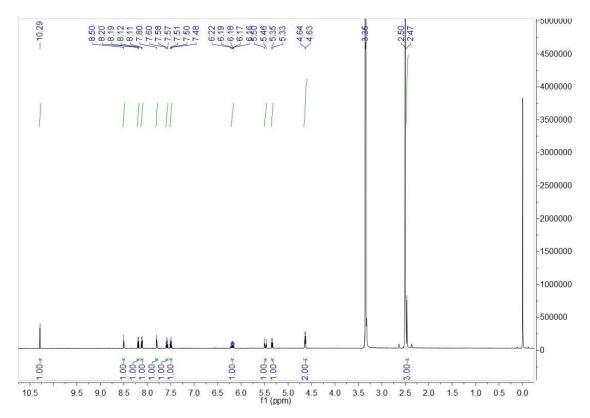
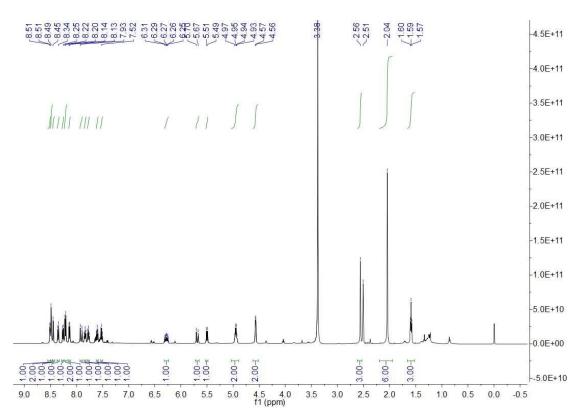
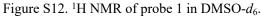




Figure S11. ¹H NMR of intermediate 3 in DMSO-*d*₆.

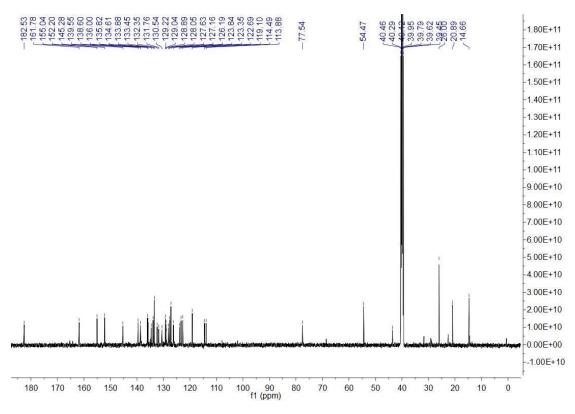


Figure S13. ¹³C NMR of probe 1 in DMSO- d_6 .

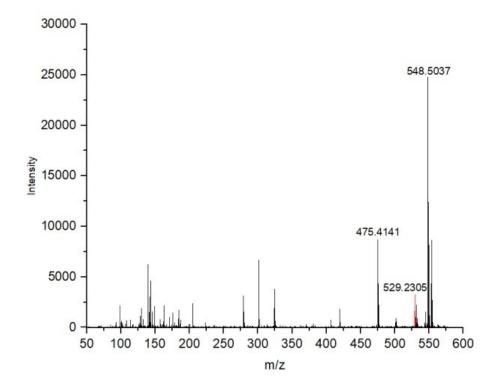


Figure S14. HRMS of probe 1 in CH₃OH.