Supporting Information

Amorphous FeP@Porous Carbon Nanofibers with Sterically Conducting Networks for Stable Potassium-ions Storage

Qi Wan^{a†}, Jie Zhao^{a†}, Yu Liu^b, Linshu Li^a, Juwei Yan^a, Qiwei Tan^c, Xun Xu^a, Qingchun Zhang^a, Xijun Wei^{a*}, Ling Ni^{d*}, Ping Li^{c*}

^a State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China

^b School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China

^c Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China

^d Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China

† Co-author: Q. Wan and J. Zhao contributed equally to this work

*Corresponding authors: xijunwei1992@swust.edu.cn (X. Wei), niling@qibet.ac.cn (L. Ni) and liping@ustb.edu.cn (P. Li)

Figure S1. TGA profile of PB.

Figure S2. Real-life image of A-FeP@PCNFs.

Figure S3. SEM images of A-FeP@PCNFs at low magnifications.

Figure S4. EDS Spectrum of A-FeP@PCNFs.

Figure S5. XRD patterns of (a) PB and (b) commercial Prussian blue powder after phosphating treatment.

Figure S6. (a) High-resolution N 1s XPS spectra and (b) statistical comparison chart of A-FeP@PCNFs.

Figure S7. XRD patterns of A-FeP@PCNFs after TG treatment.

Figure S8. Cycle voltammetry profiles recorded at a sweep rate of 0.1 mV s⁻¹ of (a) FeP and (b) PAN-C.

Figure S9. XRD patterns of A-FeP@PCNFs electrode after 5 cycles at 0.5 A g^{-1} .

Figure S10. Cross-sectional SEM images of A-FeP@PCNFs electrode. (a) Before cycling. (b) After 100 cycles.

Figure S11. Surface SEM images of A-FeP@PCNFs electrode. (a) Before cycling. (b) After 100 cycles.

Elements	Atomic fraction (%)	Mass fraction (%)	wt. % Sigma
С	77.49	50.84	3.48
Fe	9.93	30.35	3.05
Р	9.80	16.58	1.63
Ν	2.78	2.23	2.64

 Table S1. EDS results of A-FeP@PCNFs for C, Fe and P elements.

Table S2. The ratio of Fe/P in A-FeP@PCNFs powders.

Samples	Fe/P mole percentage (a.u.)
A-FeP@PCNFs	0.996

Ν	Contents
Pyridinic	33.70%
Pyrrolic	33.86%
Graphitic-N	32.44%

Table S3. The statistic N contents of A-FeP@PCNFs based on the XPS results.

Active	Battery type	Pate capability	Cycle stability	Ref
materials	Voltage	Rate capability	Cycle stability	KUI.
A- FeP@PC NFs	KIBs (0.01– 3.0V)	326.2 mA h g ⁻¹ at 100 mA g ⁻¹ 312.5 mA h g ⁻¹ at 200 mA g ⁻¹	$358.3 \text{ mA h g}^{-1}$ after 100 cycles at 100 mA g}{-1}	This work
		292.5 mA h g ⁻¹ at 500 mA g ⁻¹ 272.5 mA h g ⁻¹ at 1000 mA g ⁻¹		
FeP@CN Bs	KIBs (0.01– 2.5V)	201 mA h g ⁻¹ at 100 mA g ⁻¹ 156 mA h g ⁻¹ at 200 mA g ⁻¹ 101 mA h g ⁻¹ at 500 mA g ⁻¹ 65 mA h g ⁻¹ at 1000 mA g ⁻¹	$\begin{array}{c} 205 \text{ mA h } g^{-1} \\ \text{after } 300 \\ \text{cycles at } 100 \\ \text{mA } g^{-1} \end{array}$	[1]
FeP	KIBs (0.01– 3.0V)	125.2 mA h g ⁻¹ at 100 mA g ⁻¹ 97.7 mA h g ⁻¹ at 200 mA g ⁻¹ 73.4 mA h g ⁻¹ at 500 mA g ⁻¹ 53.3 mA h g ⁻¹ at 1000 mA g ⁻¹	~110 mA h g ⁻¹ after 100 cycles at 50 mA g ⁻¹	[2]
FeP/C	KIBs (0.01– 3.0V)	185.8 mA h g ⁻¹ at 100 mA g ⁻¹ 156.2 mA h g ⁻¹ at 200 mA g ⁻¹ 112.5 mA h g ⁻¹ at 500 mA g ⁻¹ 78.6 mA h g ⁻¹ at 1000 mA g ⁻¹	~200 mA h g ⁻¹ after 50 cycles at 50 mA g ⁻¹	[3]

Table S4. Performance comparison of some FeP-based composite materials for KIBs.

[1] F. Yang, H. Gao, J. Hao, S. Zhang, P. Li, Y. Liu, J. Chen, Z. Guo, Yolk–Shell Structured FeP@C Nanoboxes as Advanced Anode Materials for Rechargeable Lithium-/Potassium-Ion Batteries, Adv. Funct. Mater. 29 (2019) 1808291.

[2] M. Ma, K. Yao, Y. Wang, D. Fattakhova-Rohlfing, S. Chong, Decoupling the Kinetic Essence of Iron-Based Anodes through Anionic Modulation for Rational Potassium-Ion Battery Design, Adv. Funct. Mater. 34 (2024) 2315662.

[3] Li W, Yan B, Fan H, Zhang C, Xu H, Cheng X, Li Z, Jia G, An S, Qiu X, FeP/C composites as an anode material for K-ion batteries, ACS Appl. Mater. Inter. 11 (2019) 22364-22370.