Supplementary Information for

Nickel-doped δ-MnO₂ abundant in oxygen vacancies as cathode for aqueous Zn-ion batteries with superior performance

Shaolin Yang ^{a,} †*, Fangfang Li ^{a,} †, Panpan Fu ^{a,} †, Cheng Zhen ^a, Jiandong Wu ^a, Hui

Lu^a, Chunping Hou^a, Zhilin Sheng^b

^a School of Materials Science and Engineering, Ningxia Research Center of Silicon Target and Silicon-Carbon Negative Materials Engineering Technology, North Minzu University, Yinchuan 750021, China

^bHelanshan Laboratory, Yinchuan 750021, China

[†]These authors have contributed equally to this work.

*Corresponding author. E-mail address: slyang@nun.edu.cn (S. Yang)

Fig. S1. SEM images of (a) 3%Ni-δ-MnO₂, (b) 4%Ni-δ-MnO₂ and (c) 6%Ni-δ-MnO₂;.

Fig. S2. (a) GCD profiles at 0.1 A g^{-1} in the initial five cycles, and (b) GCD profiles of the δ -MnO₂ cathode across different current densities.

Fig. S3. EDS mapping of the 5%Ni- δ -MnO₂ cathode when discharged to 0.8 V.

	,	2	2	
Samples	SSA (m ² g ^{-1})	TPV (cm ³ g ⁻¹)	APD (nm)	
δ-MnO ₂	24.02	0.053428	3.5135	
5%Ni-δ-MnO ₂	84.28	0.143309	3.7450	

Table S1. SSA, TPV and APD of δ -MnO₂ and 5%Ni- δ -MnO₂.

Table S2 Summary of the electrochemical performance of various heteroatom-doped manganese-based cathodes in ZIBs.

Cathode	Electrolyte	Voltage	Specific	Cycling stability	Ref.
		window	capacity		
5%Ni-ð-MnO ₂	2 M ZnSO ₄ +	0.8-1.8 V	401 (41]	75.50/ material and them	This
	0.25 M		401.6 mAn g ¹	/5.5% retention after	1 n1s
	MnSO ₄		at 0.1 A g ⁻¹	1000 cycles at 1 A g^{-1}	work
Ce-MnO ₂ @CC	PAM/ZnSO ₄ -	0.8-1.8 V	311 mAh g ⁻¹	65.0% retention after	1
	MnSO ₄		at 0.1 A g ⁻¹	450 cycles at 0.1 A g^{-1}	1
K- δ -MnO ₂	2 M ZnSO ₄ +	1-1.9 V	$270.5 \text{ mAh } \text{g}^{-1}$	$\sim 50\%$ retention after	2
	0.1 M MnSO ₄		at 0.1 A g ⁻¹	1000 cycles at 2 A g ⁻¹	Z

V-doped	1 M ZnSO ₄	1-1.8 V	$266 \text{ mAh } \text{g}^{-1}$	49.2% retention after	3
MnO_2			at 0.1 A g ⁻¹	100 cycles at 0.1 A g^{-1}	
Zn-doped	2 M ZnSO ₄ +	1 1 9 37	${\sim}320 \text{ mAh } g^{-1}$	66% retention after	4
MnO_2	0.2 M MnSO ₄	1-1.0 V	at 0.1 A g ⁻¹	100 cycles at 0.2 A g^{-1}	
La–Ca co-	2 M ZnSO ₄ +	0.8-1.9 V	297 mAh g ⁻¹	76% retention after	5
doped ε-MnO ₂	0.4 M MnSO ₄		at 0.2 A g ⁻¹	100 cycles at 0.2 A g^{-1}	
Co-Mn ₃ O ₄	2 M ZnSO ₄ +	0 2 2 2 V	220 mAh g ⁻¹	72.5% retention after	6
	0.2 M MnSO ₄	0.2-2.2 V	at 0.1 A g ⁻¹	1100 cycles at 2 A g^{-1}	
Mo-MnO ₂	2 M ZnSO ₄ +	0018V	327 mAh g ⁻¹	76.8% retention after	7
	0.9-1 0.1 M MnSO ₄	0.9-1.8 V	at 0.2 A g ⁻¹	1000 cycles at 1 A g^{-1}	

References

- Y. Song, J. Li, R. Qiao, X. Dai, W. Jing, J. Song, Y. Chen, S. Guo, J. Sun, Q. Tan and Y. Liu, *Chem. Eng. J.*, 2022, **431**, 133387.
- Q. Xie, G. Cheng, T. Xue, L. Huang, S. Chen, Y. Sun, M. Sun, H. Wang and L. Yu, *Materials Today Energy*, 2022, 24.
- M. H. Alfaruqi, S. Islam, V. Mathew, J. Song, S. Kim, T. Duong Pham, J. Jo, S. Kim, J. P. Baboo, Z. Xiu and J. Kim, *Appl. Surf. Sci.*, 2017, 404, 435-442.
- W. Zhao, J. Fee, H. Khanna, S. March, N. Nisly, S. J. B. Rubio, C. Cui, Z. Li and
 S. L. Suib, *Journal of Materials Chemistry A*, 2022, 10, 6762-6771.
- 5. M. Zhang, W. Wu, J. Luo, H. Zhang, J. Liu, X. Liu, Y. Yang and X. Lu, *Journal* of Materials Chemistry A, 2020, **8**, 11642-11648.
- J. Ji, H. Z. Wan, B. Zhang, C. Wang, Y. Gan, Q. Y. Tan, N. Z. Wang, J. Yao, Z. H. Zheng, P. Liang, J. Zhang, H. B. Wang, L. Tao, Y. Wang, D. L. Chao and H. Wang, *Advanced Energy Materials*, 2021, 11.
- Z. Wang, K. Han, Q. Wan, Y. Fang, X. Qu and P. Li, Acs Applied Materials & Interfaces, 2023, 15, 859-869.