Supplementary Information (SI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Supplementary Information

Three-dimensional $CoS_{1.097}/Al_2O_3$ composites assembled with ultra-thin nanosheets for high-performance NO_x gas sensing at room temperature

Baihe Sun ^{a,b}, Jialing Xue ^b, Shanshan Cong ^b, Rui Zhang, ^c, Weixin Lv ^c and Keying Shi ^{b*}

^a School of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, PR China.

^b Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China.

^c School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China

*Corresponding authors E-mail: <u>shikeying2008@163.com</u> Fax: +86 4518667 3647 **1. Scheme 1** Schematic diagram of preparation of the 3D flower-like $CoS_{1.097}/Al_2O_3$ composites.

2. Fig. S1 Raman spectra of CAS-6 MFs.

3. Fig. S2 AFM images and height of CA-LDH MFs.

4. Fig. S3 AFM images and height of CAS-6 MFs.

5. Fig. S4 SEM images (a), elemental mapping images (b–e), EDS analysis (f) of CAS-6.

6. Fig. S5 TEM images of (a) CA, (b) CAS-6 and (c-d) HRTEM of CAS-6.

7. Fig. S6 Dynamic response-recovery curve of (a) CA, (b) CAS-3 and (c) CAS-9 sensors.

8. Fig. S7 The recovery times (a) and the response times (b) of CA, CAS-3, CAS-6 and CAS-9 sensors.

9. Table S1 Comparison of the gas sensing characteristics of sulfide based materials reported in literature.

10. Table S2 The binding energy of the different oxygen species in CA, CAS-6 before and after NO_x adsorption.

11. Table S3 The contents of the different oxygen species in CA, CAS-6 before and after NO_x adsorption.

12. Table S4 Responses, response times and recovery times of CA, CAS-3, CAS-6 and CAS-9 sensors.

13. Table S5 The quantitative results of the of the CAS-6 on successive exposure (12 cycles) to 100 ppm NO_x .

14. Table S6 The quantitative results of the stability for the CAS-6 to 100 ppm NOx for 9 weeks.

15. Table S7 The contents and binding energy of different sulfur species in CAS-6 before and after NO_x adsorption.

Scheme 1 Schematic diagram of preparation of the 3D flower-like CoS_{1.097}/Al₂O₃ composites.

Fig. S1. Raman spectra of CAS-6 MFs.

Fig. S2. AFM images and height of CA-LDH MFs.

Fig. S3. AFM images and height of CAS-6 MFs.

Fig. S4. SEM images (a), elemental mapping images (b–e), EDS analysis (f) of CAS-6.

Fig. S5. TEM images of (a) CA, (b) CAS-6 and (c-d) HRTEM of CAS-6.

Fig. S6. Dynamic response-recovery curve of (a) CA, (b) CAS-3 and (c) CAS-9 sensors.

Fig. S7. The recovery times (a) and the response times (b) of CA, CAS-3, CAS-6 and CAS-9 sensors.

 Table S1.
 Comparison of the gas sensing characteristics of Sulfide based materials reported in literature.

Sensor material	Operation temperature	Gas	Response/ concentration	Response/ recovery time (s)	limit of detection	References	
n NiS/n In O	200°C	otheral	10.3/	8 s/	5	10	
p-1\15/11-111 ₂ O ₃	300 C	ethanoi	100 ppm	20 s	5 ppm	12	
	DT	NO	10.7/	1 -/	50 mmh	16	
$MOS_2 - BI_2O_3 - BI_2S_3$ NMS	K1	NO_x	50 ppm	1 S/	50 ррв	10	
Mag @Wg	DT	NO	26.12/	1.6 s/	10 anh	17	
$MOS_2(\underline{w} W S_2)$	K1	NO_2	50 ppm	27.7 s	то ррв	1/	
	DT	,	1.107/	3 s/	500 1	10	
Mn-SnS	K1	acetone	500 ppb	4 s	500 ррв	18	
MoS ₂ @SnO ₂	DT	NO	34.67/	2.2 s/	10 1	51	
heterostructure	KI	NO_2	100 ppm	10.54 s	то ррв	51	
n-MoS ₂ /	РT	NH	47%/	17 s/26 s	5 nnm	S 1	
p-CuO	KI	11113	500 ppm	17 5/20 5	5 ppm	51	
Au-decorated WS ₂	RT	CO	1.48/	/	0.2 ppm	S 2	
			50 ppm	,	or z ppm		
CdS QDs	RT	H ₂ S	12.7/	0.6 s/	1-5 ppm	S 3	
/Co ₃ O ₄	i ci	1125	100 ppm	1.0s	r o ppm		
CNFs/CoSo/MoSo	ВŢ	NO	32%/	/	1 ppm	S 4	
	KI	NO	60 ppm	/	i ppin	54	
Co S compon	160°C	otheral	7.326/	1 s/		SE.	
$C0_9S_8$ sensor	100 C	ethanoi	100 ppm	15 s		22	
	DT	NO	30.05/	1.3s/	10 nnh	This work	
CA3-0	KI	NO _x	100 ppm	13.3s	to bbo	I IIIS WOFK	

Table S2. The binding energy position of the different oxygen species in CA and CAS-6 before and after NO_x adsorption.

Oxygen species	СА	CAS-6	CAS-NO _x
Lattice oxygens	531.9	531.8	531.8
Oxygen defects	532.7	532.5	532.6
Chemisorbed oxygens	534.2	533.4	533.5

Table S3. The contents of the different oxygen species in CA and CAS-6 before and after NO_x adsorption.

Oxygen species	СА	CAS-6	CAS-NO _x
Lattice oxygens	54.7%	44.4%	46.4%
Oxygen defects	26.3%	31.9%	25.7%
Chemisorbed oxygens	19.0%	23.7%	27.9%

Sensors		CA			CAS-3			CAS-6			CAS-9	
NO _x (ppm)	R	Ts	Tr	R	Ts	Tr	R	Ts	Tr	R	Ts	Tr
100	25.04	2.00	14.00	27.21	4.67	13.33	30.05	1.33	13.33	27.22	3.33	14.67
50	22.53	3.33	12.00	25.71	4.67	10.67	27.25	2.00	11.33	21.85	3.33	10.00
30	13.15	2.67	16.67	17.98	3.33	14.00	22.54	1.33	10.67	19.57	4.00	10.67
10	13.09	2.67	20.00	15.03	4.67	14.67	18.81	2.00	10.00	17.69	4.67	12.00
5	11.09	2.67	12.67	13.13	3.33	10.00	15.46	2.67	12.00	12.46	3.33	4.67
3	10.75	4.00	10.00	10.49	4.00	8.00	11.32	2.67	12.00	10.63	5.33	4.67
1	6.28	3.33	6.67	7.72	2.67	7.33	8.28	2.00	13.33	7.25	3.33	6.67
0.5	4.01	3.33	4.67	4.91	4.00	4.67	6.83	2.67	9.33	4.26	3.33	4.67
0.3	3.12	5.33	4.00	4.03	2.67	2.67	5.13	4.67	6.00	3.59	4.67	4.67
0.1	2.21	5.33	9.33	2.22	4.67	4.67	3.80	4.00	4.00	2.95	3.33	5.33
0.05	1.38	4.67	6.00	1.38	2.00	5.33	2.27	4.00	2.67	2.19	5.33	4.67
0.03	1.22	5.33	6.67	1.27	2.00	6.67	1.46	4.67	3.33	1.31	6.00	8.00
0.01	1.09	4.00	8.00	1.08	3.33	8.67	1.22	4.67	3.33	1.17	5.33	7.33

Table S4. Response, response time and recovery time of CA, CAS-3, CAS-6 and CAS-9 sensors.

*R: Response Ts: Response time Tr: Recovery time

Cycles	1	2	3	4	5	6	7	8	9	10	11	12
Gas												
response	30.06	30.01	29.46	29.98	29.89	28.87	29.46	28.32	28.56	28.12	28.52	28.41
(R_0/R_g)												

Table S5. The quantitative results of the of the CAS-6 on successive exposure (12 cycles) to 100 ppm NO_x.

*RSD value = 2.6% (RSD: Relative Standard Deviation).

Table S6. The quantitative results of the stability for the CAS-6 to 100 ppm NO_x for 9 weeks.

Weeks	1	2	3	4	5	6	7	8	9
Gas response	30.02	30.05	30.00	20.83	20.05	20.76	30.02	30.01	20.00
(R_0/R_g)	50.02	30.05	30.00	29.83	29.95	29.70	50.02	50.01	29.99

СА	S-6	$CAS-NO_x$				
Position (eV)	Content (%)	Position (eV)	Content (%)			
163.0	14.4	161.8	6.4			
169.0	49.2	168.9	34.1			
170.1	28.3	170.1	37.6			
176.1	8.1	174.1	21.9			
	CA Position (eV) 163.0 169.0 170.1 176.1	CAS-5 Position (eV) Content(%) 163.0 14.4 169.0 49.2 170.1 28.3 176.1 8.1	CAS- CAS Position (eV) Content (%) Position (eV) 163.0 14.4 161.8 169.0 49.2 168.9 170.1 28.3 170.1 176.1 8.1 174.1			

Table S7. The contents and binding energy positions of different sulfur species in CAS-6 before and after NO_x adsorption.

References

S1. S. Sharma, A. Kumar, N. Singh and D. Kaur, *Sensor. Actuator. B Chem.*, 2018, **275**, 499-507.

- **S2**. J.H. Kim, A. Mirzaeib, H.W. Kimb and S.S. Kim, Sensor. Actuator. B Chem., 2019, 296, 126659.
- **S3**. M.H. Dun, J.F. Tan, W.H. Tan, M.H. Tang and X.T. Huang, Sensor. Actuator. B Chem., **2019**, 298, 126839.
- **S4.** S. Hou, R. Pang, S. Chang, L. Ye, J. Xu, X. Wang, Y. Zhang, Y. Shang and A. Cao, *ACS Appl. Mater. Interfaces.*, 2020, **12**, 29778-29786.

S5. Y. Qiu and Y. Wang, Appl. Surf. Sci., 2022, 585, 152764.