Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Cu-modifiled Th₆-basesd Framework for Regulating Products in Photocatalytic Oxidation of Tetrahydroisoquinoline

Ran-Wei Zhang,^{1,†} Xiu-Fen Li,^{1,2†} Hui Zhou,¹ Yu-Jie Zhao,¹ Jing-Qi Zhao,¹ Pengfei Wu,¹ Qing Huang,^{1,*} and Dan Tian^{1*}

¹ Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, P.R. China.

² School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.

[†] These authors contributed equally: Ran-Wei Zhang and Xiu-Fen Li.

*Correspondence and requests for materials should be addressed to D.T. (Email: tiandan@njfu.edu.cn); Q. H. (Email: huangqing@njfu.edu.cn).

Experimental section

1. Material

All solvents and reagents were commercially available analytical grade solvents and reagents, which did not require further purification during use. Th $(NO_3)_4$ ·4H₂O was purchased from McLin. Nitric acid (HNO₃) was purchased from Guangzhou Chemical Reagent Company. N,N-Dimethylformamide (DMF), methanol (CH₃OH), ethanol (C₂H₅OH), dichloromethane (CH₂Cl₂), acetonitrile (CH₃CN), tert-butyl hydroperoxide (TBHP), and CuCl₂·2H₂O were all purchased from Sinopharm Chemical Reagent Co., Ltd. 2,2'-Bipyridyl-5,5'-dicarboxylic acid (H₂BPYDC) and organic substrates such as 1,2,3,4-tetrahydroisoquinoline and its derivatives were purchased from Adamas-beta.

2. Material characterization

The powder X-ray diffraction (PXRD) measurements were conducted on a Bruker D8 Advance diffractometer ($\lambda = 1.54060$ Å, 40 kV, 40 mA), equipped with a copper target tube and a graphite monochromator, with a diffraction angle range of 1.5 to 50°. The Fourier transform infrared spectroscopy (FTIR) was recorded on a Thermo Scientific Nicolet iS50 using KBr pellets in the range of 4000-400 cm⁻¹. The X-ray photoelectron spectroscopy (XPS) was recorded using an Escalab 250Xi instrument (Thermo Scientific) equipped with an Al Kα microfocus X-ray source. The ultraviolet-visible (UV-Vis) absorption spectra were obtained on a Varian Cary 5000 using BaSO₄ as a reflectance standard in the wavelength range of 200-800 nm. The electron paramagnetic resonance (EPR) experiments were performed on a Bruker EMX PLUS instrument. The electrochemical tests were conducted using an EC-Lab SP-150 workstation (Bio-Logic) and a CHI660E (CH Instruments). The photocatalytic liquid products were analyzed using a gas chromatography-mass spectrometer (GC-MS) (Agilent 8890 and 5977B, equipped with HP-5-MSUI or HP-PLOT Molesieve capillary columns).

The photoelectrochemical measurements were conducted on a CHI660E electrochemical workstation using a standard three-electrode system. A platinum sheet was used as the counter electrode, and a saturated Ag/AgCl electrode served as the reference electrode. The electrolyte used was sodium sulfate solution at a concentration of 0.5 M. The light source was a Xe lamp with a wavelength (λ) of 300 nm or greater.

Preparation of the working electrode: Firstly, 2 mg of ground crystal powder was mixed with 990 μ L of ethanol and 10 μ L of Nafion D-520 dispersion solution. The mixture was then subjected to ultrasonic treatment for 30 minutes. Subsequently, 200 μ L of the solution was transferred and coated onto ITO glass (1 cm × 2 cm), which was then dried at room temperature.

Mott-Schottky curve testing was conducted on an electrochemical workstation (Bio-Logic, VSP) using a standard three-electrode system, which comprised the working electrode, a platinum sheet as the counter electrode, and a saturated Ag/AgCl electrode as the reference electrode. Mott-Schottky plots were generated at various frequencies of 500 Hz, 1000 Hz, and 1500 Hz in 0.5 M Na₂SO₄ aqueous solution. The preparation of the working electrode was identical to that used for photoelectrochemical measurements.

3. Material synthesis

Care was taken! Th was radioactive and was handled according to standard protective measures for radioactive materials.

Th₆-BPYDC was synthesized by combining 24 mg of Th (NO₃)₄·4H₂O, 12.21 mg of 2, 2-bipyridine-5, 5-dicarboxylic acid (H₂BPYDC), and 150 μ L of nitric acid (HNO₃)

with DMF (3 mL), which was then ultrasound-dissolved. The mixture was sealed in a 10 mL glass vial and heated at 120 °C for 72 h. Upon cooling to room temperature, the Th₆-BPYDC colorless octahedral crystals were gathered by filtration and washed thoroughly several times with DMF.

CuCl₂@Th₆-BPYDC was synthesized by employing acetonitrile as the solvent and placing 10 mg of the previously prepared Th₆-BPYDC crystals into a 10 mL glass vial containing 5 mL of saturated CuCl₂·2H₂O solution. The mixture was then heated at 80 °C for 7 days, resulting in the crystals turning green.

4. Photocatalytic experiments

Photocatalytic oxidation of 1, 2, 3, 4-tetrahydroisoquinoline (THIQ):

(1) Typically, a photocatalyst (20 mg) was dispersed in 1 mL of CH₃CN containing 0.1 mmol of THIQ, which was then placed into a 25 mL quartz reactor. The mixture was bubbled with oxygen for 10 minutes, and then the photoreactor was sealed. A 300 W xenon lamp (light intensity: 200 mW·cm⁻²) was used as the reaction light source. The reaction temperature was controlled at 298K by circulating cooling water. After the reaction, the solution was collected, centrifuged, and filtered through a 0.22 μ M filter to remove the catalyst particles. The filtrate was identified by GC-MS and analyzed for conversion rate as well as selectivity. Other derivatives with the same concentration were prepared using a similar method and analyzed for corresponding conversion rate and selectivity by GC-MS.

(2) Typically, a photocatalyst (20 mg) was dispersed in 1 mL of CH₃CN containing 0.1 mmol of THIQ, which was then placed into a 10 mL quartz reactor. Afterward, 50 μ L of tert-butyl hydroperoxide (TBHP) was added to the mixture. The solution was bubbled with argon for 10 minutes, and then the photoreactor was sealed. A 300 W xenon lamp (light intensity: 200 mW·cm⁻²) was used as the reaction light source. The reaction temperature was maintained at 298K by circulating cooling water. After the reaction, the solution was collected, centrifuged, and filtered through a 0.22 μ M filter to remove the catalyst particles. The filtrate was identified by GC-MS and analyzed for conversion rate as well as selectivity. Other derivatives with the same concentration were prepared using a similar method and analyzed for corresponding conversion rate and selectivity by GC-MS.

The conversion rates of 1, 2, 3, 4-tetrahydroisoquinoline (THIQ), dihydroisoquinoline (DHIQ), and isoquinoline (IQ), along with the selectivity of the products, were calculated using the following equations (1), (2), and (3):

(1)
(1)
(1)
(1)
Selectivity of DHIQ (%) =
$$\frac{C_{DHIQ}}{C_{total products}} \times 100\%$$

(2)
Selectivity of IQ (%) = $\frac{C_{IQ}}{C_{total products}} \times 100\%$
(3)

Where C_0 represented the initial concentration of THIQ. C_{THIQ} , C_{DHIQ} , and C_{IQ} denoted the concentrations of THIQ remaining and the corresponding DHIQ and IQ products after a certain period of catalytic reaction, respectively. $C_{total products}$ were the sum of the concentrations of all products.

Fig. S1 (a) Asymmetric unit of the Th₆-BPYDC. (b) Asymmetric unit of the Cu@Th₆-BPYDC.

Fig. S2 (a) Microscopic crystal photograph of Th₆-BPYDC. (b) Microscopic crystal photograph of Cu @Th₆-BPYDC.

Fig. S3 (a) The PXRD spectra of Th_6 -BPYDC. (b) The PXRD spectra of the Cu@Th_6-BPYDC."Simulated" represents the simulated sample, and "as synthesized" represents the synthetic sample.

Fig. S4 (a) The PXRD spectra of Th_6 -BPYDC soaked in different organic solvents for more than 24 h. (b) The PXRD spectra of Cu@Th₆-BPYDC soaked in different organic solvents for more than 24 h.

Fig. S5 (a) The FTIR spectra of Cu@Th₆-BPYDC. (b) The FTIR spectra of Th₆-BPYDC.

Fig. S6 TG curves of Th₆-BPYDC and Cu@Th₆-BPYDC.

Fig. S7 The XPS spectra of Cu@Th₆-BPYDC.

Fig. S8 (a) PXRD spectra of Cu@Th₆-BPYDC before and after the reaction. (b) The FTIR spectra of Cu@Th₆-BPYDC before and after the reaction.

Fig. S9 (a) PXRD spectra of Cu@Th₆-BPYDC before and after the reaction. (b) The FTIR spectra of Cu@Th₆-BPYDC before and after the reaction.

Support Tables.

Table S1 ICP-OES data for Cu@Th₆-BPYDC.

Cat.	Weight Percent (wt%)	
Cu@Th ₆ -BPYDC	7.2	

	Cat., TBHP/O2 NH Full-spectrum		▶ + ()	N
	Deviation from standard	Conversionh	Salaativity of	Selectivity ^b
Entry	conditions	(%)	DHIQ (%)	of IQ
				(%)
1	Cu@Th ₆ -BPYDC	94.6	81.0	19.0
2°	CuCl ₂	66.2	74.3	25.7
3 ^d	No cat.	65.9	84.4	15.6
4 ^e	Th_6	64.4	81.0	19.0
$5^{\rm f}$	Ar instead of O ₂	27.6	84.2	15.8
6 ^g	No light	0	-	-
$7^{\rm h}$	BQ	98.9	89.5	10.5
8 ⁱ	DABCO	27.0	92.7	7.3

Table S2 Some control experiments to demonstrate the importance of the catalyst when using O_2 as the oxidant.^a

^aReaction conditions: 0.1 mmol THIQ, 20 mg catalyst, 1 mL CH₃CN, in an O₂ atmosphere, at room temperature (rt), with xenon lamp full-spectrum illumination for 12h (standard conditions). ^b Qualitative and quantitative analysis was carried out using gas chromatography-mass spectrometry. ^c CuCl₂ was used as the catalyst. ^d Without a catalyst. ^e Th₆ was used as the catalyst. ^f The reaction was conducted in an argon atmosphere. ^g The reaction was carried out in a light-proof condition. ^h BQ was added as an O₂⁻⁻ scavenger. ⁱ DABCO was added as a ¹O₂ scavenger.

	Deviation from standard	Conversion ^b	Selectivity ^b of	Selectivity ^b
Entry	conditions	(%)	DHIQ (%)	of IQ (%)
1	O ₂	94.6	81.0	19.0
2°	TBHP	99.4	0.3	99.7
3 ^d	H_2O_2	65.0	81.9	18.1

Table S3 Oxidant screening form for the photocatalytic oxidation reaction of THIQ.^a

^aReaction conditions: 0.1 mmol THIQ, 20 mg catalyst, 1 mL CH₃CN, in an O₂ atmosphere, at room temperature (rt), with full-spectrum xenon lamp illumination for 12 hours. ^b Qualitative and quantitative analyses were carried out using gas chromatography-mass spectrometry. ^c TBHP was used as the oxidant. ^d H₂O₂ was used as the oxidant.

Entry	Deviation from standard conditions	Conversion ^b (%)	Selectivity ^b of DHIQ (%)	Selectivity ^b of IQ (%)
1	Cu@Th ₆ -BPYDC	99.4	0.3	99.7
2°	CuCl ₂	92.5	69.5	30.5
3 ^d	No cat.	75.7	82.3	17.7
4 ^e	Th_6	76.1	83.5	16.5
$5^{\rm f}$	Ar instead of TBHP	32.3	85.3	14.7
6 ^g	No light	99.2	75.1	24.9
7 ^h	BHT	>99	63.7	36.3

 Table S4 Some control experiments demonstrating the importance of the catalyst when using TBHP as the oxidant.^a

^a Reaction conditions: 0.1 mmol THIQ, 20 mg catalyst (Cu@Th₆-BPYDC), 1 mL CH₃CN, 50 μ L TBHP, in an Ar atmosphere, at rt, with xenon lamp full-spectrum illumination for 12 h (standard conditions). ^b Qualitative and quantitative analysis was carried out using gas chromatography-mass spectrometry. ^c CuCl₂ was used as the catalyst. ^d Without a catalyst. ^e Th₆ was used as the catalyst. ^f The reaction was carried out in an argon atmosphere. ^g The reaction was carried out in a light-proof condition. ^h BHT was added as a tert-butyl radical scavenger.