Supporting Information

Rational Design of Mixed-Valence Cobalt-Based Nanowires via Simultaneous Vanadium and Iron Modulations for Enhanced Alkaline Electrochemical Water Splitting

Weijiang Gan,^{a,†} Selvam Mathi,^{b,†} Jingting Li,^b Adewale K. Ipadeola,^c Jianqiu Deng,^d Aboubakr M. Abdullah,^c M.-Sadeeq Balogun,^{*,a,b,d} Zhongmin Wang^{*,a,d}

^aState Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China.

^bCollege of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, People's Republic of China.

^cCenter for Advanced Materials, Qatar University, Doha 2713, Qatar.

^dGuilin University of Electronic Technology Guilin 541004, P. R. China

¹These authors contributed equally

E-mail: zmwang@mail.gxas.cn; balogun@hnu.edu.cn

Figure S1. SEM images of (a) V, Fe-Co_{5.47}N and (b) $Co_{5.47}N$ precursors. XRD spectra of (c) $Co_{5.47}N$ and (d) V, Fe-Co_{5.47}N precursors.

Figure S2. The XRD patterns of $Co_{5.47}N$, V- $Co_{5.47}N$, Fe- $Co_{5.47}N$ and V,Fe- $Co_{5.47}N$ catalysts.

Figure S3. N₂ adsorption-desorption isotherm curves of Co_{5.47}N and V, Fe-Co_{5.47}N.

Figure S4. The EPR spectroscopy of $Co_{5.47}N$, V- $Co_{5.47}N$, Fe- $Co_{5.47}N$, and V,Fe- $Co_{5.47}N$. The EPR spectra were performed at room temperature using a Bruker Elexsys 500 EPR spectrometer operating at the X-band frequency (\approx 9.491 GHz) with a field modulation frequency of 100 kHz. The magnetic field was scanned in the range of 500–6500 G and the used microwave power was 0.64 mW. A powder sample of 100 mg was taken in a quartz tube for EPR measurements. EPR spectra were measured to illustrate the presence of vacancies in the synthesized samples.

(-)							
(a)	Element	Wt%	Atomic %	(a)	Element	Wt%	Atomic %
	Ν	13.89	35.56		Р	4.24	7.71
	Fe	1.48	3.27		Fe	2.59	2.61
	Со	83.57	58.08		Со	89.54	85.66
	V	1.06	3. 09		V	3.63	4.02
	Total:	100.00	100.00		Total:	100.00	100.00

Figure S5. Element contents for V, Fe-Co $_{5.47}$ N and V, Fe-CoP

Figure S6. The XRD patterns of $Co_{5.47}N$, V- $Co_{5.47}N$, Fe- $Co_{5.47}N$ and V, Fe- $Co_{5.47}N$ catalysts.

Figure S7. (a) HER and (b) OER LSV curves of Co_{5.47}N at different temperatures.

Figure S8. (a) Polarization curves and (b) overpotentials of various V-Co $_{5.47}$ N samplesat 10 mA cm⁻² for HER. (c) Polarization curves and (d) overpotentials of various Fe- $Co_{5.47}$ Nsamplesat10mAcm⁻²forHER.

Figure S9. CV curves (a) $Co_{5.47}N$ and (b) V, Fe-Co_{5.47}N in the double layer capacitive region at the scan rates of 10 mV s⁻¹ to 50 mV s⁻¹ for HER. (c) HER Normalized ECSA.

The electrochemical active surface area (ECSA) of the catalysts was estimated by measuring the electrochemical double-layer capacitance (C_{dl}) using cyclic voltammetry (CV) curves under a potential window of -0.97 ~ -0.91 V vs HER and 0.18 ~ 0.23 V vs OER at scanning rates of 10, 20, 30, 40 and 50 mV s⁻¹ in the non-Faradaic potential region. The C_{dl} of various catalysts were equivalent to the linear slope, which was obtained by plotting the $\Delta J/2$ at different potential against the scan rate. $\Delta J/2$ was calculated using the following equation:

$$\Delta j/2 = (j_{\text{anodic}} - j_{\text{cathodic}})/2 \tag{3}$$

Then, ECSA was calculated as follows:

(4)

Here, C_s =40 μ F/cm², according to that the specific capacitance for a flat surface was generally found to be in the range of 20-60 μ F cm⁻².

Figure S10. (a) Co 2p, (b) Fe 2p, and (c) V 2p XPS spectra of V, Fe-Co_{5.47}N before and after the stability test.

Figure S11. (a) Polarization curves and (b) overpotentials of various V-CoP samples at 10 mA cm⁻² for HER. (c) Polarization curves and (d) overpotentials of various Fe-CoP samples at 10 mA cm⁻² for HER.

Figure S12. (a) LSV curves of V,Fe-Co_{5.47}N before and after the HER stability test. (b) SEM image of V,Fe-Co_{5.47}N after stability test. (c) Fe 2p and (d) V 2p of V, Fe-Co_{5.47}N after HER stability test.

Figure S13. (a) Polarization curves and (b) overpotentials of various V-Co_{5.47}N samples at 10 mA cm⁻² for OER. (c) Polarization curves and (d) overpotentials of various Fe-Co_{5.47}N samples at 10 mA cm⁻² for OER.

Figure S14. (a) Stability test for HER of V,Fe-Co_{5.47}N electrocatalyst at current density of 10 mA cm⁻². (b) LSV curves of V,Fe-Co_{5.47}N before and after the HER stability test. Inset is the SEM image of V,Fe-Co_{5.47}N after stability test. (c) Fe 2p and (d) V 2p of V, Fe-Co_{5.47}N after HER stability test.

Figure S15. CV curves (a) $Co_{5.47}N$ and (b) V,Fe-Co_{5.47}N in the double layer capacitive region at the scan rates of 10 mV s⁻¹ to 50 mV s⁻¹ for OER. (c) Current density as a function of scanning rate for HER of $Co_{5.47}N$ and V,Fe-Co_{5.47}N. (d) OER Normalized ECSA.

Figure S16. (a) Polarization curves and (b) overpotentials of various V-CoP samples at 10 mA cm⁻² for OER. (c) Polarization curves and (d) overpotentials of various Fe-CoP samples at 10 mA cm⁻² for OER.

Figure S17. Optimized structural models of the (200) plane of $Co_{5.47}N$, V-Co_{5.47}N, Fe-Co_{5.47}N, and V,Fe-Co_{5.47}N.

Figure S18. Optimized structural models of CoP, V-CoP, Fe-CoP, and V, Fe-CoP.

Figure S19. The structural model of *OOH adsorption on (a) Co_{5.47}N, (b) V,Fe-Co_{5.47}N, (c) CoP, and (d) V,Fe-CoP (down).

Figure S20. LSV curves of bifunctional (a) Co_{5.47}N-based and (b) CoP-based OWS devices.