Discovery of new crystal structures of iodide Perovskite CsPbI₃

and RbPbI₃ via density functional theory

Qi Zhou^a, Jianzhou Huang^a, Shaowen Deng^a, Han Miao^{*a}, Qisheng Feng^a, Haitao Li^a, Pengyue Gao^{*a}, Chonghe Li^{*a,b,c}

- a State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy
 & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
 - b Shanghai Special Casting Engineering Technology Research Center, Shanghai, 201605, China
 - c Zhejiang Institute of Advanced Materials Shanghai University, Jiashan, 314100, China
- * Corresponding authors:Han Miao(mh22722455@shu.edu.cn), Chonghe Li (<u>chli@staff.shu.edu.cn</u>),Pengyue Gao(gaopengyue@shu.edu.cn)

Owing to the polymorphism of CsPbI₃ and RbPbI₃, we employ first-principles density functional theory (DFT) to explore their low-energy crystal structures. We systematically evaluate 180 ABX₃ prototypes, along with an additional 740 candidate structures obtained by swapping the A and B positions. Each structure is associated with its corresponding space group number (e.g., CsGeCl₃-146). The ABX₃ stoichiometry structures we use include: AgIO₃-29, AgNO₃, AgNO₃-161, AlHoO₃, AlInS₃, AlYO₃, AsLiO₃-15, BaBiSe₃-19, BaCO₃-62, BaCoO₃, BaGeO₃-19, BaLiD₃-221, BaNiO₃-186, BaPbO₃, BaSbTe₃-19, BaTbO₃, BaTeO₃, BaTeO₃-62, BaTeS₃, BaTiO₃, BaVSe₃-194, BeCsF₃, BiSe₃Sr-19, Br₃CdRb-62, BrNaO₃, BrNO₃-19, C₄P₄F₁2-137, CaClO₃, CaCO₃-167, CaCO₃-62, CaIrO₃-63, CaSiO₃-2, CaSnO₃, CaTiO₃-62, CdCO₃-167, CdGeO₃, CdGeO₃-88, CdTiO₃-148, CdTiO₃-33, CeSiP₃, CoSeO₃, CrRbCl₃-1, CsBeF₃-62, CsCrI₃-60, CsCuBr₃-20, CsCuCl₃-178, CsGeCl₃-146, CsNbO₃, CsSnCl₃-14, CrRbCl₃, CsSnI₃-62, CsVO₃, CuGeO₃-26, CuGeO₃-51, CuKF₃, CuKF₃-127, CuKF₃-19, CuSeO₃, CuTeO₃-62, CuVO₃, Eu₃Ge₃S₉, Fe₂P₂S₆-12, Fe₂P₂Se₆-146, FeS₃U, FeTiO₃, GaGdO₃-62, GaNdO₃-33, GaYO₃, GdFeO₃-62, GdTiO₃, GePbS₃, GeRbCl₃-11, Hg₂P₂S₆, Hg₂P₂Se₆, HgTiO₃-161, HoNiO₃-62, HoVO₃, InYO₃, IrKO₃, KAgF₃-62, KClO₃-62, KClO₃-1, KFeBr₃, KFeCl₃, KFeF₃-221, KFeF₃-62, KMnF₃, KNbO₃-38, KNbO₃-2, KNiCl₃-185, KPbF₃-62, KPO₃-62, LaBO₃-11, LaCrO₃, LaErO₃-62, LaMnO₃-62, LaTiO₃, LaYbO₃-33, LiBaH₃-221, LiIO₃-182, LiIO₃-1, LiSbO₃-52, LiTaO₃, LiVO₃, LuBO₃-167, LuMnO₃-185, MgCO₃-167, MgRbCl₃, MgSeO₃, MgSiO₃-14, MgVO₃, MgVO₃-65, MnCsBr₃-194, MnCsCl₃,

MnRbCl₃, MnRbSr₃, MnSeO₃, MnSO₃-148, NaAsO₃-2, NaClO₃-14, NaCoF₃, NaIO₃-33, NaMnCl₃, NaMnF₃-62, NaNbO₃, NaNbO₃-57, P₄Tl₄O₁2, PbClO₃, PbRbI₃, PbSnS₃-62, PbTlI₃, PbZrS₃, PrMnO₃-62, R₃MR-160, RbAgF₃-140, RbCrI₃, RbCuCl₃-5, RbCuCl₃-60, RbGeI₃-19, RbHgF₃-221, RbMgCl₃-194, RbMnBr₃-194, RbNbO₃-2, RbNiCl₃-194, RbNO₃-59, RbPO₃-14, RbTaO₃, RbVO₃, SbTlO₃, ScUS₃, ScYS₃-33, SeZnO₃-62, SiZnO₃-15, SmAlO₃-62, SmBO₃-1, SmTiO₃, Sn₂P₂S₆-7, SrIrO₃-15, SrPbO₃, SrZrO₃-62, SrZrO₃-63, SrZrO₃-1, SrZrO₃-2, SrZrS₃-62, TaRbO₃, TbFeO₃-62, TbMnO₃-62, TiGdO₃, TiNdO₃, TiSmO₃, TiVO₃, TiYO₃, TlCdI₃, TlMnCl₃-62, TlNO₃, TlSbO₃-163, TlSbO₃-182, TmFeO₃-62, YFeO₃-33, ZnSeO₃, ZnSiO₃, ZnTeO₃-61, ZnTiO₃-148, ZrSrO₃.

Structures	Space group	Lattice Parameter
TlCdI ₃	Pnma	a=10.889 Å
		b = 4.890 Å
		c =18.213 Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$\gamma = 90^{\circ}$
BaTeS ₃	Pnma	a =8.196Å
		b =8.749 Å
		c = 14.388 Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$\gamma = 90^{\circ}$
KNiCl ₃	P63cm	a=14.806Å
		b=14.806 Å
		c = 8.170 Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$\gamma = 120^{\circ}$
LaErO ₃	Pbnm	a = 9.110 Å
		b = 8.324 Å
		c = 12.152 Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$\gamma = 90^{\circ}$
RbCrI ₃	C2	a=14.964 Å
		b = 8.6910 Å
		c =16.221 Å
		$\alpha = 90^{\circ}$
		$\beta = 102.142^{\circ}$
		$\gamma = 90^{\circ}$
CrRbCl ₃	C2/m	a = 14.964 Å

Table S1. The optimized crystal parameters of CsPbI₃ with relative energies below 10 kJ/mol.

		b=8.692 Å
		c = 8.111 Å
		$\alpha = 90^{\circ}$
		$\beta = 102.146^{\circ}$
		$\gamma = 90^{\circ}$
PbTlI ₃	Cmcm	a = 4.834 Å
		b=16.223Å
		c = 12.424 Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$\gamma = 90^{\circ}$
CsCuBr ₃	C2221	a = 15.603 Å
		$b = 8.850 \text{\AA}$
		c = 15.071 Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$\gamma = 90^{\circ}$
CsNbO ₃	P21/c	a = 8.260Å
		b=20.243Å
		c = 12.811 Å
		$\alpha = 90^{\circ}$
		$\beta = 93.358^{\circ}$
		$\gamma = 90^{\circ}$
SrZrO ₃	Cmcm	a = 12.537 Å
		b = 12.874 Å
		c = 12.612Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$\gamma = 90^{\circ}$
BaPbO ₃	Imma	a = 8.929 Å
		b = 12.583 A
		c = 9.084
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
KW.E	D4/mlm	$\gamma = 90^{\circ}$
KlvinF ₃	P4/mbm	a = 8.849 A
		0 = 6.649 A
		c = 12.977 A
		u = 39.907 B = 124.800°
		p = 134.800
HaTiO.	R3c	$\gamma = 8.251 \text{ Å}$
lig1103	KSe	a = 0.251 A b = 8.251 Å
		c = 20.104 Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$v = 120^{\circ}$
RbHgF ₂	Pm-3m	a = 6.389 Å
		b = 6.389 Å
		c = 6.389 Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$\gamma = 90^{\circ}$
		•

Structures	Space group	Lattice Parameter
TlCdI ₃	Pnma	a = 10.780 Å
		b=4.839 Å
		c = 17.679 Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$\gamma = 90^{\circ}$
PbTlI ₃	Cmcm	a =4.778 Å
		b=15.906 Å
		c = 12.190 Å
		$\alpha = 90^{\circ}$
		$\beta = 90^{\circ}$
		$\gamma = 90^{\circ}$

Table S2. The optimized crystal parameters of RbPbI₃ with relative energies below 10 kJ/mol.

Table S3. Band gap changes of $CsPbI_3$ candidate structures.

Structures	Band gap value (eV)	Band character
TlCdI ₃	2.5215	Inirect
$BaTeS_3$	2.9132	Inirect
KNiCl ₃	2.8261	Inirect
LaErO ₃	1.8246	Direct
RbCrI ₃	2.8218	Inirect
CrRbCl ₃	2.7667	Inirect
PbTlI ₃	2.4677	Inirect
CsCuBr ₃	2.5663	Inirect
CsNbO ₃	2.8080	Inirect
SrZrO ₃	1.6710	Direct
BaPbO ₃	1.7257	Direct
KMnF ₃	1.6013	Direct
RbHgF ₃	1.4831	Direct

Table S4. Band gap changes of RbPbI₃ candidate structures.

Structures	Band gap value (eV)	Band character
TlCdI ₃	2.4912	Inirect
PbTlI ₃	2.4265	Inirect

Fig. S1 The phonon spectra of the 14 candidate structures of CsPbI₃.

Fig. S2 The phonon spectra of the 2 candidate structures of RbPbI₃.

Fig. S3 The band structures of the 14 candidate structures of CsPbI₃.

Fig. S4 The band structures of the 2 candidate structures of RbPbI₃.