Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025 ### **Supporting information** ## Near-infrared Julolidine Probe for Visualization of Mitochondrial Peroxynitrite in Living Cells Kuppan Magesh¹, Shu Pao Wu², Sivan Velmathi¹* ¹Organic and Polymer Synthesis Laboratory, Department of Chemistry, "National Institute of Technology, Tiruchirappalli" – 620 015, India. ²Department of Applied Chemistry, "National Yang Ming Chiao Tung University, Hsinchu" 30010, "Taiwan, China" Email: <u>velmathis@nitt.edu</u> | S.NO | Contents | Page No | |------|---|---------| | 1 | Table S1 . A comparative analysis of the proposed probe and the ONOO responsive fluorescent probes that are recently reported. | S2-S3 | | 2 | Figure S1. ¹ H NMR spectrum of 4-QMe | S4 | | 3 | Figure S2. ¹³ C NMR spectrum of 4-QMe | S4 | | 4 | Figure S3. ¹ H NMR spectrum of J-CHO | S5 | | 5 | Figure S4. ¹³ C NMR spectrum of J-CHO | S5 | | 6 | Figure S5. ¹ H NMR spectrum of JQMe | S6 | | 7 | Figure S6. ¹³ C NMR spectrum of JQMe | S6 | | 8 | Figure S7. HR-ESI Mass spectrum of JQMe | S7 | | 9 | Figure S8. ¹ H NMR spectrum of CN-Me | S7 | | 10 | Figure S9. ¹³ C NMR spectrum of CN-Me | S8 | | 11 | Figure S10. ¹ H NMR spectrum of JCN | S8 | | 12 | Figure S11. ¹³ C NMR spectrum of JCN | S9 | | 13 | Figure S12. HR-ESI Mass spectrum of JCN | S9 | | 14 | Figure S13. (a) The fluorescence spectra of JCN (5 μM) were recorded upon the addition of ONOO ⁻ (10 μM) at various concentrations ranging from 0 to 10 μM. (b) A linear fit was used to plot the JCN emission (5 μM) at 669 nm against the ONOO ⁻ concentration (4–8 μM) (c) The intensity at 669 nm was measured for a probe solution (5 μM) that was mixed with ONOO ⁻ (10 μM) and other analytes in THF-PBS buffer (1:1) (d) The fluorescence intensity of the probe at 669 nm in THF- PBS (1:1) buffer at varying pH levels when combined with ONOO ⁻ (10 μM) | S10 | | 15 | Figure S14. Colour change of the probe (20 μM) with different analytes (20 μM) in PBS solution (pH 7.4) under Day light [Analytes: (1) Probe, (2) Al ³⁺ , (3) Ca ²⁺ , (4) Cu ²⁺ , (5) Fe ³⁺ , (6) Mg ²⁺ , (7) Zn ²⁺ , (8) F-, (9) Cl-, (10) Br (11) I-, (12) ClO ₄ -, (13) CN-, (14) SO ₄ ²⁻ , (15) S ₂ O ₃ -, (16) S ₂ O ₄ - (17) HS-, (18) H ₂ O ₂ , (19) HOCl, (20) TBHP, (21) ¹ O ₂ , (22) O ₂ -, (23) Cys, (24) MesH, (25) Hcy, (26) GSH (27) ONOO-,] | S10 | | 16. | Figure S15 . (a) The UV-visible absorption spectrum and (b) fluorescence spectra were measured after adding ONOO- (20 μ M) to a JQMe (20 μ M) & JCHO (20 μ M) in PBS buffer solution (10 mM, 1:1 v/v) at 37 °C | S11 | | 17. | Figure S16. ¹ H NMR titration of JQMe with addition of ONOO- (0-1.0 eq.) | S11 | |-----|---|-----| | 18. | Figure S17. HR-Mass spectrum of JQMe + ONOO- | S12 | | 19. | Figure S18 . Frontier molecular orbital profiles of JQMe (left) and JCHO (right) based on DFT (B3LYP/631 G*) | S12 | | 20. | Figure S19 . HOMO and LUMO Hartree value of (a) JQMe and (b) JCHO. The oscillator strength values of (c) JQMe and (d) JCHO. | S13 | | 21. | Figure S20. Cell viability of HeLa cells treated with JQMe (0, 20, 40, 60, 80, 100 μM) at 37°C for 24 h. The results are the mean and standard deviation of three independent experiments. | S13 | | 22. | Table S2. Standard deviation of JQMe (20 μ M) without addition of ONOO- (Ib is the fluorescence intensity at 706 nm) | S14 | | 23. | ESI 1. Limit of detection, limit of quantification, and quantum yield calculation | S14 | | 24. | Table S3 . Quantum yield, molar absorptivity and Stokes shift data for JCN and JQMe in different solvents | S14 | | 25. | Table S4. Quantum yield data | S15 | **Table S1**. A comparative analysis of the proposed probe and the ONOO responsive fluorescent probes that are recently reported. | Probe | λex / λem (nm) | Solvent
medium | NIR
emission | Detection
Limit | Subcellular organelle targeting | Reference | |---|----------------|----------------------------------|-----------------|--------------------|---------------------------------|-----------| | | 600/706 | PBS
buffer | YES | 6.5 nM | Mitochondria | This work | | N S B. o | 317/483 | 40%
ethanol-
PBS
buffer | NO | 26.3
mmol/L | No | 1 | | S N N N N N N N N N N N N N N N N N N N | 460/530 | 10%
DMSO-
PBS
buffer | NO | 15
nmol/L | No | 2 | | Yo.B. O. C.O.O. | 322/450 | HEPES
buffer | NO | 29.8
nmol/L | No | 3 | | HO N | 440/545 | PBS
buffer | NO | 4 nmol/L | Mitochondria | 4 | |---|---------|-----------------------------------|-----|----------------|-----------------------|----| | NC CN | 556/690 | 50%
DMSO-
PBS
buffer | YES | 4.62
μmol/L | No | 5 | | O N O O O O O O O O O O O O O O O O O O | 440/510 | 50 %
Ethanol-
PBS
buffer | NO | 0.24
µmol/L | lysosome | 6 | | NC CN B-O O = S=O NH ₂ | 420/600 | HEPES
buffer | NO | 250
nmol/L | Golgi
apparatus | 7 | | 02N | 453/553 | PBS
buffer | NO | 48
nmol/L | Mitochondrial | 8 | | O'SHN_N_N_N | 488/540 | PBS
buffer | NO | 8.3
nmol/L | Endoplasmic reticulum | 9 | | NC_CN
s-
OH | 500/670 | 50%
MeOH-
(Tris-
HCl) | YES | 10
nmol/L | Mitochondrial | 10 | **Figure S1**. ¹H NMR spectrum of 4-QMe **Figure S2**. ¹³C NMR spectrum of 4-QMe Figure S3. ¹H NMR spectrum of J-CHO Figure S4. ¹³C NMR spectrum of J-CHO **Figure S5**. ¹H NMR spectrum of J-QMe **Figure S6**. ¹³C NMR spectrum of J-QMe Figure S7. HR-ESI Mass spectrum of J-QMe Figure S8. ¹H NMR spectrum of CN-Me Figure S9. ¹³C NMR spectrum of CN-Me Figure S10. 1 H NMR spectrum of J-CN Figure S11. ¹³C NMR spectrum of J-CN Figure 12. HR-ESI Mass spectrum of J-CN **Figure S13** (a) The fluorescence spectra of JCN (5 μM) were recorded upon the addition of ONOO⁻ (10 μM) at various concentrations ranging from 0 to 10 μM. (b) A linear fit was used to plot the JCN emission (5 μM) at 669 nm against the ONOO⁻ concentration (4–8 μM) (c) The intensity at 669 nm was measured for a probe solution (5 μM) that was mixed with ONOO⁻ (10 μM) and other analytes in THF-PBS buffer (1:1) (d) The fluorescence intensity of the probe at 669 nm in THF- PBS (1:1) buffer at varying pH levels when combined with ONOO- (10 μM) [Analytes: (1) Probe, (2) ONOO⁻, (3) Al³⁺, (4) Ca²⁺, (5) Cu²⁺, (6) Fe³⁺, (7) Mg²⁺, (8) Zn²⁺, (9) F⁻, (10) Cl⁻, (11) Br⁻ (12) I⁻, (13) ClO₄⁻, (14) CN⁻, (15) SO₄²⁻, (16) S₂O₃⁻, (17) S₂O₄⁻ (18) HS⁻, (19) H₂O₂, (20) HOCl, (21) TBHP, (22) 1 O₂, (23) O₂⁻, (24) Cys, (25) MesH, (26) Hcy,(27) GSH] [Ex: 620 nm; Em: 640-800nm] **Figure S14**. Colour change of the JQMe (20 μ M) with different analytes (20 μ M) in PBS solution (pH 7.4) under Day light [Analytes: (1) Probe, (2) Al³⁺, (3) Ca²⁺, (4) Cu²⁺, (5) Fe³⁺, (6) Mg^{2+} , (7) Zn^{2+} , (8) F^- , (9) Cl^- , (10) Br^- (11) I^- , (12) ClO_4^- , (13) CN^- , (14) SO_4^{2-} , (15) $S_2O_3^-$, (16) $S_2O_4^-$ (17) HS^- , (18) H_2O_2 , (19) HOCl, (20) TBHP, (21) 1O_2 , (22) O_2^- , (23) Cys, (24) MesH, (25) Hey,(26) GSH (27) $ONOO^-$] **Figure S15**. (a) The UV-visible absorption spectrum and (b) fluorescence spectra were measured after adding ONOO- (20 μ M) to a JQMe (20 μ M) & JCHO (20 μ M) in PBS buffer solution (10 mM, 1:1 v/v) at 37 °C Figure S16. ¹H NMR titration of JQMe with addition of ONOO (0-1.0 eq.) Figure S17. HR-Mass spectrum of JQMe + ONOO **Figure S18**. Frontier molecular orbital profiles of JQMe (left) and JCHO (right) based on DFT (B3LYP/631 G*) **Figure S19.** HOMO and LUMO Hartree value of (a) JQMe and (b) JCHO. The oscillator strength values of (c) JQMe and (d) JCHO. **Figure S20.** Cell viability of HeLa cells treated with JQMe $(0, 20, 40, 60, 80, 100 \,\mu\text{M})$ at 37°C for 24 h. The results are the mean and standard deviation of three independent experiments. # ESI 1. Limit of detection, limit of quantification, and quantum yield calculation LOD Detection limit was calculated fluorescence titration data with the equation, based on the definition by IUPAC $$LOQ = k \times Sb/S$$ Where k = 3; S_b is the standard deviation of blank measurement obtained without ONOO (Table S2) and 'S' represents slop of the calibration curve (figure 1d). #### LOQ $$LOQ = k \times Sb/S$$ Where k=10; S_b is the standard deviation of blank measurement obtained without ONOO (Table S2) and 'S' represents slop of the calibration curve (figure 1d). The limit of quantification was calculated to be $0.02~\mu M$ **Table S2**. Standard deviation of JQMe (20 μ M) without addition of ONOO⁻ (I_b is the fluorescence intensity at 706 nm) | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | S _b | |-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------| | I_b | 756.6 | 756.8 | 756.7 | 757.1 | 756.8 | 756.7 | 756.9 | 756.7 | 757.1 | 756.3 | 0.16 | #### Quantum yield $$\Phi_S = \Phi_R I_S / I_R * A_R / A_S$$ Φ_{S} - Quantum yield of sample; Φ_{R} - Quantum yield of reference (RhB = 0.35) I_S- Integrated fluorescent area of sample; I_R- Integrated fluorescent area of reference. A_R- Absorbance of reference; A_S- Absorbance of sample Table S3. Quantum yield, molar absorptivity and Stokes shift data for JCN and JQMe in different solvents | | Quantum Yield (Φ) | | Molar absorp | tivity (L M ⁻¹ cm ⁻¹) | Stokes shift (nm) | | |-----------------|-------------------|-------|------------------------|--|----------------------------|-----------------------------| | Solvents | JCN | JQMe | JCN | JQMe | JCN (λ_{ex} = 620 | JQMe (λ_{ex} = 600 | | | | | | | nm) | nm) | | Methanol | 0.035 | 0.065 | 9.858 ×10 ⁴ | 1.474×10 ⁴ | 34 | 108 | | Ethanol | 0.032 | 0.047 | 9.636 ×10 ⁴ | 1.334×10 ⁴ | 32 | 106 | | Isopropanol | 0.030 | 0.048 | 10.254×10 ⁴ | 1.522×10 ⁴ | 37 | 118 | | n-Butanol | 0.033 | 0.060 | 8.876×10 ⁴ | 1.635×10 ⁴ | 68 | 133 | | Dimethyl | 0.051 | 0.111 | 9.260×10 ⁴ | 1.112×10 ⁴ | 31 | 104 | | sulfoxide | | | | | | | | Acetonitrile | 0.050 | 0.084 | 8.576×10 ⁴ | 0.814×10 ⁴ | 30 | 102 | | Tetrahydrofuran | 0.033 | 0.066 | 7.314×10 ⁴ | 0.775×10 ⁴ | 28 | 101 | | Diethyl ether | 0.016 | 0.034 | 4.040×10 ⁴ | 0.839×10 ⁴ | 20 | 94 | | Toluene | 0.015 | 0.014 | 2.382×10 ⁴ | 0.794×10 ⁴ | 15 | 90 | | Hexane | 0.006 | 0.013 | 1.982×10 ⁴ | 0.674×10 ⁴ | 12 | 86 | | | Absorbance | | Integra | ted fluorescenc | e area | |-------------|------------|--------|-------------|-----------------|----------| | Rhodamine-B | JQMe | ONOO- | Rhodamine-B | JQMe | ONOO- | | 0.6789 | 0.4416 | 0.1900 | 82060.032 | 18978 | 5736.676 | Table S4. Quantum yield data #### Reference - 1 Q. Li and Z. Yang, *Tetrahedron Lett.*, 2018, **59**, 125–129. - 2 L. Xia, Y. Tong, L. Li, M. Cui, Y. Gu and P. Wang, *Talanta*, 2019, **204**, 431–437. - 3 S. Palanisamy, P. Y. Wu, S. C. Wu, Y. J. Chen, S. C. Tzou, C. H. Wang, C. Y. Chen and Y. M. Wang, *Biosens. Bioelectron.*, 2017, **91**, 849–856. - 4 H. Zhang, J. Liu, Y. Q. Sun, Y. Huo, Y. Li, W. Liu, X. Wu, N. Zhu, Y. Shi and W. Guo, *Chem. Commun.*, 2015, **51**, 2721–2724. - 5 S. V. Mulay, Y. Kim, K. J. Lee, T. Yudhistira, H. S. Park and D. G. Churchill, *New J. Chem.*, 2017, **41**, 11934–11940. - 6 B. Guo, J. Jing, L. Nie, F. Xin, C. Gao, W. Yang and X. Zhang, *J. Mater. Chem. B*, 2018, **6**, 580–585. - 7 J. Li, J. Tang, X. Yang, P. Xie, J. Liu, D. Zhang and Y. Ye, *Sensors Actuators B Chem.*, 2022, **358**, 131513. - 8 M. Yan, H. Fang, X. Wang, J. Xu, C. Zhang, L. Xu and L. Li, *Sensors Actuators, B Chem.*, 2021, **328**, 1–7. - 9 X. Xie, Y. Liu, G. Liu, Y. Zhao, J. Bian, Y. Li, J. Zhang, X. Wang and B. Tang, *Anal. Chem.*, 2022, **94**, 10213–10220. - 10 S. Chen, W. Huang, H. Tan, G. Yin, S. Chen, K. Zhao, Y. Huang, Y. Zhang, H. Li and C. Wu, *Analyst*, 2023, **148**, 4331–4338.