Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Mantis-shaped chiral pyridine-N-oxides: a new class of ligands in

asymmetric palladium(II)-catalysed Friedel-Crafts alkylation

Lan-Lan Yang,^{‡a} Di-Cheng Pan,^{‡a} Xian-Qiao Zhu,^{‡a} De-Wu Liu,^{*b} Xing-Zhou Tang,^b Hong-Xing Cen,^a

Li-Jun Peng,*a and Xiong-Li Liu*a

^a Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China.

^b Anorectic Surgery Department, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.

[‡] These three authors contributed equally to this work.

Table of Contents

Table of contents	S1
1. General information	S2
2. General procedure for preparation of chiral ligands L1	S2
3. Characterization data of 3a and ligands L	S2
4. The gram scale synthesis of the ligand L1a	S9
5. Catalytic asymmetric synthesis of compounds 6	S9
6. Characterization data of compounds 6	S10
7. Compared experiments using different ligands	S17
8. References	S20
9. General experimental procedures for in vitro cytotoxicity assay	S20
10. X-ray crystal data for compound L1a	S21
11. The copies of ¹ H NMR, ¹³ C NMR and HPLC spectra for compounds 3a , L and 6	S22

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography. ¹H and ¹³CNMR spectra were obtained using a Bruker DPX-400 spectrometer. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Melting points were measured on an electrothermal digital melting point apparatus.

2. General procedure for preparation of chiral ligands L1

In a sealed tube equipped with a magnetic stirring bar, bicyclic prolinamides 1 (1.2 mmol, 1.2 equiv) and pyridinecarboxaldehydes 2 (1.0 mmol) were added. Then, ethanol (8.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate 3.

In a sealed tube equipped with a magnetic stirring bar, to the intermediate 3 was added 3.0 mL of DCM and *m*-CPBA (1.5 eq). The reaction mixture was stirred at rt for 10 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the pyridine-NO ligands L1.

3. Characterization data of 3a and ligands L

(3R,4aS,8aS,9aS)-2-phenyl-3-(pyridin-2-yl)decahydro-1H-imidazo[1,5-a]indol-1-one (3a): White

solid, yield 82%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.06-1.29 (m, 3H), 1.36-1.40 (m, 1H), 1.55-1.65 (m, 3H), 1.96-2.00 (m, 3H), 2.31-2.36 (m, 1H), 3.25-3.30 (m, 1H), 4.21-4.25 (m, 1H), 6.08 (s, 1H), 6.97-7.01 (m, 1H), 7.14-7.19 (m, 3H), 7.29 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.62-7.66 (m, 1H), 8.41 (d, J = 4.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 20.3, 22.8, 23.9, 25.4, 27.8, 38.3, 62.6, 63.5, 78.0, 121.4, 121.6, 123.5, 125.4, 128.7, 136.6, 137.5, 149.4, 158.2, 176.9; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₄N₃O [M+H]⁺: 334.1914; Found: 334.1917.

(3*S*,4*R*,4*aS*,8*aS*,9*aS*)-1-oxo-2-phenyl-3-(pyridin-2-yl)decahydroimidazo[1,5-a]indole 4(1H)-oxide (*L1a*): White solid, m.p. 198.1-198.9 °C, overall yield 62%, >20:1 dr; ¹H NMR (CDCl₃, 400 MHz) δ : 1.08-1.15 (m, 1H), 1.22-1.32 (m, 1H), 1.40-1.51 (m, 2H), 1.57-1.64 (m, 1H), 1.73-1.76 (m, 2H), 2.05-2.08 (m, 2H), 2.19-2.27 (m, 1H), 2.36-2.44 (m, 1H), 3.45-3.46 (m, 1H), 3.93-3.99 (m, 1H), 4.67-4.71 (m, 1H), 6.28 (s, 1H), 7.06-7.09 (m, 1H), 7.16-7.23 (m, 3H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.60-7.64 (m, 1H), 8.55 (d, *J* = 4.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 19.1, 23.0, 23.4, 23.9, 26.7, 34.6, 75.4, 83.3, 84.0, 120.6, 123.4, 124.8, 125.4, 128.3, 134.2, 135.5, 148.8, 150.8, 168.6; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₄N₃O₂ [M+H]⁺: 350.1863; Found: 350.1864.

(3S, 4R, 4aS, 8aS, 9aS)-2-(4-fluorophenyl)-1-oxo-3-(pyridin-2-yl)decahydroimidazo[1,5-a]indole 4(1H)-oxide (**L1b**): White solid, m.p. 191.2-191.8 °C, overall yield 57%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.13-1.20 (m, 1H), 1.27-1.37 (m, 2H), 1.47-1.50 (m, 1H), 1.64-1.84 (m, 3H), 2.18-1.42 (m, 3H), 3.28-3.34 (m, 1H), 3.79-3.85 (m, 1H), 4.63-4.67 (m, 1H), 6.71 (s, 1H), 6.92-6.96 (m, 2H), 7.25-7.28 (m, 1H), 7.32-7.36 (m, 2H), 7.50 (d, J = 7.6 Hz, 1H), 7.69-7.73 (m, 1H), 8.54 (d, J = 4.4 Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 19.7, 23.8, 24.0, 24.5, 26.9, 35.7, 75.5, 84.2, 84.5, 115.6 (d, $J_{CF} = 23.4$ Hz), 124.6, 126.7, 130.2, 131.1, 136.5, 149.7, 151.3, 160.8 (d, $J_{CF} = 239.2$ Hz), 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₃FN₃O₂ [M+H]⁺: 368.1763; Found: 368.1756.

(3*S*,4*R*,4*aS*,8*aS*,9*aS*)-2-(3-fluorophenyl)-1-oxo-3-(pyridin-2-yl)decahydroimidazo[1,5-a]indole 4(1*H*)-oxide (*L1c*): White solid, m.p. 206.3-206.8 °C, overall yield 57%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.21-1.29 (m, 1H), 1.37-1.47 (m, 2H), 1.56-1.59 (m, 1H), 1.74-1.91 (m, 3H), 2.30-2.38 (m, 2H), 2.45-2.53 (m, 1H), 3.38-3.42 (m, 1H), 3.90-3.96 (m, 1H), 4.73-4.77 (m, 1H), 6.88-6.93 (m, 2H), 7.23-7.33 (m, 2H), 7.36-7.39 (m, 1H), 7.44-7.48 (m, 1H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.82-7.86 (m, 1H), 8.62 (d, *J* = 4.4 Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 19.8, 23.7, 23.9, 24.5, 27.1, 35.7, 75.5, 83.8, 84.3, 108.6 (d, *J*_{CF} = 26.2 Hz), 112.7 (d, *J*_{CF} = 21.4 Hz), 116.6, 122.3, 124.6, 126.7, 130.4 (d, *J*_{CF} = 10.1 Hz), 136.6, 149.7, 151.2, 162.8 (d, *J*_{CF} = 243.1 Hz), 169.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₂FN₃NaO₂ [M+Na]⁺: 390.1586; Found: 390.1579.

(3S, 4R, 4aS, 8aS, 9aS)-2-(4-chlorophenyl)-1-oxo-3-(pyridin-2-yl)decahydroimidazo[1,5-a]indole 4(1H)-oxide (L1d): White solid, m.p. 197.6-197.9 °C, overall yield 60%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.23-1.29 (m, 1H), 1.39-1.46 (m, 2H), 1.57-1.60 (m, 1H), 1.77-1.91 (m, 3H), 2.29-2.37 (m, 2H), 2.44-2.52 (m, 1H), 3.37-3.42 (m, 1H), 3.90-3.95 (m, 1H), 4.72-4.76 (m, 1H), 6.86 (s, 1H), 7.29-7.31 (m, 2H), 7.37-7.40 (m, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.64 (d, J = 7.6Hz, 1H), 7.81-7.85 (m, 1H), 8.63 (d, J = 4.0 Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 19.7, 23.8, 23.9, 24.5, 27.0, 35.7, 75.4, 84.1, 84.3, 123.3, 124.6, 126.7, 128.9, 131.6, 133.7, 136.6, 149.7, 151.1, 169.3; HRMS (ESI-TOF) m/z: Calcd. for Calcd. for C₂₁H₂₃ClN₃O₂ [M+H]⁺: 384.1473; Found: 384.1466.

(3S,4R,4aS,8aS,9aS)-2-(3-chlorophenyl)-1-oxo-3-(pyridin-2-yl)decahydroimidazo[1,5-a]indole 4(1H)-oxide (L1e): White solid, m.p. 190.9-191.2 °C, overall yield 60%, >20:1 dr; ¹H NMR

(CD₃OD, 400 MHz) δ : 1.21-1.28 (m, 1H), 1.37-1.47 (m, 2H), 1.55-1.58 (m, 1H), 1.73-1.90 (m, 3H), 2.29-2.37 (m, 2H), 2.44-2.52 (m, 1H), 3.35-3.41 (m, 1H), 3.90-3.96 (m, 1H), 4.72-4.76 (m, 1H), 6.93 (s, 1H), 7.14-7.16 (m, 1H), 7.24-7.28 (m, 1H), 7.36-7.39 (m, 2H), 7.68-7.69 (m, 2H), 7.82-7.86 (m, 1H), 8.62 (d, J = 4.4 Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 19.8, 23.8, 23.9, 24.5, 27.1, 35.7, 75.4, 83.7, 84.3, 119.4, 121.5, 124.7, 126.1, 126.8, 130.2, 134.4, 136.4, 136.6, 149.7, 151.1, 169.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₃ClN₃O₂ [M+H]⁺: 384.1473; Found: 384.1466.

(3S, 4R, 4aS, 8aS, 9aS)-2-(4-bromophenyl)-1-oxo-3-(pyridin-2-yl)decahydroimidazo[1,5-a]indole 4(1H)-oxide (L1f): White solid, m.p. 191.3-191.7 °C, overall yield 59%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.22-1.29 (m, 1H), 1.37-1.46 (m, 2H), 1.56-1.59 (m, 1H), 1.77-1.91 (m, 3H), 2.29-2.37 (m, 2H), 2.45-2.53 (m, 1H), 3.38-3.42 (m, 1H), 3.89-3.95 (m, 1H), 4.72-4.76 (m, 1H), 6.86 (s, 1H), 7.36-7.45 (m, 5H), 7.64 (d, J = 7.6 Hz, 1H), 7.81-7.85 (m, 1H), 8.61 (d, J = 4.0Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 19.8, 23.8, 24.0, 24.5, 27.1, 35.7, 75.5, 84.0, 84.3, 119.3, 123.5, 124.6, 126.7, 132.0, 134.3, 136.6, 149.7, 151.2, 169.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₃BrN₃O₂ [M+H]⁺: 428.0958; Found: 428.0959.

(3*S*,4*R*,4*aS*,8*aS*,9*aS*)-2-(3-bromophenyl)-1-oxo-3-(pyridin-2-yl)decahydroimidazo[1,5-a]indole 4(1H)-oxide (**L1g**): White solid, m.p. 195.9-196.3 °C, overall yield 58%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ: 1.23-1.29 (m, 1H), 1.38-1.45 (m, 2H), 1.57-1.60 (m, 1H), 1.77-1.91 (m, 3H), 2.29-2.37 (m, 2H), 2.44-2.52 (m, 1H), 3.37-3.40 (m, 1H), 3.89-3.95 (m, 1H), 4.71-4.75 (m, 1H), 6.91 (d, *J* = 2.0 Hz, 1H), 7.19-7.23 (m, 1H), 7.29-7.34 (m, 1H), 7.37-7.42 (m, 2H), 7.64-7.68 (m, 1H), 7.79-7.86 (m, 2H), 8.62-8.63 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ: 19.7, 23.7, 23.9, 24.5, 27.1, 35.7, 75.4, 83.8, 84.3, 119.9, 122.2, 124.4, 124.7, 126.7, 129.1, 130.4, 136.4, 136.6, 149.7, 151.1, 169.4; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₃BrN₃O₂ [M+H]⁺: 428.0958; Found:

 $(3S, 4R, 4aS, 8aS, 9aS) - 1 - oxo - 3 - (pyridin - 2 - yl) - 2 - (p - tolyl) decahydroimidazo[1, 5 - a] indole 4(1H) - oxide (L1h): White solid, m.p. 220.6 - 220.9 °C, overall yield 59%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) <math>\delta$: 1.19 - 1.25 (m, 1H), 1.33 - 1.37 (m, 1H), 1.45 - 1.55 (m, 2H), 1.73 - 1.87 (m, 3H), 2.20 (s, 3H), 2.30 - 2.46 (m, 3H), 3.37 - 3.41 (m, 1H), 3.90 - 3.96 (m, 1H), 4.74 - 4.78 (m, 1H), 6.82 (s, 1H), 7.07 (d, J = 8.8 Hz, 2H), 7.31 - 7.34 (m, 3H), 7.63 (d, J = 7.6 Hz, 1H), 7.76 - 7.80 (m, 1H), 8.61 (d, J = 4.8 Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 19.7, 19.8, 23.8, 24.0, 24.6, 27.1, 35.7, 75.6, 84.2, 84.5, 122.1, 124.5, 126.7, 127.7, 129.5, 130.0, 132.5, 136.5, 136.6, 149.6, 151.6, 169.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₆N₃O₂ [M+H]⁺: 364.2020; Found: 364.2014.

 $(3S, 4R, 4aS, 8aS, 9aS) - 1 - oxo - 3 - (pyridin - 2 - yl) - 2 - (m - tolyl) decahydroimidazo[1, 5 - a] indole 4(1H) - oxide (L1i): White solid, m.p. 220.1 - 220.4 °C, overall yield 57%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) <math>\delta$: 1.23 - 1.29 (m, 1H), 1.38 - 1.49 (m, 2H), 1.57 - 1.60 (m, 1H), 1.74 - 1.91 (m, 3H), 2.24 (s, 3H), 2.32 - 2.38 (m, 2H), 2.43 - 2.51 (m, 1H), 3.36 - 3.42 (m, 1H), 3.89 - 3.95 (m, 1H), 4.73 - 4.77 (m, 1H), 6.84 (s, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 7.14 - 7.22 (m, 2H), 7.31 (s, 1H), 7.34 - 7.37 (m, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.78 - 7.83 (m, 1H), 8.62 - 8.63 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 20.0, 20.1, 23.8, 24.0, 24.5, 27.0, 35.7, 75.6, 84.2, 84.4, 119.0, 122.5, 124.5, 126.6, 127.1, 128.7, 134.9, 136.5, 139.1, 149.6, 151.5, 169.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₆N₃O₂ [M+H]⁺: 364.2020; Found: 364.2014.

(3S, 4R, 4aS, 8aS, 9aS)-1-oxo-3-(pyridin-2-yl)-2-(o-tolyl)decahydroimidazo[1,5-a]indole 4(1H)-

oxide (L1j): White solid, m.p. 230.5-230.9 °C, overall yield 55%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.19-1.31 (m, 2H), 1.43-1.50 (m, 2H), 1.63-1.70 (m, 1H), 1.78-1.89 (m, 2H), 2.15 (s, 3H), 2.21-2.26 (m, 1H), 2.29-2.37 (m, 1H), 2.61-2.64 (m, 1H), 3.31-3.35 (m, 1H), 3.82-3.88 (m, 1H), 4.81-4.85 (m, 1H), 6.74 (s, 1H), 7.02-7.09 (m, 3H), 7.20-7.23 (m, 1H), 7.27-7.29 (m, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.57-7.61 (m, 1H), 8.56 (d, J = 4.4 Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 18.0, 19.6, 23.7, 24.1, 24.6, 26.2, 35.8, 75.6, 84.4, 86.4, 124.5, 125.0, 126.3, 128.2, 131.6, 132.9, 136.2, 136.5, 149.4, 151.4, 168.0; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₆N₃O₂ [M+H]⁺: 364.2020; Found: 364.2014.

(3S, 4R, 4aS, 8aS, 9aS)-2-(4-ethylphenyl)-1-oxo-3-(pyridin-2-yl)decahydroimidazo[1,5-a]indole 4(1H)-oxide (**L1k**): White solid, m.p. 200.0-200.7 °C, overall yield 58%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.00-1.04 (m, 3H), 1.11-1.18 (m, 1H), 1.27-1.39 (m, 2H), 1.45-1.48 (m, 1H), 1.65-1.80 (m, 3H), 2.18-2.28 (m, 2H), 2.32-2.46 (m, 3H), 3.27-3.30 (m, 1H), 3.79-3.84 (m, 1H), 4.63-4.67 (m, 1H), 6.70 (s, 1H), 7.01 (d, J = 8.4 Hz, 2H), 7.22-7.26 (m, 3H), 7.51 (d, J = 7.6Hz, 1H), 7.67-7.71 (m, 1H), 8.51 (d, J = 4.4 Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 14.6, 19.8, 23.8, 24.0, 24.6, 27.0, 27.9, 35.7, 75.6, 84.2, 84.5, 122.2, 124.5, 126.6, 128.3, 132.6, 136.5, 143.0, 149.6, 151.5, 169.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₃H₂₇N₃NaO₂ [M+Na]⁺: 400.1992; Found: 400.1985.

(*3S*, *4R*, *4aS*, *8aS*, *9aS*)-2-(*4*-isopropylphenyl)-1-oxo-3-(pyridin-2-yl)decahydroimidazo[1,5-a]indole 4(*1H*)-oxide (*L1I*): White solid, m.p. 210.7-211.3 °C, overall yield 60%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ: 1.14 (s, 3H), 1.15 (s, 3H), 1.21-1.28 (m, 1H), 1.36-1.49 (m, 2H), 1.55-1.59 (m, 1H), 1.56-1.91 (m, 3H), 2.32-2.38 (m, 2H), 2.43-2.51 (m, 1H), 2.77-2.84 (m, 1H), 3.38-3.42 (m, 1H), 3.89-3.95 (m, 1H), 4.77-4.78 (m, 1H), 6.81 (s, 1H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.33-7.36 (m, 3H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.78-7.82 (m, 1H), 8.62-8.63 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ: 19.8, 22.9, 23.8, 24.0, 24.6, 27.0, 33.5, 35.7, 75.6, 84.2, 84.4, 122.1, 124.5, 126.6, 126.8, 132.7, 136.5, 147.5, 149.6, 151.6, 169.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₄H₂₉N₃NaO₂ [M+Na]⁺: 414.2147; Found: 414.2140.

(3S, 4R, 4aS, 8aS, 9aS)-2-(4-(tert-butyl)phenyl)-1-oxo-3-(pyridin-2-yl)decahydroimidazo[1,5a]indole 4(1H)-oxide (**L1m**): White solid, m.p. 226.6-227.2 °C, overall yield 61%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.18-1.28 (m, 10H), 1.35-1.49 (m, 2H), 1.56-1.59 (m, 1H), 1.56-1.91 (m, 3H), 2.29-2.37 (m, 2H), 2.44-2.52 (m, 1H), 3.38-3.43 (m, 1H), 3.89-3.95 (m, 1H), 4.74-4.78 (m, 1H), 6.82 (s, 1H), 7.31-7.38 (m, 5H), 7.63 (d, J = 7.6 Hz, 1H), 7.78-7.82 (m, 1H), 8.61 (d, J = 4.4 Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 19.8, 23.8, 24.0, 24.6, 27.0, 30.2, 34.0, 35.7, 75.6, 84.2, 84.3, 121.6, 124.5, 125.8, 126.6, 132.4, 136.5, 149.6, 149.7, 151.6, 169.3; HRMS (ESI-TOF) m/z: Calcd. for C₂₅H₃₂N₃O₂ [M+H]⁺: 406.2486; Found: 406.2474.

(3S, 4R, 4aS, 8aS, 9aS)-3-(6-methylpyridin-2-yl)-1-oxo-2-phenyldecahydroimidazo[1,5-a]indole 4(1H)-oxide (L1n): White solid, overall yield 56%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ : 1.25-1.29 (m, 1H), 1.39-1.50 (m, 2H), 1.58-1.61 (m, 1H), 1.75-1.92 (m, 3H), 2.32-2.36 (m, 2H), 2.42-2.47 (m, 1H), 2.52 (s, 3H), 3.37-3.41 (m, 1H), 3.88-3.94 (m, 1H), 4.76-4.81 (m, 1H), 6.76 (s, 1H), 7.15-7.19 (m, 1H), 7.22 (d, J = 7.6 Hz, 1H), 7.28-7.32 (m, 2H), 7.40-7.44 (m, 3H), 7.66-7.69 (m, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ : 19.8, 23.2, 23.8, 24.0, 24.5, 27.0, 35.7, 75.5, 84.2, 84.5, 122.2, 123.5, 124.0, 126.4, 128.9, 135.1, 136.7, 150.6, 159.0, 169.5; HRMS (ESI-TOF) m/z: Calcd. for C₂₂H₂₆N₃O₂ [M+H]⁺: 364.2020; Found: 364.2017.

(3S, 4R, 4aS, 8aS, 9aS)-3-(5-bromopyridin-2-yl)-1-oxo-2-phenyldecahydroimidazo[1, 5-a]indole

4(1H)-oxide (**L1o**): White solid, overall yield 58%, >20:1 dr; ¹H NMR (CD₃OD, 400 MHz) δ: 1.09-1.17 (m, 1H), 1.24-1.47 (m, 3H), 1.62-1.79 (m, 3H), 2.17-2.25 (m, 2H), 2.33-2.41 (m, 1H), 3.26-3.30 (m, 1H), 3.78-3.84 (m, 1H), 4.58-4.62 (m, 1H), 6.80 (s, 1H), 7.04-7.07 (m, 1H), 7.17-7.21 (m, 2H), 7.33-7.35 (m, 2H), 7.47 (d, J = 8.4 Hz, 1H), 7.87-7.90 (m, 1H), 8.59 (d, J = 2.4 Hz, 1H); ¹³C NMR (CD₃OD, 100 MHz) δ: 19.8, 23.8, 24.0, 24.5, 27.1, 35.7, 75.6, 83.8, 84.3, 121.5, 122.0, 126.5, 127.9, 129.1, 134.9, 139.2, 150.4, 150.8, 169.2; HRMS (ESI-TOF) m/z: Calcd. for C₂₁H₂₃BrN₃O₂ [M+H]⁺: 428.0968; Found: 428.0971.

4. The gram scale synthesis of the ligand L1a

In a sealed tube equipped with a magnetic stirring bar, optically pure bicyclic prolinamide **1a** (0.88 g, 3.6 mmol) and pyridinecarboxaldehyde **2** (0.32 g, 3.0 mmol) were added. Then, ethanol (20.0 mL) was added and the reaction was heated with stirring at reflux for 12 h. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to give the intermediate **3a**.

In a sealed tube equipped with a magnetic stirring bar, to the intermediate 3a was added 20.0 mL of DCM and *m*-CPBA (3.0 eq). The reaction mixture was stirred at rt for 10 min. After completion of the reaction, as indicated by TLC, the aftertreatment residue was purified by flash column chromatography to furnish the pyridine-NO ligand L1a (0.59 g, overall yield 56%, >20:1 dr).

5. Catalytic asymmetric synthesis of compounds 6

In a sealed tube equipped with a magnetic stirring bar, to the mixture of $Pd(AcO)_2$ (5.0 mol %), 5.0 mol % of **L1a** in 1.0 mL of CHCl₃ was added **4** (0.30 mmol), and **5** (0.20 mmol). The reaction mixture was stirred at room temperature for 35 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product **6**, using hexane/EtOAc (10/1, v/v) as the eluent.

6. Characterization data of compounds 6

(S)-4-((1H-indol-3-yl)(phenyl)methyl)-1-benzyl-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (6a): Product in accordance with literature characterization data⁸. 90%, 93% ee, $[\alpha]_D^{20} = +18.3$ (c 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 10.55$ min; $\tau_{minor} = 19.49$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.54-3.67 (m, 2H), 4.51 (s, 2H), 5.58 (s, 1H), 6.85-6.89 (m, 1H), 6.95 (d, J =2.0 Hz, 1H), 7.02-7.05 (m, 1H), 7.11-7.16 (m, 3H), 7.19-7.35 (m, 9H), 9.52 (br s, 1H), 10.92 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 39.0, 45.9, 48.1, 112.0, 115.6, 118.9, 119.1, 121.6, 123.4, 123.8, 126.8, 126.9, 127.6, 127.7, 128.5, 128.8, 129.0, 136.9, 138.2, 142.5, 142.8, 167.3.

(S)-1-benzyl-4-((4-fluorophenyl)(1H-indol-3-yl)methyl)-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (6b): Product in accordance with literature characterization data⁸. 90%, 98% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 9.03$ min; $\tau_{minor} = 16.33$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.55-3.67 (m, 2H), 4.47-4.56 (m, 2H), 5.58 (s, 1H), 6.87-6.91 (m, 1H), 6.97 (d, J = 2.0 Hz, 1H), 7.03-7.17 (m, 6H), 7.22-7.36 (m, 6H), 9.55 (br s, 1H), 10.95 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.3, 46.0, 48.2, 112.1, 115.3, 115.4 (d, $J_{CF} = 21.4$ Hz), 119.0 (d, $J_{CF} = 4.4$ Hz), 121.6, 123.1, 123.9, 126.7, 127.6, 127.7, 129.1, 130.2 (d, $J_{CF} = 8.2$ Hz), 137.0, 138.1, 139.0, 142.6, 161.8 (d, $J_{CF} = 226.3$ Hz), 167.3.

(*S*)-1-benzyl-4-((3-fluorophenyl)(1H-indol-3-yl)methyl)-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (*6c*): Product in accordance with literature characterization data⁸. 89%, 94% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 8.83$ min; $\tau_{minor} = 14.93$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.58-3.69 (m, 2H), 4.47-4.57 (m, 2H), 5.59 (s, 1H), 6.88-6.92 (m, 1H), 7.02-7.07 (m, 4H), 7.10-7.19 (m, 4H), 7.23 (d, *J* = 6.8 Hz, 1H), 7.28-7.36 (m, 4H), 9.58 (br s, 1H), 10.97 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.8, 46.0, 48.2, 112.1, 113.5 (d, *J*_{CF} = 21.2 Hz), 114.9, 115.1 (d, *J*_{CF} = 21.3 Hz), 119.0 (d, *J*_{CF} = 8.4 Hz), 121.7, 122.6, 124.0, 124.6, 126.7, 127.7, 127.8, 129.1, 130.6 (d, *J*_{CF} = 8.4 Hz), 136.9, 138.1, 142.8, 145.8 (d, *J*_{CF} = 7.1 Hz), 162.8 (d, *J*_{CF} = 241.4 Hz), 167.2.

(S)-1-benzyl-4-((4-chlorophenyl)(1H-indol-3-yl)methyl)-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (6d): Product in accordance with literature characterization data⁸. 88%, 92% ee, $[\alpha]_D^{20} = +67.1$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 9.13$ min; $\tau_{minor} = 16.98$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.55-3.66 (m, 2H), 4.46-4.56 (m, 2H), 5.56 (s, 1H), 6.86-6.90 (m, 1H), 6.98 (d, *J* = 2.0 Hz, 1H), 7.02-7.06 (m, 1H), 7.12-7.16 (m, 3H), 7.23-7.35 (m, 8H), 9.56 (br s, 1H), 10.96 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.5, 46.0, 48.2, 112.1, 115.1, 119.0, 121.6, 122.7, 124.0, 126.7, 127.7, 127.8, 128.7, 129.1, 130.3, 131.3, 136.9, 138.1, 141.8, 142.7, 167.3.

(S)-1-benzyl-4-((3-chlorophenyl)(1H-indol-3-yl)methyl)-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (6e): Product in accordance with literature characterization data⁸. 89%, 95% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 8.66$ min; $\tau_{minor} = 16.34$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.57-3.68 (m, 2H), 4.47-4.56 (m, 2H), 5.57 (s, 1H), 6.88-6.91 (m, 1H), 7.01-7.07 (m, 2H), 7.12-7.17 (m, 2H), 7.17 (d, J = 8.0 Hz, 1H), 7.21-7.31 (m, 7H), 7.35 (d, J = 8.0 Hz, 1H), 9.59 (br s, 1H), 10.97 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.8, 46.0, 48.3, 112.1, 114.8, 118.9, 119.1, 121.7, 122.5, 124.1, 126.7, 126.8, 127.2, 127.7, 127.8, 128.2, 129.1, 130.6, 133.4, 136.9, 138.1, 142.8, 145.5, 167.2.

(S)-1-benzyl-4-((4-bromophenyl)(1H-indol-3-yl)methyl)-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (6f): Product in accordance with literature characterization data⁸. 91%, 99% ee, $[\alpha]_D^{20} = +36.7$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 9.15$ min; $\tau_{minor} = 15.92$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.55-3.67 (m, 2H), 4.46-4.57 (m, 2H), 5.55 (s, 1H), 6.87-6.91 (m, 1H), 6.99 (d, J = 2.0 Hz, 1H), 7.03-7.06 (m, 1H), 7.12-7.16 (m, 3H), 7.19-7.24 (m, 3H), 7.27-7.31 (m, 2H), 7.34 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 8.4 Hz, 2H), 9.57 (br s, 1H), 10.96 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.5, 46.0, 48.2, 112.1, 115.0, 119.0, 119.8, 121.7, 122.7, 124.0, 126.7, 127.7, 127.8, 129.1, 130.7, 131.6, 136.9, 138.1, 142.3, 142.8, 167.3.

(S)-1-benzyl-4-((3-bromophenyl)(1H-indol-3-yl)methyl)-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (6g): Product in accordance with literature characterization data⁸. 91%, 97% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 8.85$ min; $\tau_{minor} = 17.52$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.57-3.68 (m, 2H), 4.48-4.57 (m, 2H), 5.57 (s, 1H), 6.88-6.92 (m, 1H), 7.02-7.08 (m, 2H), 7.12-7.19 (m, 3H), 7.23-7.32 (m, 5H), 7.35 (d, J = 8.4 Hz, 1H), 7.39-7.40 (m, 2H), 9.59 (br s, 1H), 10.98 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ: 38.7, 46.0, 48.2, 112.1, 114.8, 118.9, 119.1, 121.7, 122.1, 122.5, 124.1, 126.7, 127.6, 127.7, 129.1, 129.7, 131.0, 131.1, 136.9, 138.1, 142.8, 145.7, 167.2.

(*S*)-4-((*1*-benzyl-4-hydroxy-5-oxo-2,5-dihydro-1H-pyrrol-3-yl)(1H-indol-3-yl)methyl)benzonitrile (*6h*): Product in accordance with literature characterization data⁸. 90%, 99% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 10.74$ min; $\tau_{minor} = 14.94$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.58-3.68 (m, 2H), 4.46-4.58 (m, 2H), 5.64 (s, 1H), 6.88-6.91 (m, 1H), 7.03-7.07 (m, 2H), 7.12-7.17 (m, 3H), 7.21-7.25 (m, 1H), 7.28-7.32 (m, 2H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 9.63 (br s, 1H), 11.01 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 39.3, 46.0, 48.3, 109.6, 112.1, 114.4, 118.9, 119.1, 119.4, 121.7, 121.9, 124.2, 126.6, 127.7, 127.8, 129.1, 129.6, 132.8, 136.9, 138.1, 143.1, 148.7, 167.2.

(*S*)-4-((*1H-indol-3-yl*)(4-nitrophenyl)methyl)-1-benzyl-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (*6i*): Product in accordance with literature characterization data⁸. 89%, 92% ee, $[\alpha]_D^{20} = +12.2$ (*c* 0.50, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 11.84$ min; $\tau_{minor} = 16.38$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.61-3.71 (m, 2H), 4.46-4.59 (m, 2H), 5.70 (s, 1H), 6.88-6.92 (m, 1H), 7.04-7.08 (m, 2H), 7.13-7.19 (m, 3H), 7.21-7.25 (m, 1H), 7.28-7.32 (m, 2H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.52 (d, *J* = 8.8 Hz, 2H), 9.68 (br s, 1H), 11.04 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 39.1, 46.0, 48.4, 112.2, 114.3, 118.9, 119.2, 121.7, 121.8, 124.0, 124.3, 126.6, 127.7, 127.8, 127.9, 128.7, 129.1, 129.8, 136.9, 138.1, 143.2, 146.5, 150.9, 167.1.

(S)-4-((1H-indol-3-yl)(p-tolyl)methyl)-1-benzyl-3-hydroxy-1,5-dihydro-2H-pyrrol-2-one (6j): Product in accordance with literature characterization data⁸. 92%, 94% ee, $[\alpha]_D^{20} = +6.7$ (c 0.47, CHCl₃). The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 9.17$ min; $\tau_{minor} = 17.31$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.50-3.62 (m, 2H), 4.43-4.51 (m, 2H), 5.51 (s, 1H), 6.84-6.90 (m, 2H), 7.01-7.13 (m, 8H), 7.18-7.22 (m, 1H), 7.24-7.28 (m, 2H), 7.33 (d, J = 8.0 Hz, 1H), 9.56 (br s, 1H), 10.83 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.0, 38.6, 45.9, 48.1, 112.0, 115.7, 119.0, 121.7, 123.7, 124.1, 126.7, 127.7, 127.8, 128.3, 129.1, 129.4, 135.9, 136.8, 137.9, 139.5, 142.1, 167.5.

(*S*)-*1*-benzyl-4-((5-fluoro-1*H*-indol-3-yl)(4-fluorophenyl)methyl)-3-hydroxy-1,5-dihydro-2*H*pyrrol-2-one (**6**k): Product in accordance with literature characterization data⁸. 87%, 94% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 7.44$ min; $\tau_{minor} = 11.24$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.56-3.68 (m, 2H), 4.48-4.58 (m, 2H), 5.53 (s, 1H), 6.85-6.93 (m, 2H), 7.08-7.15 (m, 5H), 7.21-7.37 (m, 6H), 9.58 (br s, 1H), 11.08 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.3, 46.0, 48.1, 103.5 (d, $J_{CF} = 23.2$ Hz), 109.7 (d, $J_{CF} = 25.1$ Hz), 113.1 (d, $J_{CF} = 9.2$ Hz), 115.5 (d, $J_{CF} = 21.3$ Hz), 115.8 (d, $J_{CF} = 5.2$ Hz), 122.8, 126.0, 127.7 (d, $J_{CF} = 5.4$ Hz), 129.0, 130.2 (d, $J_{CF} = 8.2$ Hz), 133.6, 138.1, 138.6 (d, $J_{CF} = 3.3$ Hz), 142.7, 156.8 (d, $J_{CF} = 230.3$ Hz), 161.6 (d, $J_{CF} = 241.2$ Hz), 167.3.

(S)-1-benzyl-4-((4-chlorophenyl)(5-fluoro-1H-indol-3-yl)methyl)-3-hydroxy-1,5-dihydro-2Hpyrrol-2-one (6l): Product in accordance with literature characterization data⁸. 89%, 96% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 7.61$ min; $\tau_{minor} = 11.74$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.58-3.69 (m, 2H), 4.48-4.59 (m, 2H), 5.54 (s, 1H), 6.88-6.94 (m, 2H), 7.11-7.15 (m, 3H), 7.23-7.39 (m, 8H), 9.63 (br s, 1H), 11.11 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.5, 46.0, 48.2, 103.6 (d, $J_{CF} = 24.2$ Hz), 109.8 (d, $J_{CF} = 26.1$ Hz), 113.1 (d, $J_{CF} = 9.2$ Hz), 115.4 (d, $J_{CF} = 5.1$ Hz), 122.4, 126.1 (d, $J_{CF} = 9.0$ Hz), 126.9, 127.7 (d, $J_{CF} = 4.2$ Hz), 129.0, 130.3, 131.4, 133.6, 138.1, 141.5, 142.8, 156.9 (d, $J_{CF} = 230.3$ Hz), 167.3.

(*S*)-1-benzyl-4-((3,4-dichlorophenyl)(5-fluoro-1H-indol-3-yl)methyl)-3-hydroxy-1,5-dihydro-2Hpyrrol-2-one (*6m*): Product in accordance with literature characterization data⁸. 84%, 96% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 6.65$ min; $\tau_{minor} = 9.13$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.60-3.70 (m, 2H), 4.47-4.59 (m, 2H), 5.51 (s, 1H), 6.89-6.96 (m, 2H), 7.14-7.15 (m, 3H), 7.22-7.26 (m, 2H), 7.29-7.32 (m, 2H), 7.34-7.37 (m, 1H), 7.47 (d, *J* = 2.0 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 9.62 (br s, 1H), 11.13 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.3, 46.0, 48.4, 103.3, 103.7 (d, *J*_{CF} = 23.3 Hz), 109.7 (d, *J*_{CF} = 27.0 Hz), 113.2 (d, *J*_{CF} = 10.0 Hz), 114.8, 121.7, 126.3, 126.9 (d, *J*_{CF} = 230.2 Hz), 127.7, 128.9, 129.0, 129.4, 130.4, 130.9, 131.3, 133.5, 138.1, 143.0, 143.8, 157.6 (d, *J*_{CF} = 230.2 Hz), 167.2.

(S)-1-benzyl-4-((4-bromophenyl)(5-fluoro-1H-indol-3-yl)methyl)-3-hydroxy-1,5-dihydro-2Hpyrrol-2-one (6n): Product in accordance with literature characterization data⁸. 87%, 98% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/i-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 7.62$ min; $\tau_{minor} = 11.40$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.57-3.68 (m, 2H), 4.48-4.59 (m, 2H), 5.52 (s, 1H), 6.88-6.94 (m, 2H), 7.10-7.15 (m, 3H), 7.21-

7.25 (m, 3H), 7.28-7.32 (m, 2H), 7.35-7.38 (m, 1H), 7.47 (d, J = 8.4 Hz, 2H), 9.62 (br s, 1H), 11.10 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.5, 46.0, 48.2, 103.5 (d, $J_{CF} = 23.1$ Hz), 109.8 (d, $J_{CF} = 26.0$ Hz), 113.2 (d, $J_{CF} = 10.1$ Hz), 115.4 (d, $J_{CF} = 5.3$ Hz), 119.9, 122.3, 126.1, 126.8 (d, $J_{CF} = 10.1$ Hz), 127.7 (d, $J_{CF} = 4.4$ Hz), 129.0, 130.7, 131.7, 133.6, 138.1, 141.9, 142.8, 156.8 (d, $J_{CF} = 230.2$ Hz), 167.2.

(*S*)-1-benzyl-4-((3-bromophenyl)(6-fluoro-1H-indol-3-yl)methyl)-3-hydroxy-1,5-dihydro-2Hpyrrol-2-one (**6o**): Product in accordance with literature characterization data⁸. 85%, 95% ee. The ee was determined by HPLC analysis using a Chiralpak IA column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 7.21$ min; $\tau_{minor} = 12.68$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 3.57-3.68 (m, 2H), 4.49-4.57 (m, 2H), 5.56 (s, 1H), 6.76-6.81 (m, 1H), 7.02 (d, J = 2.0 Hz, 1H), 7.13-7.17 (m, 4H), 7.24-7.32 (m, 5H), 7.39-7.41 (m, 2H), 9.62 (br s, 1H), 11.06 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 38.7, 46.0, 48.2, 98.0 (d, $J_{CF} = 25.0$ Hz), 107.6 (d, $J_{CF} = 25.1$ Hz), 115.1, 119.9 (d, $J_{CF} = 11.0$ Hz), 122.2 (d, $J_{CF} = 7.3$ Hz), 123.5, 124.7, 127.6, 127.7, 129.1, 129.8, 131.0 (d, $J_{CF} = 6.2$ Hz), 136.7 (d, $J_{CF} = 13.2$ Hz), 138.1, 142.9, 145.5, 159.6 (d, $J_{CF} = 233.0$ Hz), 167.2.

(*S*)-1-benzyl-3-hydroxy-4-((6-methyl-1H-indol-3-yl)(p-tolyl)methyl)-1,5-dihydro-2H-pyrrol-2-one (*6p*): Product in accordance with literature characterization data⁸. 88%, 94% ee. The ee was determined by HPLC analysis using a Chiralpak IC column (60/40 hexane/*i*-PrOH; flow rate: 1.0 mL/min; $\lambda = 254$ nm; $\tau_{major} = 6.79$ min; $\tau_{minor} = 9.65$ min). ¹H NMR (CDCl₃, 400 MHz) δ : 2.24 (s, 3H), 2.34 (s, 3H), 3.51-3.65 (m, 2H), 4.51 (s, 2H), 5.52 (s, 1H), 6.70 (d, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 1.6 Hz, 1H), 7.00-7.13 (m, 8H), 7.23-7.31 (m, 3H), 9.48 (br s, 1H), 10.74 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 21.1, 21.8, 38.7, 45.9, 48.1, 111.8, 115.5, 118.9, 120.7, 123.1, 123.8, 124.8, 127.6, 127.7, 128.3, 129.1, 129.3, 130.6, 135.7, 137.4, 138.2, 139.8, 142.3, 167.4.

7. Compared experiments using different ligands

In a sealed tube equipped with a magnetic stirring bar, to the mixture of $Pd(AcO)_2$ (5.0 mol %), 5.0 mol % of L in 1.0 mL of CHCl₃ was added **4a** (0.30 mmol), and **5a** (0.20 mmol). The reaction mixture was stirred at room temperature for 35 h and was directly loaded onto a silica gel and purified by flash chromatography to give the desired product **6a**, using hexane/EtOAc (10/1, v/v) as the eluent.

1 11.382 4518.1 129.1 0.5233 20.239 (metry
	719
2 22.787 17806.1 279.5 0.9422 79.761 0	467

#	Time	Area	Height	Width	Area%	Symmetry
1	11.019	3227.8	102.7	0.4745	55.574	0.767
2	22.064	2580.3	44.7	0.8711	44.426	0.629

#	Time	Area	Height	Width	Area%	Symmetry
1	10.992	3611.7	116.8	0.4688	45.364	0.759
2	21.823	4349.8	75	0.8725	54.636	0.593

	1	10.731	8579.9	285.9	0.4571	39.373	0.751
6	2	20.368	13211.6	245.3	0.7984	60.627	0.5
_							

#	Time	Area	Height	Width	Area%	Symmetry
1	11.324	24187.7	474.3	0.85	96.293	0.52
2	23.2	931.2	13.4	1.1579	3.707	0.789

8. References

(a) J. K. Mansaray, Y. Huang, K. Li, X. Sun, Z. Zha and Z. Org. Biomol. Chem., 2022, 20, 5510-5514; (b) R. M. Liu, Y. H. Wang, Z. Y. Chen, L. Zhang, Q. H. Shi, Y. Zhou, Y. P. Tian and X. L. Liu, Org. Chem. Front., 2022, 9, 6881-6887; (c) K.-L. Xu, Y.-H. Wang, X.-R. Wang, P. Hu, B.-W. Pan, W.-J. Zhang, Z.-Y. Chen, Y. Zhou and X.-L. Liu, Chin. J. Chem., 2024, 42, 1474-1480; (d) X. Q. Zhu, W. W. Li, L. L. Liu, K. L. Xu, L. J. Peng, M. Zhang, X. L. Liu, and W. J. Zhang, Adv. Synth. Catal., 2024, DOI: 10.1002adsc.202401348.

9. General experimental procedures for in vitro cytotoxicity assay

The human cancer cell line K562 was purchased from Chinese Academy of Sciences. All the cells were cultured in RPMI-1640 medium (GIBICO, USA), supplemented with 10% fetal bovine serum (Hyclone, USA) and Penicillin-Streptomycin (respectively 100 U/mL) in 5% CO₂ at 37°C. The cytotoxicity assay was performed according to the MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) method in 96-well microplates. Briefly, 5000 cells were seeded into each well of 96-well cell culture plates and allowed to grow for 24 h before drug addition. The K562 tumor cell line was exposed to test compounds **6g**, **6l** and **6m** at the concentrations of 10, 20, 40, 80, and 100 μ mol⁻L⁻¹ in triplicates for 48 h, comparable to cisplatin (Aladdin, China). Then the MTT reagent was added to reaction with the cancer cells for 4 hours. At least, measure the OD value at 490 wavelengths. IC₅₀ of all the compounds were calculated by IBM SPSS Statistics (version 19).

10. X-ray crystal data for compound L1a

CCDC 2412333

Table S1 Crystal data and structure refinement for L1a

Identification code	L1a
Empirical formula	$C_{21}H_{25}N_3O_3$
Formula weight	367.44

Temperature/K	150.00
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å, b/Å, c/Å	7.1170(3), 16.0841(7), 16.6316(7)
$\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ},$	90, 90, 90
Volume/Å ³	1903.83(14)
Z	4
$\rho_{calc}g/cm^3$	1.282
µ/mm ⁻¹	0.701
F(000)	784.0
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
Crystal size/mm ³	$0.16 \times 0.13 \times 0.09$
2Θ range for data collection/°	7.646 to 137.416
Index ranges	$-8 \le h \le 7, -19 \le k \le 19, -20 \le l \le 20$
Reflections collected	39237
Independent reflections	$3504 [R_{int} = 0.0874, R_{sigma} = 0.0370]$
Data/restraints/parameters	3504/0/247
Goodness-of-fit on F ²	1.151
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0477, wR_2 = 0.1211$
Final R indexes [all data]	$R_1 = 0.0510, wR_2 = 0.1232$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.22
Flack parameter	0.05(9)/0.07(10)

Crystal Data for $C_{21}H_{25}N_3O_3$ (M = 367.44 g/mol): orthorhombic, space group $P2_12_12_1$ (no. 19), a = 7.1170(3) Å, b = 16.0841(7) Å, c = 16.6316(7) Å, V = 1903.83(14) Å³, Z = 4, T = 150.00 K, μ (CuK α) = 0.701 mm⁻¹, *Dcalc* = 1.282 g/cm³, 39237 reflections measured (7.646° $\leq 2\Theta \leq 137.416^{\circ}$), 3504 unique ($R_{int} = 0.0874$, $R_{sigma} = 0.0370$) which were used in all calculations. The final R_1 was 0.0477 (I > 2 σ (I)) and wR_2 was 0.1232 (all data).

11. The copies of ¹H NMR, ¹³C NMR and HPLC spectra for compounds 3a, L and 6 ¹H and ¹³C NMR of 3a

¹H and ¹³C NMR of L1a

¹H and ¹³C NMR of L1b

¹H and ¹³C NMR of L1c

¹H and ¹³C NMR of L1d

¹H and ¹³C NMR of L1e

¹H and ¹³C NMR of L1f

¹H and ¹³C NMR of L1g

¹H and ¹³C NMR of L1h

¹H and ¹³C NMR of L1j

S33

¹H and ¹³C NMR of L11

¹H and ¹³C NMR of L1m

¹H and ¹³C NMR of L1n

¹H and ¹³C NMR of 6a

#	Time	Area	Height	Width	Area%	Symmetry
1	11.324	24187.7	474.3	0.85	96.293	0.52
2	23.2	931.2	13.4	1.1579	3.707	0.789

_	#	Time	Area	Height	Width	Area%	Symmetry
[1	12.518	27215.4	447.6	1.0134	50.234	0.54
[2	17.62	26962.1	298.1	1.5077	49.766	0.521

	#	Time	Area	Height	Width	Area%	Symmetry
[1	10.044	19748.5	429.3	0.6417	99.215	0.493
[2	17.091	156.2	2.4	0.8679	0.785	0.485

#	Time	Area	Height	Width	Area%	Symmetry
1	9.809	49928.2	1687.9	0.4461	50.861	0.612
2	17.934	48236.8	856.7	0.9384	49.139	0.391

#	Time	Area	Height	Width	Area%	Symmetry
1	9.954	17271.3	325.6	0.8842	96.903	0.489
2	19.623	551.9	10.6	0.8687	3.097	0.665

#	¥	Time	Area	Height	Width	Area%	Symmetry
1	1	10.091	7529.2	177.4	0.6013	96.155	0.494
2	2	21.685	301	3.6	1.077	3.845	0.543

¹H and ¹³C NMR of 6e

_	#	Time	Area	Height	Width	Area%	Symmetry
[1	9.7	34239.4	1270.8	0.4491	50.353	0.709
[2	20.048	33759.4	577.6	0.8559	49.647	0.418

#	Time	Area	Height	Width	Area%	Symmetry
1	9.388	11057.9	347.9	0.4669	97.443	0.89
2	19.215	290.2	6.3	0.7029	2.557	0.852

¹H and ¹³C NMR of 6f

#	Time	Area	Height	Width	Area%	Symmetry
1	10.311	36566.9	769.3	0.6616	99.455	0.476
2	17.258	200.2	3.1	0.9021	0.545	0.474

¹H and ¹³C NMR of 6g

#	Time	Area	Height	Width	Area%	Symmetry
1	9.819	15486.9	336.9	0.6402	98.731	0.426
2	17.125	199	2.7	0.9781	1.269	0.455

¹H and ¹³C NMR of 6h

#	Time	Area	Height	Width	Area%	Symmetry
1	11.75	29061.8	899.6	0.5384	50,590	0.779
2	15.854	28384.5	633.3	0.747	49.410	0.878
		-				

#	Time	Area	Height	Width	Area%	Symmetry
1	12.204	10928.7	183.6	0.8386	99.436	0.441
2	17.161	62	1.8	0.5248	0.564	1.183

#	Time	Area	Height	Width	Area%	Symmetry
1	13,503	25092.4	637.9	0.5929	49.531	0.705
2	17.658	25567.7	489.5	0.7833	50,469	0.821

#	Time	Area	Height	Width	Area%	Symmetry
1	13.376	40263.5	1009.5	0.5973	96.200	0.708
2	17.643	1590.6	31.1	0.8532	3.800	1.075

¹H and ¹³C NMR of 6j

#	Time	Area	Height	Width	Area%	Symmetry
1	10.496	7314.6	209.5	0.5818	51.496	0.52
2	22.039	6889.6	107.4	1.0692	48.504	0.51

#	Time	Area	Height	Width	Area%	Symmetry
1	10.277	31315.5	952.6	0.4855	96.989	0.491
2	22.831	972.1	15.6	0.9334	3.011	0.66

¹H and ¹³C NMR of 6k

#	Time	Area	Height	Width	Area%	Symmetry
1	7.95	11527.9	500	0.3843	50.762	0.819
2	12.671	11181.8	305.6	0.5459	49.238	0.682

1 8.135 27966.1 1136.9 0.37 97.075 0.752
2 13.483 842.5 21.4 0.5904 2.925 0.73

¹H and ¹³C NMR of 6l

1 8.389 23368.8 919 0.3837 97.881 0.74 2 14.05 505.9 12.5 0.6141 2.119 0.73	#	Time	Area	Height	Width	Area%	Symmetry
2 14.05 505.9 12.5 0.6141 2.119 0.73	1	8.389	23368.8	919	0.3837	97.881	0.74
2 11.00 000.0 12.0 0.0111 2.110 0.00	2	14.05	505.9	12.5	0.6141	2.119	0.73

¹H and ¹³C NMR of 6m

#	Time	Area	Height	Width	Area%	Symmetry
1	6.839	35691.9	1169.8	0.429	50.104	0.447
2	9.557	35543.3	815.1	0.6048	49.896	0.417

	#	Time	Area	Height	Width	Area%	Symmetry
[1	7.378	22873.1	1000.9	0.3426	97.978	0.597
[2	11.024	472	14.5	0.4961	2.022	0.779

¹H and ¹³C NMR of 6n

1 8.374 11080	442	0.4178	40.240	0.770
	116	0.4170	49.340	0.779
2 13.076 11376.6	260.4	0.7282	50.660	0.628

1 8.552 60759.9 2410.1 0.3821 99.149 0.7	etry	Symmetr	Area%	Width	Height	Area	Time	#
	7	0.717	99.149	0.3821	2410.1	60759.9	8,552	1
2 13.939 521.3 12.7 0.6221 0.851 0.7	14	0.704	0.851	0.6221	12.7	521.3	13.939	2

¹H and ¹³C NMR of 60

S66

_	#	Time	Area	Height	Width	Area%	Symmetry
	1	7.758	28070.4	1213.2	0.3856	49.482	0.494
	2	15.607	28658	530.9	0.8997	50.518	0.364

¹H and ¹³C NMR of 6p

HPLC of 6p

	#	Time	Area	Height	Width	Area%	Symmetry
[1	7,368	25200.4	940.2	0.4077	97.000	0.679
	2	10.366	779.3	16.5	0.6396	3.000	0.347
	_						