Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Phosphinylation/Cyclization of Propynolaldehydes to Isobenzofuranylic Phosphine Oxides Displaying AIE Properties

Xin Chang,^{‡a} Xiao-Wen Han,^{‡a} Hai-Tao Zhu,^{*a} Ni-Ni Zhou,^a Nan Yang,^a Cheng-Ping Shen,^a Chunxuan Qi,^a An-Xi Zhou,^c Hai-Tao Feng^{*a} and Ben Zhong Tang^{*b}

^{*a*}AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.

^bSchool of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China.

^{*c*}Key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao 334000, China. [‡]These authors contributed equally to this work.

*Corresponding authors. E-mail: zhuhaitaobwl@163.com; haitaofeng907@163.com; tangbenz@cuhk.edu.cn

Table of Contents

General Information	
Experimental Section:	7
Optimization of the Reaction Conditions General Procedure for the Synthesis of <i>o</i> -Propargyl Alcohol Benzaldehydes 1v–1z Experimental Procedure for Compounds 3a-3y and 3aa-3ah General Procedure for the Scale-up Reaction of Compound 3 General steps of the derivatization reaction of 3c	
Reaction mechanism synthesis step	
Crystal Data and Structure Refinement of Compounds 3a and 3j	17
Analytical Data of Products 1v–1z, 3a-3y, 3aa-3ah, 3a-D, 4a, 5a, 6a, 7a and 8a	
Analytical Data of Products 1v–1z Analytical Data of Products 3a-3y and 3aa-3ah . Analytical Data of Products 3a-D Analytical Data of Products 4a , 5a , 6a , 7a and 8a ¹ H, ¹³ C, ³¹ P and ¹⁹ F NMR Spectra for All Products Photophysical Properties of IBFPOs .	
Analysis on the Results of Crystalline Structure	
More Discussion on Theoretical Calculation	
ROS Detection of IBFPOs	
Cell imaging of IBFPOs	
CCK-8 assay of IBFPOs	
H ₂ O ¹⁸ Experiment:	

General Information

Column chromatography was carried out on silica gel (200-300 mesh). Reactions were monitored using thin-layer chromatography (TLC) and visualized with UV light at 254 or 365 nm. NMR spectra were recorded on an Agilent Technologies 400 instrument at 400 MHz (¹H NMR), 100 MHz (¹³C NMR) and 162 MHz (³¹P NMR) in CDCl₃. All products were further characterized by high resolution mass spectra (HRMS) by the ESI technique with a TOF-type analyzer; copies of their ¹H NMR and ¹³C NMR spectra are provided in the Supporting Information. The X-ray diffraction data for crystallized compounds were collected with Mo K α radiation at 296 K using the Bruker D8 venture 400 instrument. Commercial solvents were used without further treatment. The oil bath is used as a heat source.

Absorption spectra were recorded on a YOKU INSTRUMENT TS2023 UV-Vis spectrophotometer. Fluorescence spectra were collected on a HORIBA FLOUROMAX-4 fluorophotometer at 298 K. The lifetimes were measured on an Edinburgh FLS1000 fluorescence spectrophotometer equipped with a continuous xenon lamp (Xe1).

Different IBFPO are highly soluble in DCM, but are hardly dissolved in hexane. The nanoaggregates of the selected IBFPO were prepared by dissolving IBFPO in DCM and then gradually adding hexane as a poor solvent.

And according to the literature, the AIE characteristic of AIEgens is defined as $\alpha AIE = \text{Iaggn} / \text{Isoln}$, where the Iaggn represents PL intensity in aggregation state, and Isoln represents PL intensity in the pure DCM solution.

Cell imaging tests were carried out on Nikon ECLIPSE Ti2. The OD was detected using BioTek PowerWave XR2.

Total ROS Detection by DCFH-DA.

The commonly used ROS indicator, 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA), was employed to detect the generation of reactive oxygen species (ROS) in aqueous solutions of **IBFPOs** under white light irradiation (100 mW cm⁻²). Briefly, DCFH-DA in 0.5 mL ethanol (1 mM) was added to 2 mL NaOH (10 mM) and placed at room temperature in the dark for 30 min. Then, the ROS indicator (40 μ M) in PBS was

further diluted to a concentration of 5 μ M in the sample solution containing **IBFPOs** (10 μ M) for measurement using a PL instrument. The fluorescence emitted by PS-sensitized ROS-triggered conversion of DCFH-DA under white light irradiation was recorded at different time intervals. The PL spectra were measured with excitation at 488 nm and emission collected from 500 to 600 nm. The fluorescence intensity at 525 nm served as an indication of the rate of ROS generation.

Detection of O₂⁻⁻ **Generation by DHR123.**

The O_2^{-} generation measurements were performed using dihydrorhodamine 123 (DHR123) as an indicator. The stock solution of DHR123 (1 mM) was diluted to 5 μ M in the sample solution of **IBFPOs** (10 μ M) in PBS. The fluorescence signal of DHR123 was monitored at different time intervals in a range of 500-600 nm with the excitation wavelength at 488 nm after the solution was irradiated by white light irradiation (100 mW cm⁻²). The fluorescence intensity at 525 nm was recorded to indicate the generation rate of O_2^{-} .

Singlet oxygen (¹O₂) generation.

For ${}^{1}O_{2}$ detection indicated by 9,10-anthracenediyl-bis(methylene)-dimalonic acid (ABDA), the stock solution of ABDA (5 mM) was diluted to 50 μ M in the sample solution of **IBFPOs** (10 μ M) in PBS. The absorption spectra of ABDA were monitored in a range of 300-420 nm after the solution was irradiated by white light irradiation (100 mWcm⁻²). The absorbance decrease of ABDA at 378 nm was recorded to indicate the decomposition rates of ABDA.

Cell incubation.

The cells were incubated in DMEM medium containing fetal bovine serum (10%) and penicillin/streptomycin (1%) at 37 $^{\circ}$ C under a humidified atmosphere containing 5% CO₂.

Cell imaging.

HeLa cells were inoculated in a confocal dish at a concentration of about 1×10^5 cells /mL and cultured in a 5% CO₂ humidified incubator at 37°C for 24 h. Then, the culture-medium was removed and new culture-medium containing **IBFPOs** was added and cultured at 37°C with 5% CO₂ 4 h. The AIEgens were excited at a wavelength of 405 nm and their emission spectra were collected within the range of 500-560 nm under confocal fluorescence microscopy.

Co-localization experiments.

HeLa cells were inoculated in confocal dishes with a concentration of about 1×10^5 cells/mL and cultured in a 5% CO₂ humidified incubator at 37 °C for 24 h. The culture medium was removed, and a new medium containing **3y**(10 µM) and **3j**(5 µM) was added and cultured at 37 °C for 4 h in a humidified atmosphere containing 5% CO₂. Then, the culture medium was sucked out, cleaned with PBS, and then added to the commercial Nile red tracker to incubate in the cells for 30 minutes.Similarly, the culture medium was removed, and a new medium containing **7a**(10 µM) and **6a**(10 µM) was added and cultured at 37 °C for 4 h in a humidified atmosphere containing 5% CO₂. Then, the culture medium was removed, and a new medium containing **7a**(10 µM) and **6a**(10 µM) was added and cultured at 37 °C for 4 h in a humidified atmosphere containing 5% CO₂. Then, the culture medium was sucked out, cleaned with PBS, and then added to the commercial BODIPY to incubate in the cells for 30 minutes.

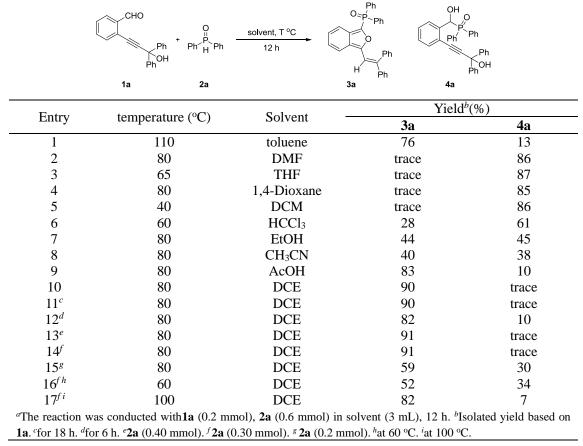
CCK-8 assay.

Hela cells were inoculated into 96-well cell culture plates with a density of 8000 cells per well cultured in a 5% CO₂ humidified incubator at 37° C for 24 h. Different concentrations of **IBFPOs** were added to each well, incubated for 1 h, then irradiated with or without white light for 30 min. After the cells were recultured for 1 hour, suck out the medium and add a new medium containing CCK-8 to each well. After 1 h of culture, the optical density of the solution was measured at 450 nm.

Hela cells were inoculated in 96-well cell culture plates at a density of 8000 cells/well, and incubated at 37° C in a humidified incubator with 5% CO₂ for 24 h. Subsequently, different concentrations of **IBFPOs** were added to each well, incubated for 2 h under normal oxygen conditions, incubated for 10 h under anaerobic conditions, irradiated with or without white light for 30 min. After 24 h incubation, the medium was then

aspirated and replaced with fresh medium containing the CCK-8 reagent. After the cells were recultured for 1 h, the optical density of the solution was measured at the wavelength of 450 nm and the relative cell viability was calculated by the equation:

Cell viability (%) = $(OD_{sample} - OD_{background})/(OD_{control} - OD_{background}) \times 100\%$


Dead/Live cell co-staining.

HeLa cells were inoculated in a confocal dish at a concentration of about 2×10^5 cells /mL and cultured in a 5% CO₂ humidified incubator at 37°C for 24 h. Different concentrations of **3j** was added to confocal dish, incubated for 1 hour, then irradiated with white light for 30 min. After 24 h incubation, HeLa cells were stained with Calcein AM and Propidium Iodide Detection Kit.

Experimental Section: Optimization of the Reaction Conditions

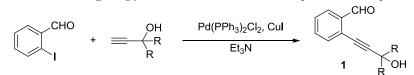
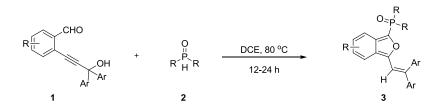
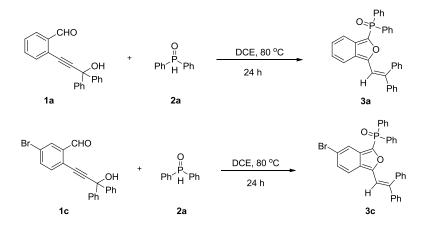

2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzaldehyde **1a** and diphenyl- phosphine oxide **2a** were utilized as model substrates to optimize the reaction conditions (**Table S1**).

Table S1. Optimization of Tandem Cyclization for the Synthesis of 3a^a

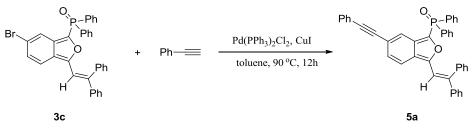

We used 2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzaldehyde **1a** and diphenyl- phosphine oxide **2a** as template substrates for condition optimization (Table S1). To our delight, the phosphylation reaction of **1a** with **2a** occurred successfully in toluene system without metal catalysts at 110°C for 12 h, and produced the cyclic product (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide **3a** in 76% yield, along with the nucleophilic addition byproduct (hydroxy(2-(3-hydroxy-3,3- diphenylprop-1-yn-1-yl)phenyl)methyl)diphenylphosphine oxide **4a** in 13% yield (entry 1). The structure of **3a** was unambiguously confirmed by X-ray crystallographic analysis.³⁵ In order to improve the conversion from the addition product **4a** to the desired product **3a**, we investigated the effect of solvents on the tandem cyclization. DMF, THF, 1,4-dioxane and DCM gave **4a** in good yield and trace amount of **3a** (entries 2-5). When CHCl₃, EtOH and CH₃CN were used, they all yielded the target product **3a**, but their conversion efficiencies were not satisfactory (entries 6-8). Then, we used AcOH and DCE as solvents and their results showed the yield of **3a** was increased to 83% and 90%, respectively (entries 9-10). Next, using DCE as the best solvent, we studied the effect of reaction time on reaction efficiency. It was found that the yield of **3a** was not improved further by prolonging reaction time to 18 h (entry 11). However, shortening the reaction time to 6 h reduces the yield (entry 12). To enhance the utilization of **2a**, reducing the amount of **2a** to 1.5 or 2 equivalents gave a better result (entries13-14). However, when 1.0 equivalent of **2a** was used, the yield of **3a** was decreased to 59% (entry 15). Additionally, varying the reaction temperature did not help to increase the efficiency of phosphine oxide-triggered tandem cyclization (entries 16-17). Finally, a 1:1.5 equivalent ratio of **1a** and **2a** in DCE at 80 °C for 12 h was the optimal condition (entry 14).

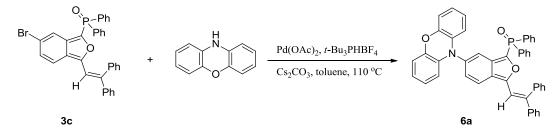
General Procedure for the Synthesis of o-Propargyl Alcohol Benzaldehydes 1v-1y


To a solution of 2-iodobenzaldehyde (5 mmol) in triethylamine (Et₃N) (5 mL) was added PdCl₂(PPh₃)₂ (4 mol %) and CuI (2 mol %). The reaction vial was flushed with Ar, and the reaction mixture was stirred for 5 min. A solution of arylpropargyl alcohol (5 mmol) in Et₃N (5 mL) was then added dropwise by a syringe over 5 min. The resulting solution was stirred at room temperature overnight. After the completion of reaction, as determined by TLC analysis, the mixture was quenched by adding saturated aqueous ammonium chloride solution (10 mL) and extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with water and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography to afford **1v-1y**.

Experimental Procedure for Compounds 3a-3y and 3aa-3ah

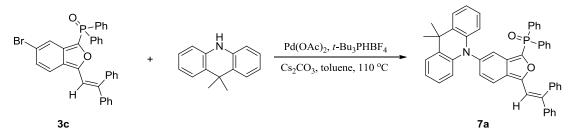
To a solution of 2-(3-hydroxy-3,3-diarylprop-1-yn-1-yl)benzaldehyde **1** (0.20 mmol, 1 equiv.) and phosphine oxides **2** (0.30 mmol, 1.5 equiv.) in DCE (3.0 mL) at 80 °C for 12-24 h.When the reaction was completed, the reaction mixture was evaporated under reduced pressure. The residue was purified by chromatography on silica gel(eluted with dichloromethane/ethyl acetate, 20:1 - 2:1) to afford corresponding (3-(2,2-diarylvinyl)isobenzofuran-1-yl)diarylphosphine oxides **3**.



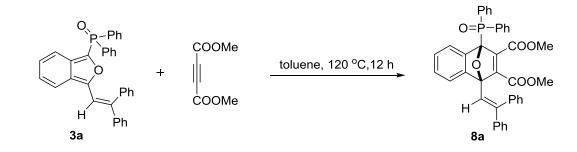

To a solution of 2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzaldehyde **1a** (5.0 mmol, 1.56 g) and diphenylphosphine oxide **2a** (7.5 mmol, 1.515 g) in DCE (50 mL) at 80°C for 24 h. When the reaction was completed, the reaction mixture was evaporated under reduced pressure. The residue was purified by chromatography on silica gel (eluted with dichloromethane/ethyl acetate, 20:1) to afford a 87% yield of product (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide **3a** (4.37 mmol, 2.17 g).

To a solution of 2-(3-hydroxy-3,3-diphenylprop-1-yn-1-yl)benzaldehyde 1c (5.0 mmol, 1.95 g) and diphenylphosphine oxide 2a (7.5 mmol, 1.515 g) in DCE (50 mL) at 80°C for 24 h. When the reaction was completed, the reaction mixture was evaporated under reduced pressure. The residue was purified by chromatography on silica gel (eluted with dichloromethane/ethyl acetate, 20:1) to afford a 77% yield of product 3c (3.85 mmol, 2.21 g).

General steps of the derivatization reaction of 3c

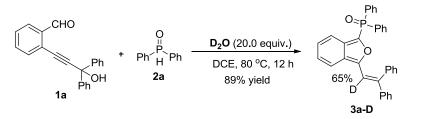


In a 20 mL pressure tube was added **3c** (114.8 mg, 0.2 mmol), Pd(PPh₃)₂Cl₂ (2.8 mg, 0.004 mmol), CuI (0.9 mg, 0.008 mmol). The tube was filled with argon, then toluene (3 mL) and ethynylbenzene (20.4 mg, 0.2 mmol) was added to the tube, the mixture was heated 90 °C for 12 h. When the reaction was completed after, the reaction mixture was then cooled to room temperature quenched by addition of saturated ammonium chloride solution and extracted with ethyl acetate (3 x 10 mL), washed with water, saturated brine, dried over Na₂SO₄ and evaporated under reduced pressure. The residue was purified by chromatography on silica gel (eluted with dichloromethane/ethyl acetate, 20:1) to afford the corresponding product **5a** (95 mg, 0.159 mmol) in 80% yield.

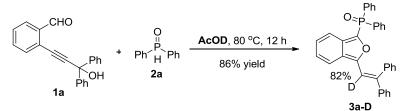


A mixture of 3c (114.8 mg, 0.2 mmol), phenoxazine (55 mg, 0.3 mmol), cesium carbonate (131 mg, 0.4 mmol), palladium (II) acetate (4.6 mg, 0.02 mmol), *t*-Bu₃PHBF₄ (12.0 mg, 0.04 mmol) and dry-toluene (5 mL), and heated under an argon atmosphere 110 °C for 8 h. After the mixture was cooled to room temperature, water (3 mL) and EtOAc (3 x 10 mL) were added. The organic layer was separated and washed with brine,

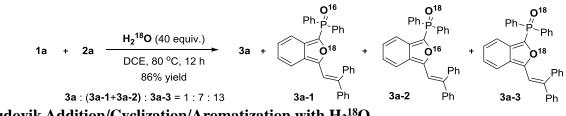
dried over anhydrous Na₂SO₄ and evaporated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel (eluted with dichloromethane/ethyl acetate, 20:1) to afford the corresponding product **6a** as an orange solid (65 mg, 48% yield).



A mixture of **3c** (114.8 mg, 0.2 mmol), 9,9-dimethyl-9,10-dihydroacridine (63 mg, 0.3 mmol), cesium carbonate (131 mg, 0.4 mmol), palladium (II) acetate (4.6 mg, 0.02 mmol), *t*-Bu₃PHBF₄ (12.0 mg, 0.04 mmol) and dry-toluene (5 mL), and heated under an argon atmosphere 110°C for 8 h. ³ After the mixture was cooled to room temperature, water (3 mL) and EtOAc (3 x 10 mL) were added. The organic layer was separated and washed with brine, dried over anhydrous Na₂SO₄ and evaporated to dryness under reduced pressure. The crude product was purified by column chromatography on silica gel (eluted with dichloromethane/ethyl acetate, 20:1) to afford the corresponding product **7a** as a yellow solid (106 mg, 75% yield).

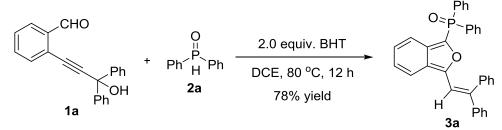

To a solution of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide **3a** (99.2 mg, 0.20 mmol) and dimethyl but-2-ynedioate (28.42 mg, 0.20 mmol) in toluene (3.0 mL) at 120 °C for 12 h. When the reaction was completed, the reaction mixture was evaporated under reduced pressure. The residue was purified by chromatography on silica gel (eluted with dichloromethane/ethylacetate, 10:1) to afford **8a** (97.0 mg, 0.15 mmol) in 76% yield.

Reaction mechanism synthesis step


General Procedure for the Synthesis of 3a-D.

To a solution of **1a** (0.2 mmol, 62.4 mg) and diphenylphosphine oxide **2a** (0.3 mmol, 60.6 mg) in DCE (3.0 mL) was added D_2O (4.0 mmol, 80.0 mg) at 80 °C for 12 h. When the reaction was completed, the reaction mixture was evaporated under reduced pressure. The residue was purified by chromatography on silica gel (eluted with dichloromethane/ethyl acetate, 20:1) to afford **3a-D** (89 mg, 0.179 mmol) with an isotopic ratio of 65:35 in 89% yield.

General Procedure for the Synthesis of 3a-D in AcOH.


To a solution of **1a** (0.2 mmol, 62.4 mg) in AcOD (3.0 mL) was added diphenylphosphine oxide **2a** (0.3 mmol, 60.6 mg) at 80 °C for 12 h. When the reaction was completed, the reaction mixture was evaporated under reduced pressure. The residue was purified by chromatography on silica gel (eluted with dichloromethane/ethyl acetate, 20:1) to afford **3a-D** (86 mg, 0.173 mmol) with an isotopic ratio of 82:18 in 86% yield.

General Procedure of Pudovik Addition/Cyclization/Aromatization with H₂¹⁸O.

To a solution of **1a** (0.2 mmol, 62.4 mg) and diphenylphosphine oxide **2a** (0.3 mmol, 60.6 mg) in DCE (3.0 mL) was added H₂¹⁸O (8.0 mmol, 160.0 mg) at 80 °C for 12 h. When the reaction was completed, the reaction mixture was evaporated under reduced pressure. The residue was purified by chromatography on silica gel (eluted with dichloromethane/ethyl acetate, 20:1) to afford the inseparable mixture (**3a** : (**3a-1**+ **3a-2**) : **3a-3** \approx 1 : 7 : 13) (86 mg) in 86% yield.

General procedure for inhibition experiments.

To a solution of **1a** (0.2 mmol, 62.4 mg) and diphenylphosphine oxide **2a** (0.8 mmol, 161.6 mg) and in DCE (5.0 mL) was added 2.0 equivalents 2,6-di-*tert*-butyl-4-methylphenol (BHT) (0.4 mmol, 88.0 mg) at 80 °C for 12 h. When the reaction was completed, the reaction mixture was evaporated under reduced pressure. The residue was purified by chromatography on silica gel (eluted with dichloromethane/ethyl acetate, 20:1) to afford the product **3a** (0.156 mmol, 78 mg,) in 78% yield.

	rystal data and structure refinement for 3a	3j								
Compound Formula										
	$C_{34}H_{25}O_2P$									
Formula weight	496.51	514.50								
Temperature (K)	150	150								
Crystal system	Monoclinic	triclinic								
Space group	P121/c1	P-1								
a(A)	10.3029(2)	9.3555(5)								
b(A)	26.9879(4)	11.2209(8)								
c (Å)	18.4734(3)	14.2183(8)								
α (°)	90	68.506(2)								
β (°)	96.403(10)	85.739(4)								
γ (°)	90	70.953(2)								
$V(A^3)$	5104.55(15)	1311.02(14)								
Ζ	8	2								
$Dc/g \ cm^{-3}$	1.292	1.303								
μ/mm^{-1}	1.185	0.142								
F (000)	2080.0	536.0								
Crystal size/mm ³	0.39 x 0.35 x 0.25	0.16 imes 0.13 imes 0.12								
Radiation	MoKa ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)								
R (int)	0.0563	0.0593								
Total reflections	61956	15171								
Independent reflections	10442	5286								
$\theta \min < \theta < \theta \max$	2.911 to 74.661	3.082 to 52.754								
R_1 , w R_2 (I>2 σ (I))	$R_1 = 0.0797, wR_2 = 0.1848$	$R_1 = 0.0429, wR_2 = 0.1064$								
R_1 , w R_2 (for all data)	$R_1 = 0.0887, wR_2 = 0.1984$	$R_1 = 0.0574, wR_2 = 0.1152$								
Goodness-of-fit on F^2	1.051	1.057								

Crystal Data and Structure Refinement of Compounds 3a and 3j

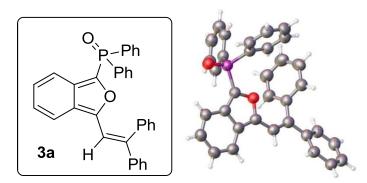


Fig. S1 ORTEP diagram of X-ray crystal structure of compounds **3a** (CCDC No. 2395373). The thermal ellipsoids are shown at 35% probabil ity. Colour code: red, oxygen; white, hydrogen; green, fluorine; orange, phosphine. The crystal was grown from CH_2Cl_2 and PE. 20 mg of **3a** was dissolved in CH_2Cl_2/PE mixed solvent (1.5/3.0 mL) and the solvent was evaporated slowly in a cold atmosphere.

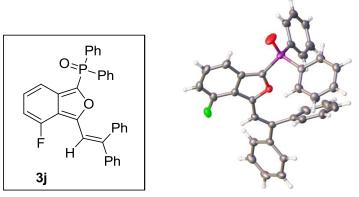


Fig. S2 ORTEP diagram of X-ray crystal structure of compounds 3j (CCDC No. 2395370). The thermal ellipsoids are shown at 35% probabil ity. Colour code: red, oxygen; white, hydrogen; green, fluorine; orange, phosphine. The crystal was grown from CH₂Cl₂ and PE. 20 mg of 3j was dissolved in CH₂Cl₂/PE mixed solvent (1.5/3.0 mL) and the solvent was evaporated slowly in a cold atmosphere.

Analytical Data of Products 1v–1z, 3a-3y, 3aa-3ah, 3a-D, 4a, 5a, 6a, 7a and 8a Analytical Data of Products 1v–1z

2-(3-hydroxy-3,3-di(thiophen-2-yl)prop-1-yn-1-yl)benzaldehyde (1v). 435 mg, 59%; yellow solid; m. p. 109-111°C, (SiO₂) $R_f = 0.4$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 7.94-7.90 (m, 1H), 7.64-7.60 (m, 1H), 7.56 (td, J = 7.6, 1.2 Hz, 1H), 7.50-7.44 (m, 1H), 7.31 (dd, J = 5.2, 1.2 Hz, 2H), 7.24 (dd, J = 3.6, 1.2 Hz, 2H), 6.97 (dd, J = 5.2, 3.6 Hz, 2H), 3.74 (s, 1H). ¹³C {¹H}NMR (100 MHz, CDCl₃) δ 191.5, 148.7, 136.5, 133.9, 133.7, 129.5, 127.7, 126.8, 126.3, 125.7, 125.3, 97.3, 82.0, 70.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₈H₁₂O₂S₂Na 347.0171; Found: 347.0181.

2-((9-hydroxy-9H-fluoren-9-yl)ethynyl)benzaldehyde (1w). 501 mg, 67%; orange solid; m. p. 151 -153°C; (SiO₂) $R_f = 0.25$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 10.38 (s, 1H), 7.88 – 7.83 (m, 1H), 7.77 (dd, J = 7.6, 0.8 Hz, 2H), 7.64 (d, J = 7.2 Hz, 2H), 7.55 – 7.47 (m, 2H), 7.40 (dtd, J = 20.8, 7.6, 1.2 Hz, 5H), 2.98 (s, 1H). ¹³C {¹H}NMR (101 MHz, CDCl₃) δ 191.6, 146.8, 139.2, 136.5, 133.8, 130.1, 129.1, 128.9, 127.4, 126.0, 124.4, 120.5, 96.4, 78.7, 75.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₁₄O₂Na 333.0886; Found 333.0894.

2-((9-hydroxy-10,10-dimethyl-9,10-dihydroanthracen-9-yl)ethynyl)benzaldehyde (1x). 500 mg, 70%; yellow solid; m. p. 170 - 172°C; (SiO₂) R_f = 0.4 (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 10.36 (d, *J* = 0.4 Hz, 1H), 8.14 - 8.09 (m, 2H), 7.90 - 7.86 (m, 1H), 7.65 - 7.61 (m, 2H), 7.56 - 7.49 (m, 2H), 7.47 - 7.38 (m, 5H), 2.84 (s, 1H), 1.77 (s, 3H), 1.69 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 191.6, 142.8, 136.5, 136.4, 133.8, 133.5, 129.2, 129.0, 128.0, 127.4, 127.2, 126.2, 126.2, 100.4, 81.9, 68.2, 38.2, 33.4, 32.8.HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₅H₂₀O₂Na 375.1356; Found: 375.1360.

2-((5-hydroxy-10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-yl)ethynyl)benzaldeh-yde (1y). 400 mg, 69%; white solid; m. p. 156-158°C; (SiO₂) $R_f = 0.5$ (PE/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 10.41 (d, J = 0.4 Hz, 1H), 8.07-8.01 (m, 2H), 7.94-7.89 (m, 1H), 7.62-7.53 (m, 2H), 7.49-7.43 (m, 1H), 7.26 - 7.22 (m, 4H), 7.20 - 7.16 (m, 2H), 3.67 - 3.59 (m, 2H), 3.41 - 3.32 (m, 2H), 3.28 (s, 1H). ¹³C NMR (101 MHz, CDCl₃)

δ 191.4, 141.1, 138.4, 136.4, 133.9, 133.5, 131.1, 129.1, 128.6, 128.1, 126.4, 126.3, 125.7, 125.1, 99.1, 83.5, 73.6, 32.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₄H₁₈O₂Na 361.1199; Found: 361.1200.

2-(3-hydroxy-3-phenylprop-1-yn-1-yl)benzaldehyde (1z). 340 mg, 72%; yellow oil; (SiO₂) $R_f = 0.3$ (PE/EA = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 10.46 (s, 1H), 8.00 – 7.76 (m, 1H), 7.63 – 7.49 (m, 4H), 7.46 – 7.31 (m, 4H), 5.74 (s, 1H), 3.16 (s, 1H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 191.8, 140.3, 136.1, 133.9, 133.6, 129.0, 128.9, 128.7, 127.6, 126.7, 125.9, 96.1, 82.2, 65.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₂O₂Na 259.0730; Found: 259.0737.

Analytical Data of Products 3a-3y and 3aa-3ah.

(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3a). 88 mg, 89%; yellow solid; m. p. 196 -198°C; (SiO₂) R_f = 0.50 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.8 Hz, 1H), 7.54 – 7.45 (m, 3H), 7.43 – 7.36 (m, 8H), 7.34 – 7.28 (m, 5H), 7.21 – 7.17 (m, 2H), 7.15 – 7.10 (m, 2H), 7.10 – 7.04 (m, 1H), 7.04 – 6.96 (m, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 150.8 (d, J = 5.6Hz), 142.8, 142.3 (d, J = 1.4 Hz), 140.4, 136.7, 135.3, 135.2, 135.0, 133.4, 132.3, 131.9 (dd, J = 8.9, 6.8 Hz), 130.2, 128.5 (d, J = 4.1 Hz), 128.3, 128.2,128.1, 128.0, 127.8, 127.3 (d, J = 1.3 Hz), 125.1, 124.5, 124.4, 120.3, 118.9, 112.4 (d, J = 1.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.0. HRMS (ESI) m/z: [M + H]⁺Calcd for C₃₄H₂₆O₂P 497.1665; Found: 497.1665. QY: 51.4%.

(6-chloro-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3b). 96 mg, 91%; yellow solid; m. p. 250 - 252°C; (SiO₂) $R_f = 0.7$ (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.56 - 7.49 (m, 2H), 7.44 - 7.34 (m, 9H), 7.34 - 7.27 (m, 5H), 7.20 - 7.11 (m, 3H), 7.08 (s, 1H), 7.03 (t, *J* = 7.6 Hz, 2H), 6.90 (dd, *J* = 9.2, 1.6 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.31 (d, *J* = 5.4 Hz), 143.5, 142.6,140.2, 139.8, 135.2, 135.1, 133.5, 133.1, 132.1 (d, *J* = 2.8 Hz), 132.0, 131.9, 131.8, 130.1, 128.3 (d, *J* = 19.0 Hz), 128.0 (d, *J* = 2.8 Hz), 126.8, 122.5 (d, *J* = 7.3 Hz), 120.6, 118.7, 112.1. ³¹P NMR (162 MHz, CDCl₃) δ 18.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₅ClO₂P 531.1275; Found: 531.1261. QY: 24.9%.

(6-bromo-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3c). 99 mg, 86%; yellow solid; m. p. 265 - 267°C; (SiO₂) $R_f = 0.7$ (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.57 - 7.49 (m, 2H), 7.45 - 7.34 (m, 8H), 7.33 - 7.27 (m, 6H), 7.20 - 7.12 (m, 3H), 7.08 (s, 1H), 7.06 - 6.99 (m, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.4 (d, *J* = 5.5 Hz), 143.5 (d, *J* = 1.3 Hz), 142.5, 140.2, 136.23, 135.8, 135.6, 134.85, 133.1, 132.1 (d, *J* = 2.9 Hz), 132.0, 131.8 (d, *J* = 10.8 Hz), 130.1, 129.0, 128.5, 128.4, 128.2, 128.0 (d, *J* = 2.8 Hz), 122.5 (d, *J* = 7.2 Hz), 122.1 (d, *J* = 1.7 Hz), 122.05, 120.6, 112.1 (d, *J* = 1.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.1. HRMS (ESI) m/z: [M + H]⁺Calcd for C₃₄H₂₅BrO₂P 575.0770; Found: 575.0774. QY: 13.0%.

(3-(2,2-diphenylvinyl)-6-fluoroisobenzofuran-1-yl)diphenylphosphine oxide (3d). 90 mg, 88%; yellow solid; m. p. 204- 206°C, (SiO₂) R_f = 0.7 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.47 (m, 3H), 7.47 – 7.35 (m, 9H), 7.34 – 7.27 (m, 5H), 7.20 – 7.16 (m, 2H), 7.15 – 7.10 (m, 1H), 7.06 – 7.01 (s, 1H), 7.03 (m, 2H), 6.83 – 6.72 (m, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 162.7 (d, J = 1.4 Hz), 160.2 (d, J = 1.4 Hz), 151.3 (dd, J = 5.5, 1.8 Hz) 143.6, 142.6, 140.2, 132.7 (d, J = 110.8 Hz), 132.1 (d, J = 2.8 Hz), 131.8 (d, J = 10.8 Hz), 130.1, 128.51 (d, J = 2.4 Hz), 128.4, 128.2, 128.0 (d, J = 3.8 Hz), 122.1, 122.0, 121.8, 121.7, 118.0, 117.7, 112.1, 102.3, 102.0. ³¹P NMR (162 MHz, CDCl₃) δ 17.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₅FO₂P 515.1571; Found: 515.1566. QY: 24.2%.

(3-(2,2-diphenylvinyl)-6-methylisobenzofuran-1-yl)diphenylphosphine oxide (3e). 77 mg, 75%; yellow solid; m. p. 216 - 218°C; (SiO₂) R_f = 0.6 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 1.2 Hz, 1H), 7.56 - 7.48 (m, 2H), 7.42 - 7.36 (m, 9H), 7.32 - 7.27 (m, 5H), 7.21 - 7.17 (m, 2H), 7.16 - 7.10 (m, 2H), 7.04 - 6.99 (m, 2H), 6.84 (dd, *J* = 9.2, 1.2 Hz, 1H), 2.32 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.6 (d, *J* = 5.7 Hz), 142.9, 142.0 (d, *J* = 1.4 Hz), 140.4, 137.2 (d, *J* = 1.2 Hz), 135.9, 135.7, 135.2, 133.8, 133.0 (d, *J* = 110.3 Hz), 131.9 (d, *J* = 1.6 Hz), 131.8, 130.2, 128.5, 128.4 (d, *J* = 5.9 Hz), 128.3, 128.2, 128.1, 127.9, 127.7, 123.6 (d, *J* = 7.6 Hz), 118.6, 117.8, 112.5 (d, *J* = 1.6 Hz), 22.1. ³¹P NMR (162 MHz, CDCl₃) δ 18.3. HRMS (ESI) m/z: [M + H]+ Calcd for C₃₅H₂₈O₂P 511.1821; Found: 511.1829. QY: 39.9%.

(3-(2,2-diphenylvinyl)-6-methoxyisobenzofuran-1-yl)diphenylphosphineoxide (3f). 65mg, 62%; yellow solid; m. p. 238 - 240°C; (SiO₂) R_f = 0.4 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.53 - 7.48 (m, 2H), 7.45 - 7.36 (m, 8H), 7.34 (dd, J = 9.6, 0.78 Hz, 1H), 7.31 - 7.28 (m, 5H), 7.21 - 7.17 (m, 2H), 7.15 - 7.09 (m, 2H), 7.07 (s, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.69 (dd, J = 9.2, 2 Hz, 2H), 3.81 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 158.7 (d, J = 1.2 Hz), 150.7 (d, J = 6.0 Hz), 142.8, 142.6 (d, J = 1.3 Hz), 140.3, 136.4 (d, J = 16.1 Hz), 134.2, 133.2 (d, J = 110.2 Hz), 132.8, 131.8 (d, J = 1.8 Hz), 131.7, 130.2, 128.4 (d, J = 5.2 Hz), 128.3 (d, J = 3.1 Hz), 128.0, 127.9, 127.8, 121.7, 121.6 (d, J = 7.6 Hz), 120.3, 112.4 (d, J = 1.5 Hz), 94.5, 55.5. ³¹P NMR (162 MHz, CDCl₃) δ 18.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₅H₂₈O₃P 527.1771; Found: 527.1772.

(3-(2,2-diphenylvinyl)-4-methylisobenzofuran-1-yl)diphenylphosphine oxide (3g). 54 mg, 53%; yellow solid; m. p. 208 - 210°C; (SiO₂) R_f = 0.6 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.8 Hz, 1H), 7.49 (t, *J* = 7.2 Hz, 2H), 7.40 –7.33 (m,7H), 7.32 –7.23 (m, 7H), 7.13 (d, *J* = 7.2 Hz, 2H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.97 – 6.91(m, 3H), 6.76 (d, *J* = 6.4 Hz, 1H), 2.67 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.2 (d, *J* = 5.5 Hz), 143.3, 142.6, 140.6, 136.4, 136.0 (d, *J* = 15.9 Hz), 135.0, 132.7 (d, *J* = 110.5 Hz), 131.9 (d, *J* = 10.8 Hz), 131.8 (d, *J* = 2.5 Hz), 130.1, 130.0, 128.4 (d, *J* = 11.9 Hz), 128.2, 128.1, 128.0, 127.9, 127.6, 127.3, 125.9, 124.6 (d, *J* = 7.3 Hz), 118.3, 114.7 (d, *J* = 1.4 Hz), 21.5. ³¹P NMR (162 MHz, CDCl₃) δ 18.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₅H₂₈O₂P 511.1821; Found: 511.1833. QY: 22.1%.

(3-(2,2-diphenylvinyl)-5-methylisobenzofuran-1-yl)diphenylphosphine oxide (3h). 82 mg, 80%; yellow solid; m. p. 230 - 232°C; (SiO₂) R_f = 0.6 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 9.0 Hz, 1H), 7.54 - 7.47 (m, 2H), 7.44 - 7.36 (m, 8H), 7.34 - 7.28 (m, 5H), 7.21 - 7.17 (m, 3H), 7.16 - 7.11 (m, 2H), 7.05 - 6.99 (m, 2H), 6.92 (d, J = 9.0 Hz, 1H), 2.32 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ ppm 149.8 (d, J = 5.6 Hz), 142.9, 141.4 (d, J = 1.4 Hz), 140.5, 136.5, 135.1, 134.8, 134.2 (d, J = 16.0 Hz), 132.9 (d, J = 110.4 Hz), 131.90, 131.9 (d, J = 1.6 Hz), 131.8, 130.6, 130.2, 128.4 (d, J = 1.7 Hz), 128.3, 128.1, 127.9, 127.7, 124.9 (d, J = 7.4 Hz), 119.9, 116.7, 112.6 (d, J = 1.6 Hz), 22.2. ³¹P NMR (162 MHz, CDCl₃) δ 17.9.HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₅H₂₈O₂P 511.1821; Found: 511.1816. QY: 8.0%.

(3-(2,2-diphenylvinyl)-7-methylisobenzofuran-1-yl)diphenylphosphine oxide (3i). 65 mg, 64%; yellow solid; m. p. 168 -170°C; (SiO₂) $R_f = 0.6$ (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.46 (m, 2H), 7.45 - 7.34 (m, 8H), 7.33 - 7.26 (m, 5H), 7.25 - 7.20 (m, 1H), 7.16 - 7.07 (m, 3H), 7.07 - 7.01 (m, 3H), 6.91 - 6.85 (m, 2H), 2.61 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.3 (d, *J* = 6.4 Hz), 143.4 (d, *J* = 1.1 Hz), 143.0, 140.1, 138.5, 137.1, 135.1, 134.9, 133.4 (d, *J* = 111.9 Hz), 132.1, 132.0, 131.7 (d, *J* = 2.8 Hz), 130.6, 130.4, 128.4, 128.30, 128.29, 128.26, 127.9, 127.6, 125.4 (d, *J* = 7.1 Hz) 125.1, 116.7, 113.2 (d, *J* = 1.4 Hz), 22.8. ³¹P NMR (162 MHz, CDCl₃) δ 18.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₅H₂₈O₂P 511.1821; Found:511.1821. QY: 29.7%.

(3-(2,2-diphenylvinyl)-4-fluoroisobenzofuran-1-yl)diphenylphosphine oxide (3j). 74 mg, 72%; yellow solid; m. p. 190 -192°C; (SiO₂) R_f = 0.7 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.8 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.43 – 7.37 (m, 5H), 7.36 – 7.27 (m, 9H), 7.18 – 7.14 (m, 2H), 7.13 – 7.08 (m, 1H), 7.02 – 6.94 (m, 3H), 6.63 (dd, J = 11.6, 7.2 Hz, 1H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 157.5, 155.0, 149.6 (dd, J = 7.9, 5.7 Hz), 143.5, 142.5, 140.3, 137.1 (dd, J = 16.1, 4.5 Hz), 136.9 (dd, J = 139.0, 2.4 Hz), 132.9, 132.1 (d, J = 2.8 Hz), 131.9, 131.8, 130.0, 128.5, 128.4 (d, J = 4.0 Hz), 128.1, 128.0, 127.8, 127.5 (d, J = 5.7 Hz), 116.6 (d, J = 5.2 Hz), 116.4 (d, J = 7.5 Hz),116.2 (d, J = 7.6 Hz), 113.8 (dd, J = 6.5, 1.4 Hz), 107.6 (d, J = 18.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₅FO₂P 515.1571; Found: 515.1572. QY: 6.8%.

(4-chloro-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3k). 95 mg, 90%; yellow solid; m. p. 196 -198°C; (SiO₂) R_f = 0.6 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 1H), 7.93 (s, 1H), 7.55 – 7.49 (m, 2H), 7.42– 7.37 (m, 4H), 7.35 – 7.27 (m, 9H), 7.18 – 7.13 (m, 2H), 7.11 – 7.02 (m, 2H), 6.99 – 6.93 (m, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.91 (d, *J* = 5.3 Hz), 143.4 (d, *J* = 1.5 Hz), 142.9, 140.5, 136.6 (d, *J* = 15.9 Hz), 136.5 (d, *J* = 138.1 Hz), 132.9, 132.1 (d, *J* = 2.9 Hz), 131.9, 131. 8 (d, *J* = 1.9 Hz), 130.0, 128.5 (d, *J* = 1.4 Hz), 128.3 (d, *J* = 2.4 Hz), 128.0 (d, *J* = 4.4 Hz), 127.9, 127.7, 127.1, 126.0, 125.8, 121.50 (d, *J* = 7.3 Hz), 119.5, 113.91 (d, *J* = 1.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₅ClO₂P 531.1275; Found: 531.1278.

(3-(2,2-diphenylvinyl)-5-fluoroisobenzofuran-1-yl)diphenylphosphine oxide (3l). 81 mg, 79%; yellow solid; m. p. 216 - 218°C; (SiO₂) $R_f = 0.7$ (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 9.4, 5.1 Hz, 1H), 7.57 - 7.49 (m, 2H), 7.45 - 7.36 (m, 8H), 7.34 - 7.27 (m, 5H), 7.22 - 7.12 (m, 3H), 7.08 - 7.01 (m, 3H), 6.96 (d, J = 9.2 Hz, 1H), 6.89 (td, J = 9.2, 2.0 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 161.3 (d, J = 0.8 Hz), 158.8 (d, J = 0.7 Hz), 150.5 (d, J = 5.5 Hz), 150.4 (d, J = 5.4 Hz), 142.6, 142.1, 140.3, 137.5 (d, J = 2.2 Hz), 136.2 (d, J = 2.2 Hz), 132.9 (d, J = 15.8 Hz), 132.5 (d, J = 110.8 Hz), 132.10 (J = 2.8 Hz), 131.8 (d, J = 10.8 Hz), 130.1, 128.5 (d, J = 2.3 Hz, 128.4, 128.3,

128.2, 127.9, 127.8, 123.9 (dd, J = 10.1, 7.4 Hz), 123.2 (d, J = 9.5 Hz), 120.1 (dd, J = 30.1, 0.9 Hz), 112.3, 101.1, 100.9. ³¹P NMR (162 MHz, CDCl₃) δ 18.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₅FO₂P 515.1571; Found: 515.1567.

(5-chloro-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3m). 87 mg, 82%; yellow solid; m. p. 207 - 209°C; (SiO₂) R_f = 0.7 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 9.2 Hz, 1H), 7.57 – 7.50 (m, 2H), 7.45 – 7.35 (m, 9H), 7.34 – 7.27 (m, 5H), 7.20 – 7.12 (m, 3H), 7.07 – 7.01 (m, 3H), 6.98 (d, J = 9.2 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.3 (d, *J* = 5.5 Hz), 143.0 (d, *J* = 1.4 Hz), 142.5, 140.2, 137.6, 136.9 (d, *J* = 138.6 Hz), 133.3 (d, *J* = 15.7 Hz), 133.0, 132.1 (d, *J* = 2.8 Hz), 131.9, 131.8 (d, *J* = 10.8 Hz), 130.9, 130.1, 128.9, 128.5 (d, *J* = 1.6 Hz), 128.4 (d, *J* = 3.8 Hz), 128.2, 128.0 (d, *J* = 1.9 Hz), 124.3 (d, *J* = 7.4 Hz), 122.0, 117.7, 112.2. ³¹P NMR (162 MHz, CDCl₃) δ 17.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₅ClO₂P 531.1275; Found: 531.1283.

(3-(2,2-diphenylvinyl)-5,6-dimethoxyisobenzofuran-1-yl)diphenylphosphineoxide (3n). 87 mg, 78%; yellow solid; m. p. 202 - 204°C; (SiO₂) R_f = 0.3 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.48 (m, 2H), 7.47 – 7.36 (m, 8H), 7.34 – 7.28 (m, 5H), 7.23 – 7.19 (m, 2H), 7.15 – 7.10 (m, 2H), 7.08 – 7.02 (m, 2H), 7.00 (s, 1H), 6.48 (s, 1H), 3.88 (s, 3H), 3.83 (s, 3H)). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 151.9 (d, *J* = 1.1 Hz), 150.5, 149.2 (d, *J* = 5.9 Hz), 143.1, 141.2 (d, *J* = 1.1 Hz), 140.6, 134.5, 133.2, 133.1 (d, *J* = 110.3 Hz), 132.7, 131.9 (d, *J* = 2.8 Hz), 131.8 (d, *J* = 10.7 Hz), 130.4, 128.4 (d, *J* = 4.5 Hz), 128.3, 128.2, 128.02, 127.9 (d, *J* = 30.1 Hz), 120.6 (d, *J* = 7.5 Hz), 113.3, 96.1, 95.3, 56.1 (d, *J* = 18.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₃₀O₄P 577.1871; Found: 577.1873.

(3-(2,2-diphenylvinyl)-5,6-difluoroisobenzofuran-1-yl)diphenylphosphineoxide (3o). 79 mg, 74%; yellow solid; m. p. 225 - 227°C; (SiO₂) R_f = 0.7 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 10.0, 7.6 Hz, 1H), 7.59 - 7.49 (m, 2H), 7.46 - 7.36 (m, 8H), 7.35 - 7.27 (m, 5H), 7.21 - 7.14 (m, 3H), 7.10 - 7.01 (m, 3H), 7.00 (s, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 143.4, 142.4, 140.1, 132.9, 132.2 (d, *J* = 2.8 Hz), 131.8 (d, *J* = 1.9 Hz), 131.7, 131.5 (dd, *J* = 15.7, 10.1 Hz), 130.1, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 120.1, 120.0, 119.9, 112.1,

105.1 (d, J = 21.6 Hz), 103.9 (d, J = 21.2 Hz). ³¹P NMR (162 MHz, CDCl₃) $\delta = 18.0$. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₄F₂O₂P 533.1476; Found:533.1481.

(3-(2,2-diphenylvinyl)-4,5-dimethylisobenzofuran-1-yl)diphenylphosphine oxide (3p). 76 mg, 73%; yellow solid; m. p. 201 - 203 °C; (SiO₂) R_f = 0.6 (DCM/EA =20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.8 Hz, 1H), 7.52 - 7.47 (m, 2H), 7.41 (s, 1H), 7.40 - 7.34 (m, 6H), 7.34 - 7.26 (m, 7H), 7.15 - 7.11 (m, 2H), 7.05 (t, J = 7.4 Hz, 1H), 6.95 (t, J = 7.4 Hz, 2H), 6.90 (d, J = 9.0 Hz, 1H), 2.60 (s, 3H), 2.31 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.5 (d, J = 5.5 Hz), 143.4, 142.3 (d, J = 1.4 Hz), 140.7, 135.4 (d, J = 16.1 Hz), 135.2 (d, J = 140.8 Hz), 133.3, 132.2, 132.0, 131.9, 131.82, 131.78, 130.2, 128.4 (d, J = 9.6 Hz), 128.2, 128.0, 127.9 (d, J = 4.6 Hz), 127.5, 126.0, 125.2 (d, J = 7.3 Hz), 117.5, 115.4 (d, J = 1.5 Hz), 19.7, 16.6. ³¹P NMR (162 MHz, CDCl₃) δ 18.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₃₀O₂P 525.1972; Found: 525.1956.

(3-(2,2-bis(4-methoxyphenyl)vinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3q). 63 mg, 57%; yellow solid; m. p. 177 - 179°C; (SiO₂) R_f = 0.4 (DCM/EA =20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.8 Hz, 1H), 7.45 – 7.35 (m, 4H), 7.35 – 7.27 (m, 7H), 7.16 (d, J = 8.8 Hz, 2H), 7.04 – 6.93 (m, 3H), 6.92 – 6.84 (m, 2H), 6.76 (d, J = 8.8 Hz, 2H), 3.72 (s, 3H), 3.55 (s, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 159.9, 159.4, 151.4 (d, J = 5.6 Hz), 142.1, 135.8, 135.4, 135.3 (d, J = 16.0 Hz), 134.0, 133.1 (d, J = 110.5 Hz), 132.7, 131.9 (d, J = 2.8 Hz), 131.8 (d, J = 10.8 Hz), 131.5, 129.4, 128.4, 128.3, 127.3, 124.7, 123.9 (d, J = 7.5 Hz), 120.1, 119.1, 113.8, 113.5, 110.5, 55.4 (d, J = 19.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₃₀O₄P 557.1876; Found: 557.1880.

(**3-(2,2-di-p-tolylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide** (**3r**). 51 mg,49%; yellow solid; m. p. 206 -208°C;(SiO₂) R_f = 0.6 (DCM/EA =20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.8 Hz, 1H), 7.57 – 7.47 (m, 3H), 7.43 – 7.33 (m, 7H), 7.22 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 7.10 – 7.04 (m, 4H), 7.01 – 6.95 (m, 1H), 6.78 (d, J = 7.8 Hz, 2H), 2.36 (s, 3H), 2.19 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.1 (d, J = 5.6 Hz), 142.5 (d, J = 1.4 Hz), 140.1, 138.3, 137.5, 137.4, 135.8, 135.3, 135.1, 134.4, 133.6, 132.5, 131.9 (d, J = 2.8 Hz),

131.8 (d, J = 10.8 Hz), 130.1, 129.2, 128.7, 128.3, 128.2, 127.9, 127.3, 124.9, 124.2 (d, J = 7.5 Hz), 120.2, 119.0, 111.3 (d, J = 1.6 Hz), 21.3 (d, J = 7.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₃₀O₂P 525.1972; Found: 525.1944.

(3-(2,2-bis(4-fluorophenyl)vinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3s). 97 mg, 91%; yellow solid; m. p. 159 -161°C; (SiO₂) R_f = 0.5 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.4 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.50 – 7.43 (m, 3H), 7.43 – 7.36 (m, 6H), 7.26 – 7.22 (m, 2H), 7.12 – 7.07 (m, 2H), 7.06 – 6.96 (m, 5H), 6.68 – 6.60 (m, 2H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 163.9 (d, J = 53.4 Hz), 161.7, 161.2, 150.4 (d, J = 5.5 Hz), 140.0, 138.8, 136.0, 135.0, 134.9, 133.2, 132.2 (d, J = 2.8 Hz), 132.1, 131.9, 131.8, 131.7, 129.6 (d, J = 8.0 Hz), 128.5 (d, J = 12.7 Hz), 127.4, 125.3, 124.6 (d, J = 7.5 Hz), 120.3, 118.8, 115.4 (dd, J = 31.9, 21.5 Hz), 112.4. ³¹P NMR (162 MHz, CDCl₃) δ 17.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₄F₂O₂P 533.1476; Found: 533.1499.

(3-(2,2-bis(4-chlorophenyl)vinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3t). 82 mg, 82%; yellow solid; m. p. 205 - 207°C; (SiO₂) R_f = 0.6 (DCM/EA =20:1). ¹H NMR (400 MHz, CDCl₃) δ7.92 (d, J = 8.4 Hz, 1H), 7.58 – 7.49 (m, 3H), 7.47 – 7.34 (m, 8H), 7.30 – 7.25 (m, 2H), 7.19 (d, J = 8.4 Hz, 2H), 7.11 – 7.00 (m, 5H), 6.91 (d, J = 8.4 Hz, 2H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 150.0 (d, J = 5.7 Hz), 140.8, 139.3, 138.3, 137.5, 135.0 (d, J = 15.9 Hz), 134.4, 133.9, 132.5 (d, J = 110.8 Hz), 132.2 (d, J = 2.8 Hz), 131.8, 131.7,131.5, 129.1, 128.8, 128.6,128.5 (d, J = 2.7 Hz), 127.5, 125.6, 125.0 (d, J = 7.4 Hz), 120.4, 118.7, 112.8. ³¹P NMR (162 MHz, CDCl₃) δ 18.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₄Cl₂O₂P 565.0885; Found: 565.0892.

(3-(2,2-bis(4-bromophenyl)vinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3u). 98 mg, 75%; yellow solid; m. p. 218 - 220°C; (SiO₂) R_f = 0.5(PE/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.6 Hz, 1H), 7.59 - 7.50 (m, 3H), 7.48 - 7.40 (m, 8H), 7.40 - 7.36 (m, 2H), 7.16 - 7.11 (m, 2H), 7.11 - 7.03 (m, 5H), 7.02 - 6.97 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 149.9 (d, J = 5.6 Hz), 141.2, 140.3, 139.2, 138.7, 136.2, 135.1, 134.9, 133.8, 133.1, 132.2 (d, J = 2.8 Hz), 132.0, 131.9, 131.7 (d, J = 1.8 Hz), 131.7, 131.4, 129.0 (d, J = 76.8 Hz), 128.5, 127.5, 125.7, 125.1 (d, J = 7.5 Hz), 122.4 (d, J = 45.1 Hz), 120.4, 118.6, 112.7. ³¹P NMR (162 MHz, CDCl₃) δ 18.2. HRMS (ESI) m/z: [M + H]⁺ Calcd

for C₃₄H₂₄Br₂O₂P 652.9875. Found: 652.9867.

(3-(2,2-di(thiophen-2-yl)vinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3v). 86 mg, 85%; yellow solid; m. p. 234 - 236°C; (SiO₂) R_f = 0.5(DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 1H), 7.57 - 7.46 (m, 7H), 7.45 - 7.37 (m, 4H), 7.27 - 7.23 (m, 1H), 7.20 (s, 1H), 7.13 - 7.04 (m, 2H), 7.03 - 6.94 (m, 4H), 6.74 - 6.69 (m, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 149.9 (d, J = 5.6 Hz), 147.1, 139.9, 137.7, 136.3, 135.0 (d, J = 15.8 Hz), 133.3, 132.2, 132.0 (d, J = 2.8 Hz), 131.9 (d, J = 10.8 Hz), 128.6, 128.5, 128.3, 128.0, 127.8, 127.4, 127.0 (d, J = 37.1 Hz), 126.4, 126.2, 125.4, 125.0 (d, J = 7.5 Hz), 120.3, 118.9, 112.6. ³¹P NMR (162 MHz, CDCl₃) δ 17.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₂₂O₂PS₂ 509.0793; Found: 509.0799. QY: 2.2%.

(3-((9H-fluoren-9-ylidene)methyl)isobenzofuran-1-yl)diphenylphosphine oxide (3w). 87 mg, 88%; red soild; m. p. 197 -199°C; (SiO₂) R_f = 0.5(DCM/EA = 20:1).¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.0 Hz, 1H), 7.92 (ddd, J = 12.8, 8.2, 1.2 Hz, 4H), 7.82 – 7.74 (m, 2H), 7.72 – 7.68 (m, 1H), 7.68 – 7.58 (m, 5H), 7.56 – 7.49 (m, 4H), 7.35 – 7.27 (m, 2H), 7.23 (dd, J = 7.2, 0.8 Hz, 1H), 7.17 – 7.11 (m, 2H), 6.66 (td, J = 8.0, 1.2 Hz, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.0 (d, J = 5.6 Hz), 141.2, 140.4, 140.1, 139.3, 139.1, 135.8, 135.0, 134.9, 132.8, 132.7 (d, J = 2.8 Hz), 132.0, 131.9, 131.7, 129.1, 128.94, 128.89, 128.6, 127.9, 127.3, 127.2, 127.1, 126.2, 125.8, 120.2, 119.8 (d, J = 16.2 Hz), 119.7 (d, J = 88.0 Hz), 107.9 (d, J = 1.6 Hz).³¹P NMR (162 MHz, CDCl₃) δ 17.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₄O₂P 495.1508; Found: 495.1531. QY: 3.7%.

(3-((10,10-dimethylanthracen-9(10H)-ylidene)methyl)isobenzofuran-1-yl)diphenylphosphine oxide (3x). 85 mg, 79%; yellow solid; m. p. 209 - 211°C; (SiO₂) $R_f = 0.5$ (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 1H), 7.77 – 7.73 (m, 1H), 7.57 – 7.49 (m, 10H), 7.40 – 7.34 (m, 4H), 7.33 – 7.28 (m, 2H), 7.17 – 7.09 (m, 2H), 7.08 (s, 1H), 7.02 (dd, *J* = 8.4, 6.4 Hz, 1H), 6.33 (td, *J* = 7.6, 0.8 Hz, 1H), 1.61 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.33 (d, *J* = 5.6 Hz), 146.4, 144.5, 139.1, 137.7, 136.5, 135.2, 135.1, 135.0, 134.9, 133.1 (d, *J* = 110.6 Hz), 132.0, 131.9 (d, *J* = 10.7 Hz), 128.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, *J* = 7.4 Hz), 123.5, 128.4 (d, *J* = 12.8 Hz), 128.1, 127.6, 127.4, 126.6, 125.2, 125.1, 124.4 (d, J = 7.4 Hz), 123.5, 128.4 (d, J = 12.8 Hz), 128.1, 128.4 (d, J = 12.8 Hz), 128.4 (d, J = 12.8 Hz), 128.4 (d, J = 12.8 Hz), 128.

123.4, 122.7, 120.2, 119.2, 110.1, 40.0, 28.9. ³¹P NMR (162 MHz, CDCl₃) δ 17.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₇H₃₀O₂P 537.1978. Found:537.1975. QY: 20.6%.

(3-((10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)methyl)isobenzofuran-1-yl)diphenylphosphine oxide (3y). 92 mg, 88%; yellow solid; m. p. 170 - 172 °C; (SiO₂) R_f = 0.5 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.8 Hz, 1H), 7.64 – 7.27 (m, 12H), 7.25 – 7.17 (m, 3H), 7.11 – 7.05 (m, 3H), 7.04 – 6.96 (m, 3H), 6.41 (td, J = 7.6, 1.2 Hz, 1H), 3.48 – 3.26 (m, 2H), 3.06 – 2.77 (m, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.28 (d, J = 5.5 Hz), 144.0, 141.4, 140.7, 138.4, 137.8, 136.4, 135.1, 135.04, 134.97, 131.8, 130.6, 128.3, 128.23 (dd, J = 35.9, 1.8 Hz), 128.0, 127.6, 127.3, 126.4, 126.0, 125.1, 124.3, 124.2, 120.3, 118.8, 115.0 (d, J = 1.5 Hz), 33.8, 32.1. ³¹P NMR (162 MHz, CDCl₃) δ 18.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₂₈O₂P 523.1821. Found: 523.1831. QY: 10.7%.

(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)bis(4-methoxyphenyl)phosphine oxide (3aa). 76 mg, 68%; yellow solid; m. p. 168 -170°C; (SiO₂) $R_f = 0.2$ (DCM/EA =20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.38 – 7.28 (m, 9H), 7.22 – 7.12 (m, 4H), 7.09 – 7.01 (m, 3H), 6.96 (ddd, J = 8.6, 6.4, 0.64 Hz, 1H), 6.91 – 6.86 (m, 4H), 3.85 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 162.5 (d, J = 3.0 Hz), 150.3 (d, J = 5.6 Hz), 142.9, 141.9 (d, J = 1.4 Hz), 140.4, 137.2 (d, J = 140.2 Hz), 134.5, 134.4, 133.7 (d, J = 12.2 Hz), 130.2, 128.4,128.0 (d, J = 10.6 Hz), 127.9 (d, J = 40.2 Hz), 127.0 (d, J = 1.0 Hz), 125.0 (d, J = 3.4 Hz), 124.4 (d, J = 7.3 Hz), 123.9, 120.4, 118.9, 113.9 (d, J = 13.9 Hz), 112.5 (d, J = 1.5 Hz), 55.5. ³¹P NMR (162 MHz, CDCl₃) δ 17.7. HRMS (ESI) m/z: [M + H]⁺ Calcd forC₃₆H₃₀O₄P 557.1876; Found: 557.1846. QY: 14.3%.

(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)di-p-tolylphosphine oxide (3ab). 75 mg, 72%; yellow solid; m. p. 248-250°C; (SiO₂) $R_f = 0.6$ (DCM/EA =20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.8 Hz, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.36 – 7.26 (m, 9H), 7.22 – 7.17 (m, 6H), 7.16 – 7.12 (m, 2H), 7.08 – 7.01 (m, 3H), 6.96 (dd, J = 8.6, 6.4 Hz, 1H), 2.41 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.5 (d, J = 5.4 Hz), 142.9, 142.3 (d, J = 2.9 Hz), 142.0 (d, J = 1.2 Hz), 140.4, 136.8 (d, J = 139.6 Hz), 134.7 (d, J = 15.8 Hz), 131.9 (d, J = 11.1 Hz), 130.3, 130.2,

129.2, 129.1, 129.0, 128.4, 128.1, 128.0, 127.9, 127.7, 127.1, 125.0, 124.4 (d, J = 7.4 Hz), 120.36, 118.9, 112.5 (d, J = 1.5 Hz), 21.8 (d, J = 1.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₆H₃₀O₂P 525.1972; Found: 525.1957. QY: 11.4%.

bis(4-chlorophenyl)(**3-(2,2-diphenylvinyl)isobenzofuran-1-yl)phosphine oxide** (**3ac**). 83 mg, 74%; yellow solid; m. p. 254 - 256°C; (SiO₂) R_f = 0.6 (DCM/EA =30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.8 Hz, 1H), 7.52 (d, *J* = 8.8 Hz, 1H), 7.40 - 7.35 (m, 4H), 7.34 - 7.26 (m, 9H), 7.21 - 7.14 (m, 4H), 7.13 - 7.06 (m, 3H), 7.05 - 6.99 (m, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.2 (d, *J* = 5.8 Hz), 142.9, 142.6, 140.5, 138.8 (d, *J* = 3.4 Hz), 135.5, 135.3, 134.0, 133.2, 133.1, 131.0 (d, *J* = 112.4 Hz), 130.2, 128.9, 128.8, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8 (d, *J* = 1.1 Hz), 125.3, 124.6 (d, *J* = 7.7 Hz), 119.9, 119.1, 112.1 (d, *J* = 1.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₄Cl₂O₂P 565.0885; Found: 565.0854.

bis(4-bromophenyl)(**3-(2,2-diphenylvinyl)isobenzofuran-1-yl)phosphine oxide (3ad).** 104 mg, 80%; yellow solid; m. p. 260 -262°C; (SiO₂) R_f = 0.6 (DCM/EA =30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.8 Hz, 1H), 7.56 – 7.49 (m, 5H), 7.35 – 7.27 (m, 5H), 7.26 – 7.24 (m, 2H), 7.23 – 7.21 (m, 2H), 7.21 – 7.13 (m, 5H), 7.12 – 7.05 (m, 3H), 7.04 – 6.99 (m, 1H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.3 (d, *J* = 5.8 Hz), 142.9 (d, *J* = 1.4 Hz), 142.6, 140.5, 135.4 (d, *J* = 16.5 Hz), 135.4, 133.8, 133.3, 133.2, 131.9, 131.7, 131.4 (d, *J* = 111.9 Hz), 130.2, 128.5, 128.4, 128.1, 128.0, 127.9, 127.86 (d, *J* = 1.2 Hz), 127.4 (d, *J* = 3.5 Hz), 125.3, 124.5 (d, *J* = 7.7 Hz), 119.9, 119.1, 112.1. ³¹P NMR (162 MHz, CDCl₃) δ 16.3. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₄Br₂O₂P 652.9875. Found: 652.9844.

(3,5-dimethylphenyl)(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)(*m*-tolyl)phosphine oxide (3ae). 88 mg, 80%; yellow solid; m. p. 137 -139°C; (SiO₂) R_f = 0.5 (DCM/EA =20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.8 Hz, 1H), 7.39 (d, *J* = 8.8 Hz, 1H), 7.35 - 7.28 (m, 5H), 7.20 - 7.07 (m, 9H), 7.05 - 6.98 (m, 2H), 6.97 - 6.89 (m, 3H), 2.31 (s, 12H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.6 (d, *J* = 5.7 Hz), 142.9, 142.1 (d, *J* = 1.3 Hz), 140.0, 138.1, 138.0, 137.5, 136.1, 135.0, 134.8, 133.9 (d, *J* = 2.9 Hz), 133.0, 131.9, 130.0, 129.5 (d, *J* = 10.7 Hz), 128.5, 128.1 (d, *J* = 1.3 Hz), 140.0, 138.1, 138.0, 137.5, 136.1, 135.0, 134.8, 133.9 (d, *J* = 2.9 Hz), 133.0, 131.9, 130.0, 129.5 (d, *J* = 10.7 Hz), 128.5, 128.1 (d, *J* = 1.3 Hz), 140.0, 138.1, 138.0, 137.5, 136.1, 135.0, 134.8, 133.9 (d, *J* = 2.9 Hz), 133.0, 131.9, 130.0, 129.5 (d, *J* = 10.7 Hz), 128.5, 128.1 (d, *J* = 1.3 Hz), 140.0, 138.1, 138.0, 137.5, 136.1, 135.0, 134.8, 133.9 (d, *J* = 2.9 Hz), 133.0, 131.9, 130.0, 129.5 (d, *J* = 10.7 Hz), 128.5, 128.1 (d, *J* = 1.3 Hz), 140.0, 138.1, 138.0, 137.5, 136.1, 135.0, 134.8, 133.9 (d, *J* = 2.9 Hz), 133.0, 131.9, 130.0, 129.5 (d, *J* = 10.7 Hz), 128.5, 128.1 (d, *J* = 1.3 Hz), 140.0, 138.1, 138.0, 137.5, 136.1, 135.0, 134.8, 133.9 (d, *J* = 2.9 Hz), 133.0, 131.9, 130.0, 129.5 (d, *J* = 10.7 Hz), 128.5, 128.1 (d, *J* = 1.3 Hz), 140.0, 138.1, 138.0, 137.5, 136.1, 135.0, 134.8, 133.9 (d, *J* = 2.9 Hz), 133.0, 131.9, 130.0, 129.5 (d, *J* = 10.7 Hz), 128.5, 128.1 (d, *J* = 1.3 Hz), 140.0, 138.1, 138.0, 137.5, 136.1, 135.0, 134.8, 133.9 (d, *J* = 2.9 Hz), 133.0, 137.9, 130.0, 129.5 (d, *J* = 10.7 Hz), 128.5, 128.1 (d, *J* = 1.3 Hz), 140.0, 138.1, 138.0, 137.5, 136.1, 135.0, 134.8, 133.9 (d, *J* = 2.9 Hz), 133.0, 131.9, 130.0, 129.5 (d, *J* = 10.7 Hz), 128.5, 128.1 (d, J) = 10.7 Hz), 128.5, 128.1 (d, J) = 10.7 Hz), 128.5, 128.1 (d, J) = 10.7 Hz, 128.5, 128.1 (d, J) = 10.7 Hz), 128.5, 128.1

J = 11.9 Hz), 127.4, 127.0 (d, J = 1.0 Hz), 124.9, 124.4, 124.3, 120.4, 119.0, 112.8 (d, J = 1.5 Hz), 21.5. ³¹P NMR (162 MHz, CDCl₃) δ 19.1.HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₈H₃₄O₂P 553.2291; Found: 553.2277. QY: 1.9%.

(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)di(naphthalen-1-yl)phosphine oxide (3af). 85 mg, 71%; yellow solid; m. p. 78 - 80°C; (SiO₂) R_f = 0.5 (DCM/EA =30:1). ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 8.4 Hz, 2H), 8.06 (d, J = 9.2 Hz, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.87 (d, J = 8.0 Hz, 2H), 7.50 – 7.45 (m, 1H), 7.43 – 7.35 (m, 3H), 7.33 – 7.28 (m, 2H), 7.27 – 7.22 (m, 5H), 7.19 (dd, J = 7.2, 1.2 Hz, 1H), 7.15 (dd, J = 6.8, 0.8 Hz, 1H), 7.08 – 7.00 (m, 4H), 6.97 – 6.89 (m, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 150.9 (d, J = 5.7 Hz), 142.6, 142.5 (d, J = 1.3 Hz), 140.1, 137.2, 135.8, 135.3, 135.1, 133.9 (dd, J = 9.3, 3.9 Hz), 133.3 (d, J = 12.5 Hz), 133.2 (d, J = 3.0 Hz), 129.7 (d, J = 5.5 Hz), 128.8 (d, J = 1.3 Hz), 128.6, 128.4, 128.2, 127.8, 127.6, 127.5, 127.4, 127.3, 126.5, 125.0, 124.6 (d, J = 15.0 Hz), 124.5 (d, J = 8.0 Hz), 120.4, 119.2, 112.7 (d, J = 1.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 24.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₄₂H₃₀O₂P 597.1978; Found:597.1954. QY: 9.0%.

(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)di(naphthalen-2-yl)phosphine oxide (3ag). 93 mg, 78%; yellow solid; m. p. 181 -183 °C; (SiO₂) R_f = 0.5 (DCM/EA =20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 14.4 Hz, 2H), 8.02 (d, J = 8.8 Hz, 1H), 7.93 – 7.87 (m, 4H), 7.81 (dd, J = 8.4, 2.8 Hz, 2H), 7.63 – 7.50 (m, 5H), 7.34 – 7.27 (m, 7H), 7.19 – 7.15 (m, 3H), 7.13 – 7.07 (m, 1H), 7.04 – 6.98 (m, 1H), 6.81 – 6.69 (m, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.0 (d, J = 5.7 Hz), 142.7, 142.4 (d, J = 1.3 Hz), 140.2, 136.8, 135.4, 135.2 (d, J = 16.0 Hz), 134.9 (d, J = 2.4 Hz), 133.8 (d, J = 10.0 Hz), 133.8 (d, J = 10.0 Hz), 130.4, 129.9, 129.3, 129.1, 128.4, 128.3, 128.2 (d, J = 3.9 Hz), 128.1, 127.9 (d, J = 2.2 Hz), 127.6, 127.4, 126.9 (d, J = 3.8 Hz), 126.8, 125.1, 124.6, 124.5, 120.3, 119.0, 112.3. ³¹P NMR (162 MHz, CDCl₃) δ 18.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₄₂H₃₀O₂P 597.1978; Found: 597.1961. QY: 6.6%.

(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diethylphosphine oxide (3ah). 67 mg, 83%; oil; (SiO₂) R_f = 0.1 (DCM/EA = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.48 – 7.32 (m, 7H), 7.32 – 7.27 (m, 3H), 7.20 (s, 1H), 7.08 – 6.96 (m, 2H), 1.74 – 1.59 (m, 2H), 1.56 – 1.43 (m, 2H), 0.96 (t, J = 7.6 Hz, 3H), 0.92 (t, J = 7.6 Hz, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 149.5 (d, J = 4.7

Hz), 142.0, 141.6 (d, J = 1.4 Hz), 141.2, 134.5 (d, J = 13.3 Hz), 130.2, 128.4 (d, J = 14.8 Hz), 128.2, 127.5, 126.9 (d, J = 1.1 Hz), 125.1, 124.4 (d, J = 6.7 Hz), 119.4 (d, J = 108.6 Hz), 112.2 (d, J = 1.6 Hz), 22.9, 22.2, 5.5 (d, J = 5.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 40.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₆H₂₆O₂P 401.1665. Found: 401.1641.

Analytical Data of Products 3a-D

(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3a-D). D: 65%, 89 mg, 89%; yellow solid; m. p. 196-198°C; (SiO₂) R_f = 0.50 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 1H), 7.56 – 7.46 (m, 3H), 7.45 – 7.36 (m, 8H), 7.35 – 7.27 (m, 5H), 7.22 – 7.17 (m, 2H), 7.15 – 7.11 (m, 1.35 H), 7.07 (dd, J = 8.4, 6.4 Hz, 1H), 7.04 – 6.96 (m, 3H). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₂₅DO₂P 498.1728; Found: 498.1713.

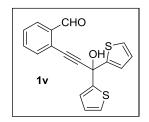
(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3a-D). D: 82%, 86 mg, 86%; yellow solid; m. p. 196-198°C; (SiO₂) R_f = 0.50 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.8 Hz, 1H), 7.55 – 7.46 (m, 3H), 7.43 – 7.36 (m, 8H), 7.33 – 7.29 (m, 5H), 7.21 – 7.16 (m, 2H), 7.15 – 7.11 (m, 1.18 H), 7.07 (dd, J = 8.6, 6.6 Hz, 1H), 7.04 – 6.96 (m, 3H).

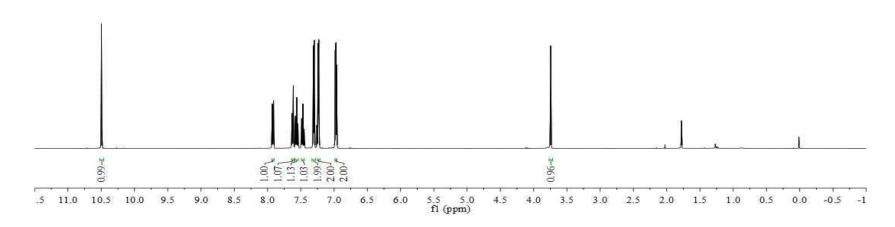
Analytical Data of Products 4a, 5a, 6a, 7a and 8a

(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (4a). 93mg, 87%; white solid; m. p. 204 - 206°C; (SiO₂) R_f = 0.10 (PE/EA = 1:1). ¹H NMR (400 MHz, DMSO) δ 7.79 - 7.66 (m, 6H), 7.64 - 7.56 (m, 3H), 7.55 - 7.47 (m, 3H), 7.42 - 7.28 (m, 6H), 7.28 - 7.15 (m, 6H), 7.01 (s, 1H), 6.66 (dd, J = 18.4, 5.6 Hz, 1H), 6.05 (t, J = 5.6 Hz, 1H). ¹³C {¹H} NMR (101 MHz, DMSO) δ 146.4 (d, J = 6.6 Hz), 139.9, 133.1, 132.2, 132.0 (d, J = 8.4 Hz),131.7 (d, J = 2.3 Hz), 131.5 (d, J = 2.3 Hz), 131.4, 131.02 (d, J = 8.7 Hz), 130.2, 128.4 (d, J = 3.7 Hz), 128.3 (d, J = 11.0 Hz), 128.1 (d, J = 11.1 Hz), 128.0 (d, J = 4.0 Hz), 127.7, 127.0 (d, J = 14.0 Hz), 125.8, 125.6, 121.8, 121.7, 97.7, 83.6, 73.3, 69.7 (d, J = 86.9 Hz). ³¹P NMR (162 MHz, DMSO) δ 27.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₂O₃PNa 537.1590; Found: 537.1577.

(3-(2,2-diphenylvinyl)-6-(phenylethynyl)isobenzofuran-1-yl)diphenylphosphine oxide (5a). 95 mg, 80%; yellow solid; m. p. 237 - 239°C; (SiO₂) R_f = 0.5 (DCM/EA = 50:1). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.55 - 7.50 (m, 4H), 7.46 - 7.41 (m, 4H), 7.41 - 7.38 (m, 5H), 7.35 - 7.30 (m, 8H), 7.20 - 7.17 (m, 2H), 7.14 (dt, J = 2.6, 1.6 Hz, 1H), 7.11 (s, 1H), 7.08 - 7.01 (m, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.0 (d, J = 5.4 Hz), 142.9, 142.7, 140.3, 136.4 (d, J = 139.2 Hz), 134.8, 134.6, 133.2, 132.1 (d, J = 2.8 Hz), 131.9, 131.8 (d, J = 2.8 Hz), 130.2, 128.5, 128.4, 128.1 (d, J = 16.8 Hz), 127.9, 127.7, 124.1, 123.3, 123.0 (d, J = 7.2 Hz), 122.2, 119.1, 112.3, 90.9, 89.9. ³¹P NMR (162 MHz, CDCl₃) δ 18.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₄₂H₃₀O₂P 597.1978; Found: 597.1967. QY: 3.8%.

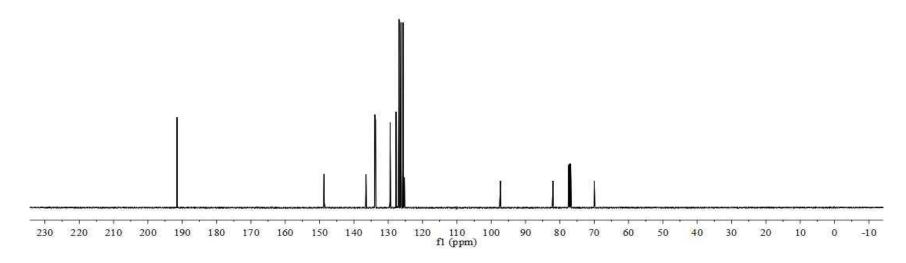
(3-(2,2-diphenylvinyl)-6-(10H-phenoxazin-10-yl)isobenzofuran-1-yl)diphenylphosphine oxide (6a). 65 mg, 48%; orange solid; m. p. 137-139°C; (SiO₂) $R_f = 0.5$ (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.71 – 7.68 (m, 1H), 7.56 – 7.51 (m, 2H), 7.46 – 7.39 (m, 8H), 7.34 – 7.32 (m, 5H), 7.24 – 7.21 (m, 2H), 7.19 – 7.14 (m, 2H), 7.09 – 7.04 (m, 2H), 6.87 (dd, *J* = 9.2, 1.6 Hz, 1H), 6.70 – 6.65 (m, 3H), 6.65 – 6.56 (m, 4H), 6.08 (dd, *J* = 7.6, 1.6 Hz, 2H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.3 (d, *J* = 5.4 Hz), 144.2, 143.4, 142.6, 140.2, 137.6, 135.5 (d, *J* = 15.6 Hz), 133.7, 133.0, 132.2 (d, *J* = 2.8 Hz), 131.9 (d, *J* = 10.8 Hz), 130.1, 128.6 (d, *J* = 2.0 Hz), 128.4, 128.2, 128.0, 127.4, 123.4, 123.4, 123.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.2, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.2, 128.4, 128.2, 128.0, 127.4, 123.4, 128.4, 128.4, 128.2, 128.4

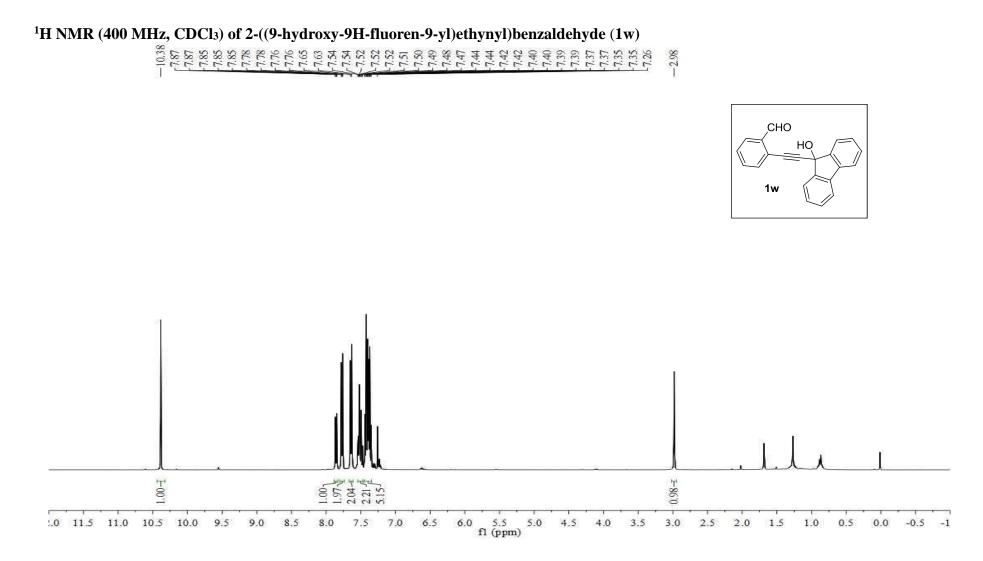

123.0 (d, J = 26.0 Hz), 122.8, 121.6, 115.6, 114.4, 113.9, 112.1. ³¹P NMR (162 MHz, CDCl₃) δ 17.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₄₆H₃₃NO₃P 678.2193; Found: 678.2188. QY: 3.1%.


(6-(9,9-dimethylacridin-10(9H)-yl)-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diph-enylphosphine oxide (7a). 106 mg, 75%; yellow solid; m. p. 141 - 143°C; (SiO₂) R_f = 0.5 (DCM/EA = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.76 – 7.71 (m, 1H), 7.56 – 7.49 (m, 2H), 7.46 – 7.42 (m, 5H), 7.41 – 7.38 (m, 5H), 7.35 – 7.33 (m, 4H), 7.26 – 7.23 (m, 2H), 7.21 (s, 1H), 7.19 – 7.14 (m, 1H), 7.09 – 7.05 (m, 2H), 7.00 – 6.84 (m, 6H), 6.41 (dd, *J* = 8.0, 1.4 Hz, 2H), 1.66 (s, 6H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 151.3 (d, *J* = 5.5 Hz), 143.2 (d, *J* = 1.3 Hz), 142.6, 140.6, 140.3, 139.9, 135.9, 133.1, 132.1 (d, *J* = 2.8 Hz), 132.0, 131.9 (d, *J* = 10.8 Hz), 130.4, 130.2, 128.8, 128.6, 128.3 (d, *J* = 15.4 Hz), 128.2 (dd, *J* = 48.6, 2.2 Hz), 126.5, 125.1, 123.5, 122.8, 122.1, 120.8, 114.4, 112.1, 36.1, 31.0. ³¹P NMR (162 MHz, CDCl₃) δ 17.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₄₉H₃₉NO₂P 704.2713; Found: 704.2700. QY: 8.4%.

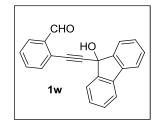
1-(diphenylphosphoryl)-4-(2,2-diphenylvinyl)-1,4-dihydro-1,4-epoxynaphthalene-2,3-dicarboxylate (8a). 97 mg, 76 %; oil; (SiO₂) $R_f = 0.5$ (DCM/EA = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.86 (m, 2H), 7.81 – 7.75 (m, 2H), 7.71 (d, J = 6.8 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.57 – 7.51 (m, 2H), 7.48 – 7.43 (m, 1H), 7.39 – 7.35 (m, 2H), 7.34 – 7.30 (m, 6H), 7.25 – 7.20 (m, 1H), 7.13 – 7.04 (m, 4H), 7.00 – 6.90 (m, 2H), 6.77 (s, 1H), 3.62 (s, 3H), 3.50 (s, 3H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ ppm 163.4, 162.4, 153.6, 151.3, 149.4, 148.6, 147.2, 142.8, 138.5, 132.4 (d, J = 2.8 Hz), 132.3, 132.2 (d, J = 2.5 Hz), 132.12 (d, J = 2.9 Hz), 132.0, 131.14 (d, J = 26.7 Hz), 130.8, 130.11 (d, J = 27.9 Hz), 128.5, 128.29 (dd, J = 10.9, 2.9 Hz), 128.1, 127.6, 126.1, 125.9, 123.1, 121.0, 118.1, 92.85 (d, J = 9.3 Hz), 90.8, 89.9, 52.4, 52.1. ³¹P NMR (162 MHz, CDCl₃) $\delta = 23.6$. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₄₀H₃₂O₆P 639.1931; Found: 639.1909.

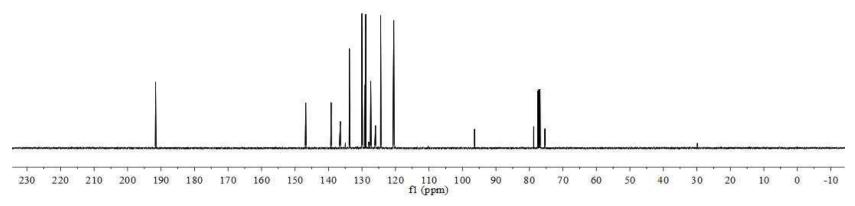
¹H, ¹³C, ³¹P and ¹⁹F NMR Spectra for All Products ¹H NMR (400 MHz, CDCl₃) of 2-(3-hydroxy-3,3-di(thiophen-2-yl)prop-1-yn-1-yl)benzaldehyde (1v)


0.5	33	16	6	2	63	3	5	58	38	5	50	53	X	8	8	4	\$	4	3	3	30	30	8	2	2	33	33	8	5	5	8	4
	C.	5	5	r.	5	r	r'	r-	5	r	5	r-	5	F	5	5	5	5	5	5	5	r	r-	5	r.	5	5	9	0	6	6	3
10 E													-	1 10	1	-	-			-												- 1

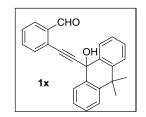


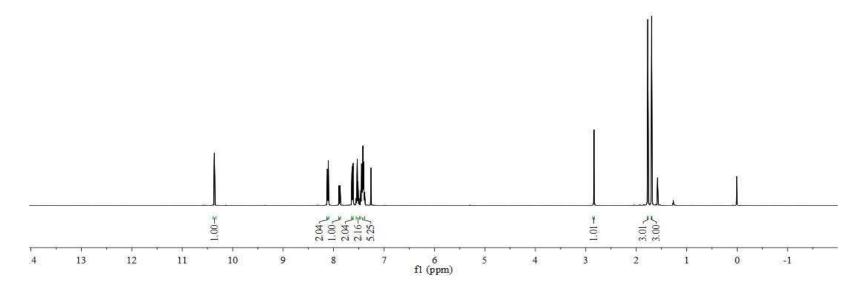
¹³C{¹H} NMR (100 MHz, CDCl₃) of 2-(3-hydroxy-3,3-di(thiophen-2-yl)prop-1-yn-1-yl)benzaldehyde (1v)

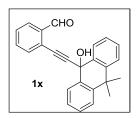

-191.49	-148.69 136.48 133.91 133.71 129.46	126.28 126.28 125.29 125.29	97.34	×202 77.48 77.16 76.84 ×70.01	
					CHO OH 1v

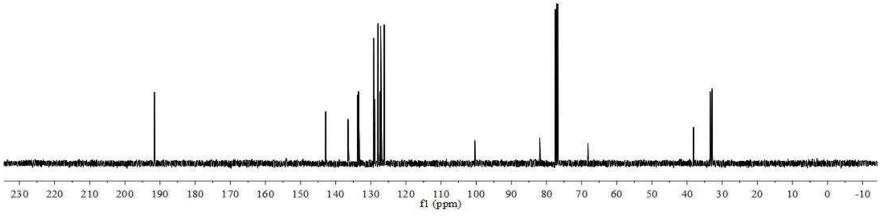


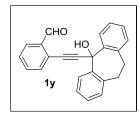
S38

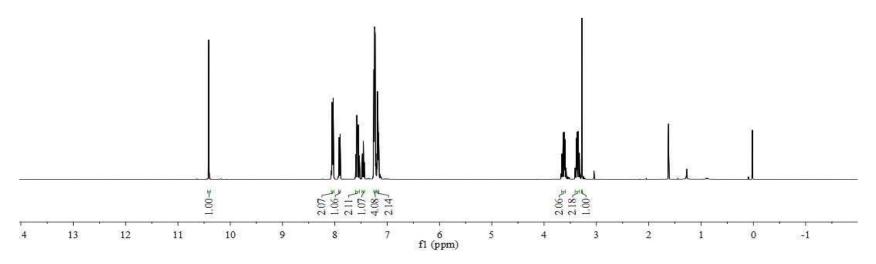

¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) of 2-0	((9-hydroxy-9H-fluoren-9-yl)ethy	vnyl)be	enzaldehyde (1w)
	146.79 146.79 133.75 133.75 133.75 123.00 123.88 123.88 123.88 123.88 123.88 123.88 123.88 123.88 123.59 123.59 123.59 123.59 123.50 125.50 125.50 125.50 125.50 125.50 125.50 10	96.38	78.73 77.48 77.16 77.16 75.38



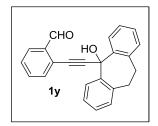

¹H NMR (400 MHz, CDCl₃) of 2-((9-hydroxy-10,10-dimethyl-9,10-dihydroanthracen-9-yl)ethynyl)benzaldehyde (1x)

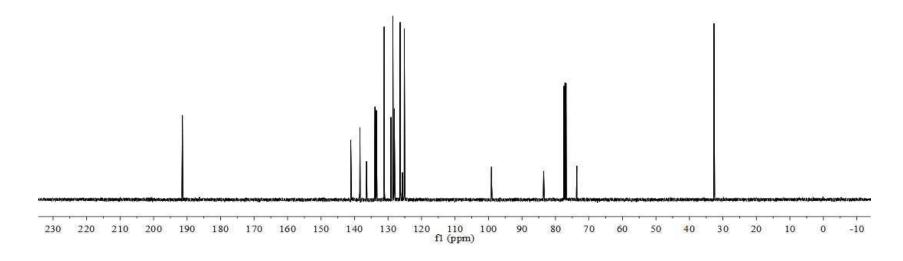

Close Construction Constructin Construction Construction Construction Constr	×1.9
--	------


¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) of 2-((9	-hydroxy-10,10-dimethyl-9,10)-dihyd	lroanthracen-9-yl)eth	ynyl)benzaldehyde (1x)
- 191.61	142.83 136.50 136.50 133.77 133.47 133.47 133.47 133.47 133.47 122.92 127.19 127.19 126.20	-100.41	777,48 777,48 777,16 76,84 -68,19	ン38.17 ン33.42 、32.84



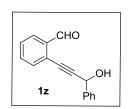
¹H NMR (400 MHz, CDCl₃) of 2-((5-hydroxy-10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-yl)ethynyl)benzaldehyde (1y)

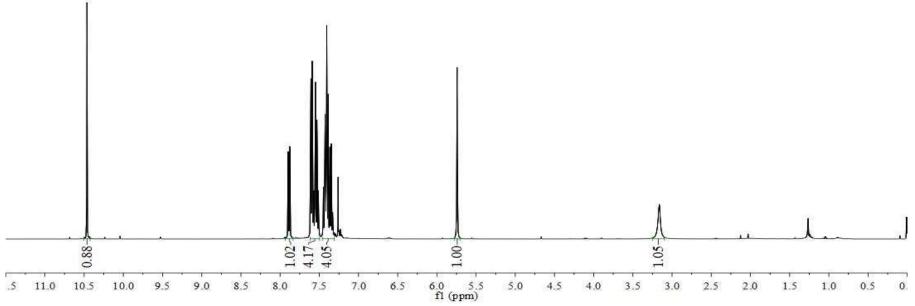

888878888844444888888888888888888888888	
	\dot{C}



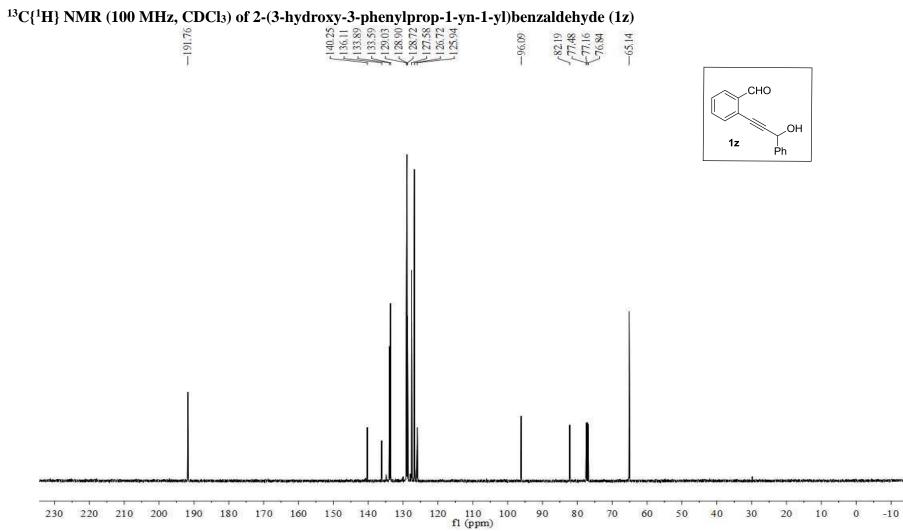
S42

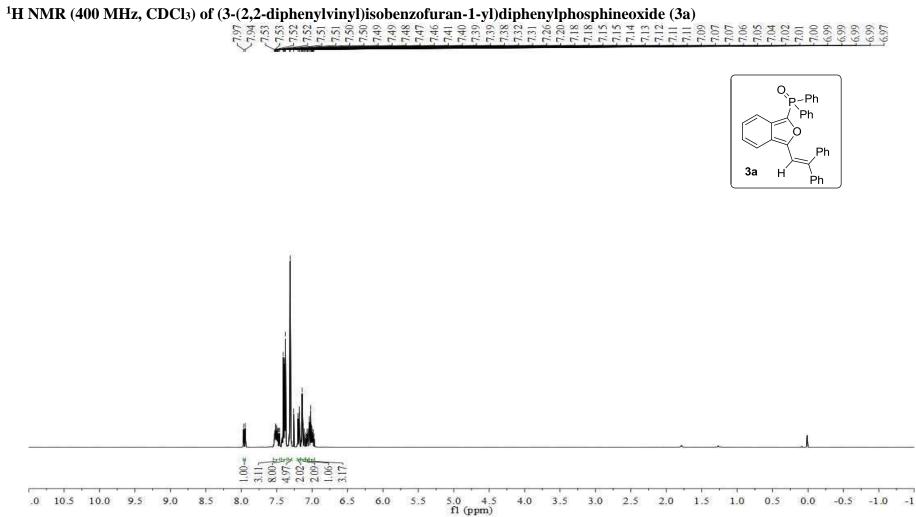
¹³ C{ ¹ H} NMR (100 MHz, CDCl ₃) of 2-((5	-hydroxy-10,11-dihydro-5H-di	benzo	[a,d][7]annulen-5	-yl)ethynyl)benzaldehyde (1y)
- 191.40	138.38 138.38 138.38 138.38 133.49 133.49 128.14 128.14 128.55 128.14 128.55 128.14 128.55 128.14 128.55 128.14 128.55 128.14 128.55 128.14 128.55 128.14 128.55 128.14 128.55 128.14 128.55 128.14 128.55 128.14 128.55	11,00-	73.63 777.48 777.16 77.16 73.63	

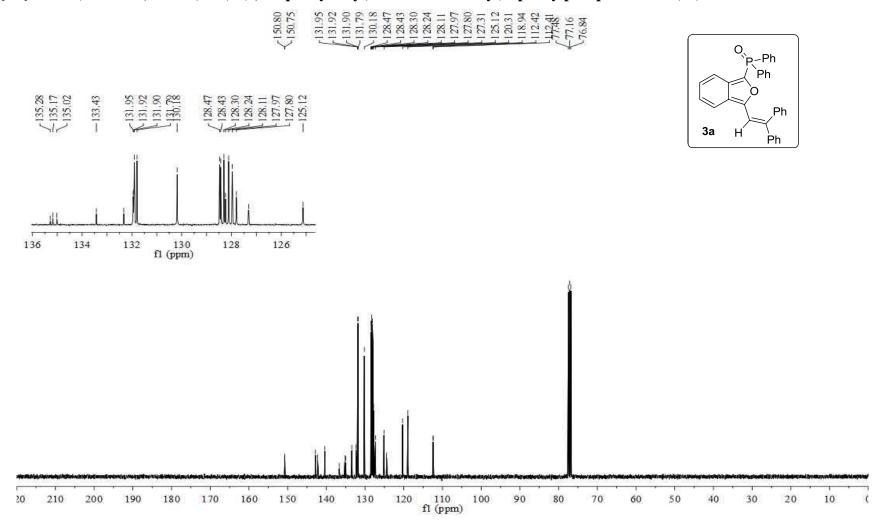


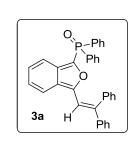


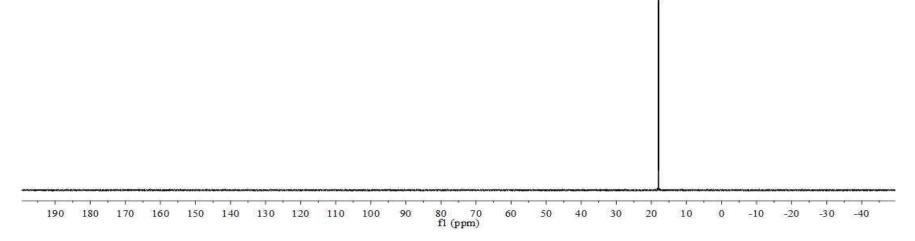
¹H NMR (400 MHz, CDCl₃) of 2-(3-hydroxy-3-phenylprop-1-yn-1-yl)benzaldehyde (1z)

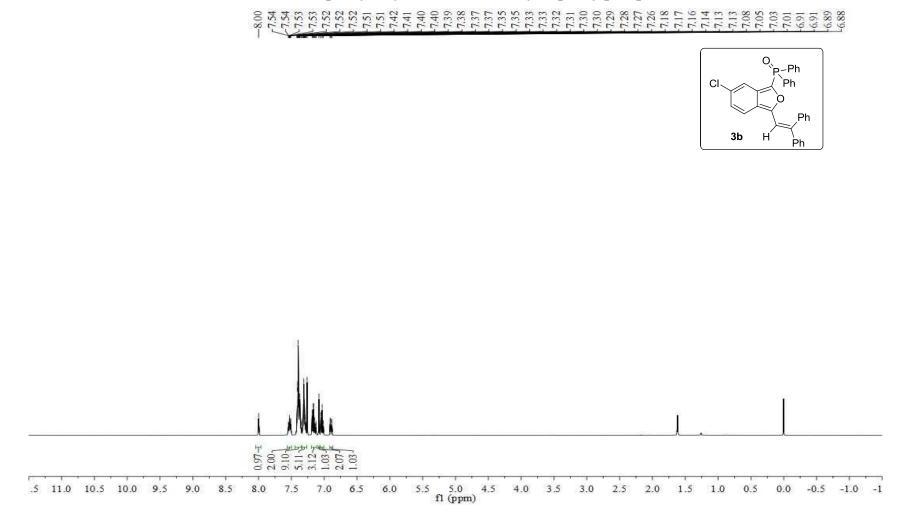

0.46	88	88	61	19	61	59	59	55	55	54	53	53	43	42	40	40	39	37	35
-10																			rin'

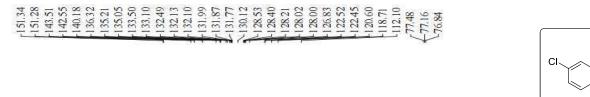







¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphineoxide (3a)

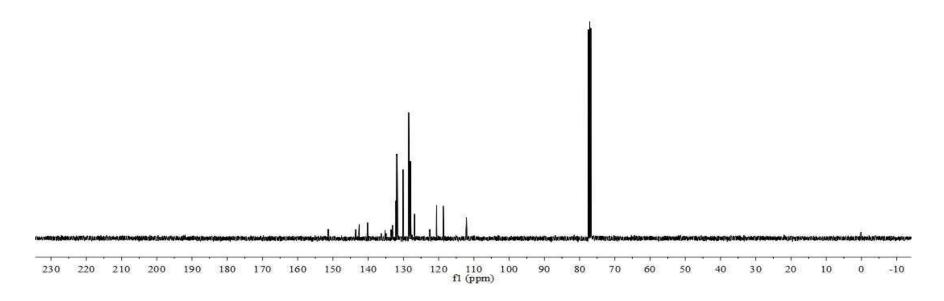

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphineoxide (3a)


-17.96

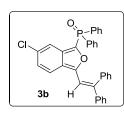
¹H NMR (400 MHz, CDCl₃) of (6-chloro-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3b)

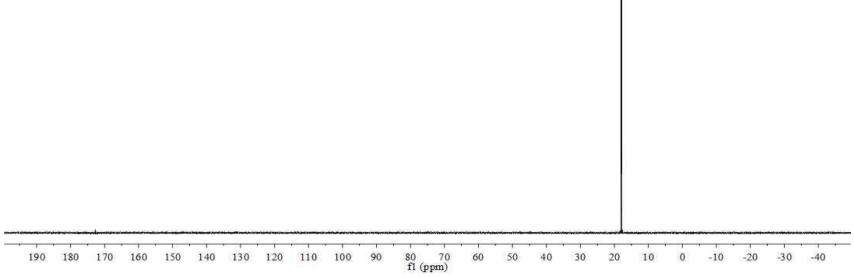
¹³C{¹H} NMR (100 MHz, CDCl₃) of (6-chloro-3-(2,2-diphenylvinyl) isobenzofuran-1-yl)diphenylphosphine oxide (3b)

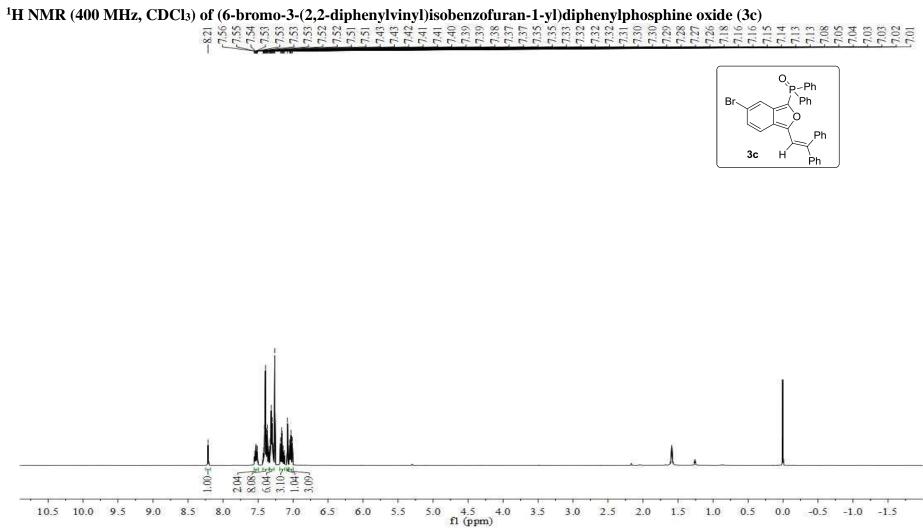
O P_−Ph ∫ Ph

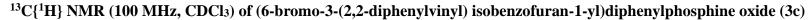

ò

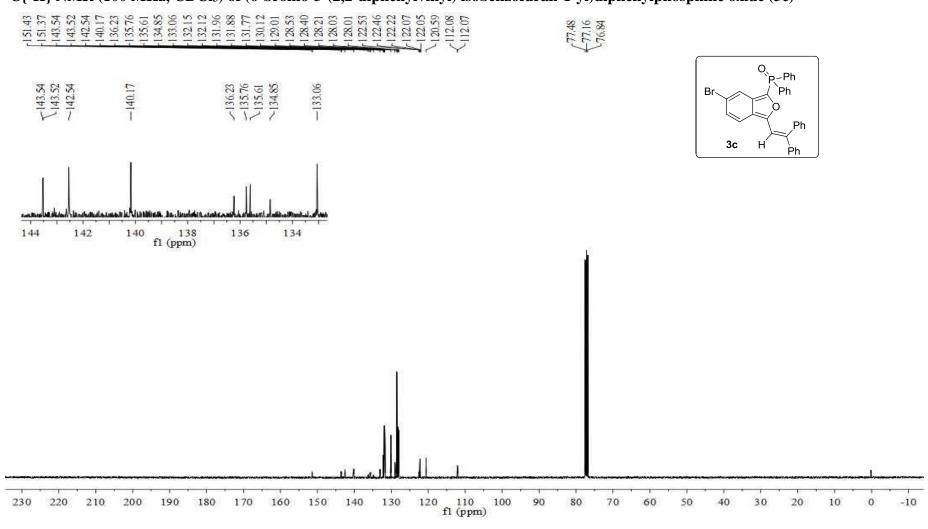
н

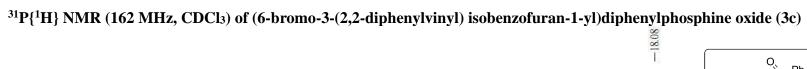

3b

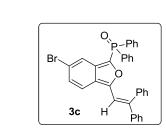

Ph

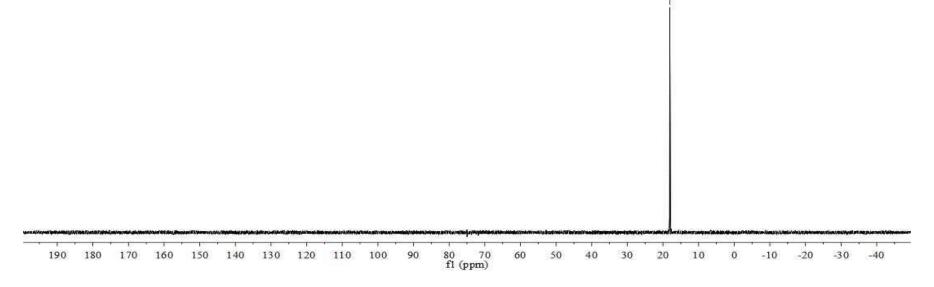

Ph

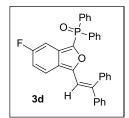


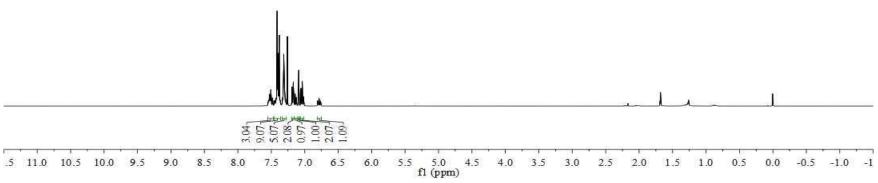

³¹P{¹H} NMR (162 MHz, CDCl₃) of (6-chloro-3-(2,2-diphenylvinyl) isobenzofuran-1-yl)diphenylphosphine oxide (3b)







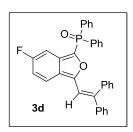


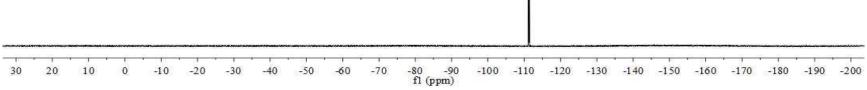


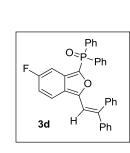


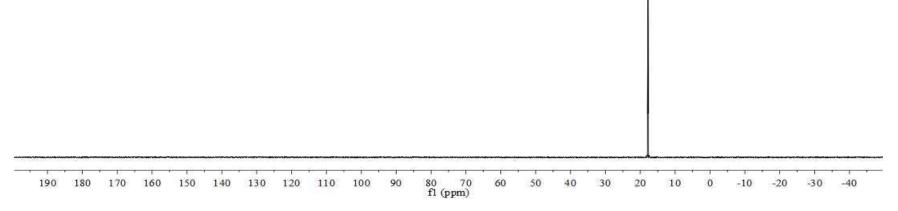
111 NMD (400 MHz	CDCla) of (3 (2 2 dinhonylyinyl) 6 flyoroicohonzofyran 1 yl)dinhonylnhoenhing ovide (3d)	
⁻ H NNIK (400 MHZ	CDCl ₃) of (3-(2,2-diphenylvinyl)-6-fluoroisobenzofuran-1-yl)diphenylphosphine oxide (3d)	I.

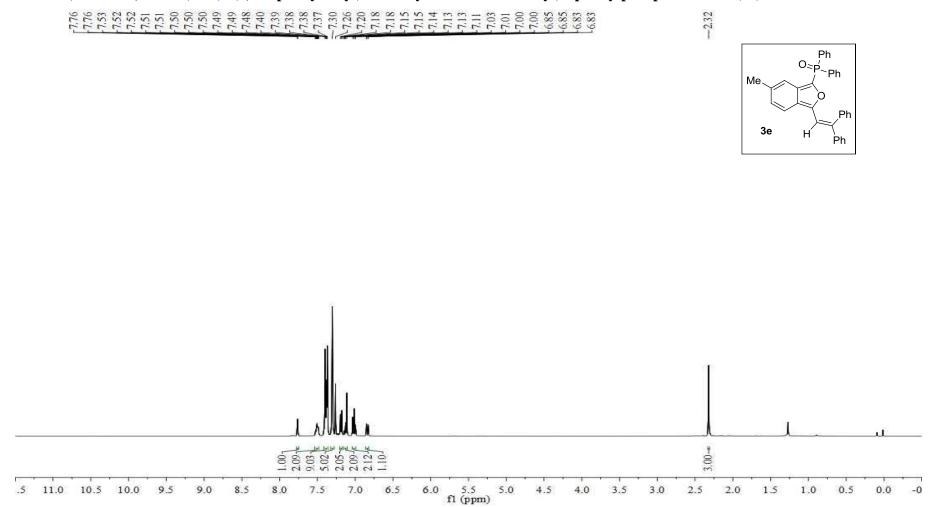
NN44000000-	-0000400-00	0000004000000	8902200046600940000899
an an an an an an an an	NN4444444444	ϕ m m m m m m m m m m m ϕ	777788000000000000000000000000000000000
		* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

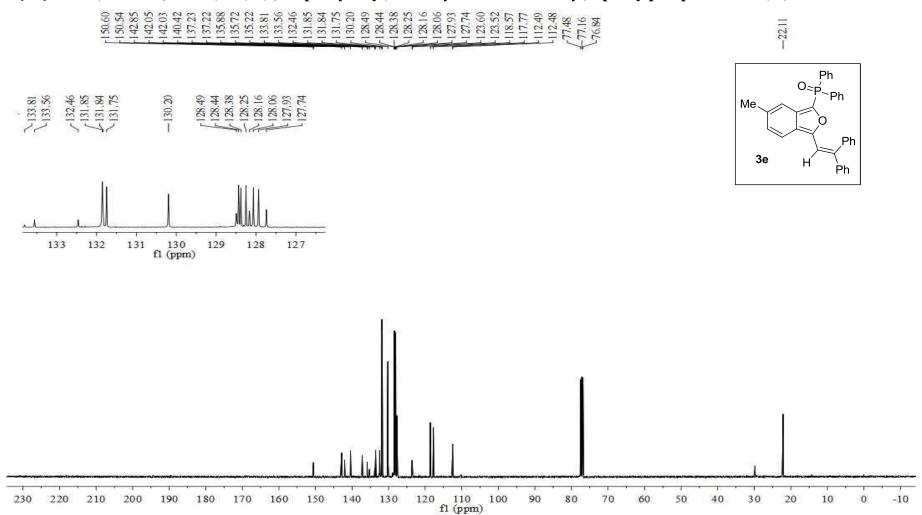


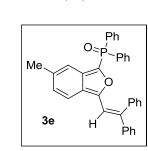


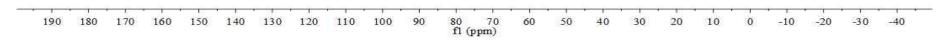

¹⁹F{¹H} NMR (376 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-6-fluoroisobenzofuran -1-yl)diphenylphosphine oxide (3d)



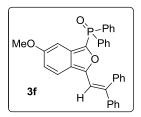

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-6-fluoroisobenzofuran -1-yl)diphenylphosphine oxide (3d)

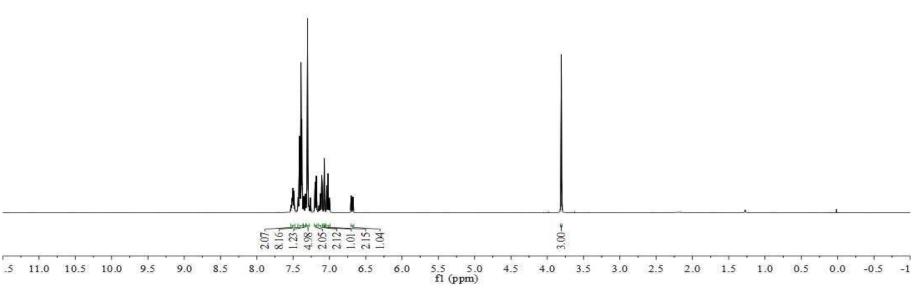

-17.79

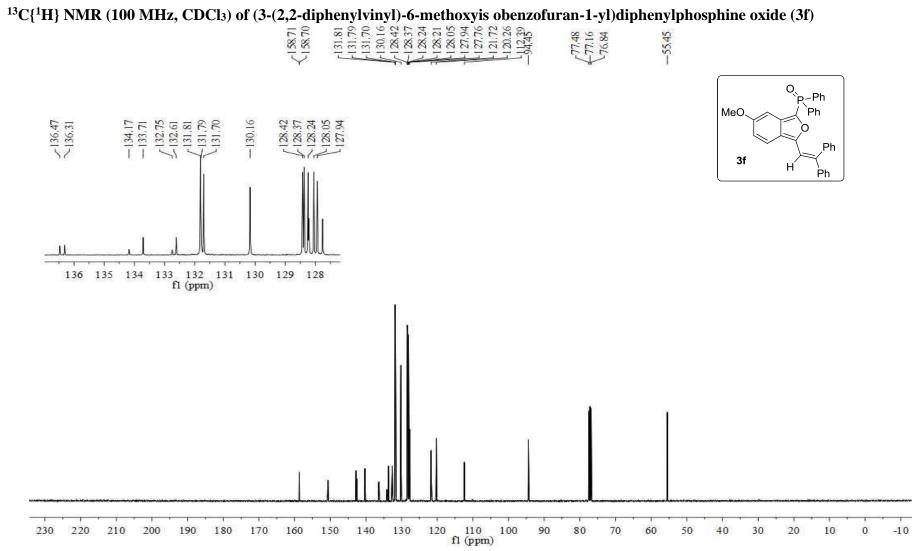

¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-6-methylisobenzofuran-1-yl)diphenylphosphine oxide (3e)



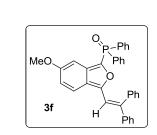
¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-6-methylisobenzofuran-1-yl)diphenylphosphine oxide (3e)

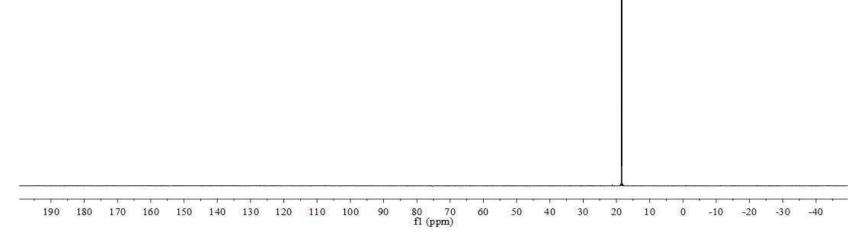

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-6-methylisobenzofuran-1-yl)diphenylphosphine oxide (3e)

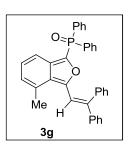


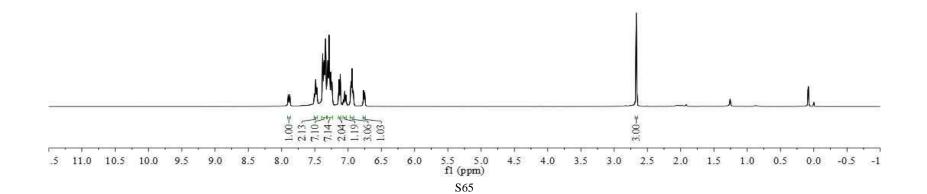


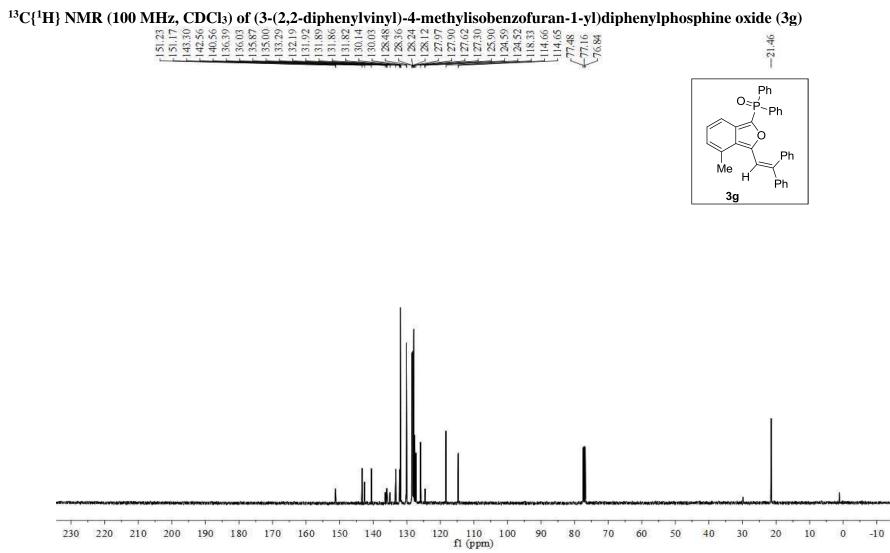
¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-6-methoxyisobenzofuran-1-yl)diphenylphosphine oxide (3f)


NNNNN4	4444	4 ~ ~ ~ ~ ~	mmmmmm	10	01 00 00 00 00 00 00 00 00 00 00 00 00 0
					177777799999

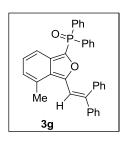



³¹P{¹H} NMR (162 MHz, CDCl₃) (3-(2,2-diphenylvinyl)-6-methoxyisobenzofuran-1-yl)diphenylphosphine oxide (3f)

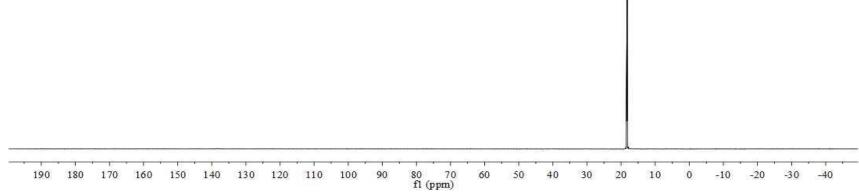



¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-4-methylisobenzofuran-1-yl)diphenylphosphine oxide (3g)

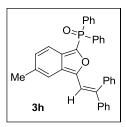
88														
r'r'								5	9	9	9	9	9	9



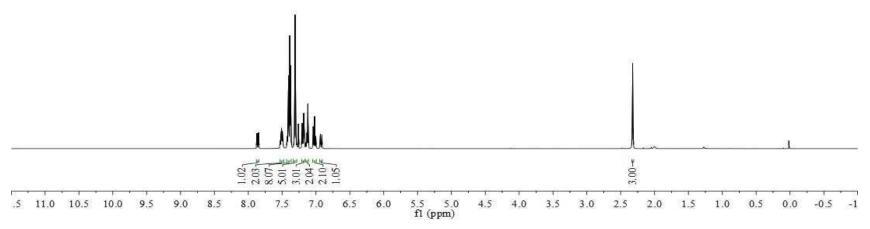
-2.67



³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-4-methylisobenzofuran-1-yl)diphenylphosphine oxide (3g)

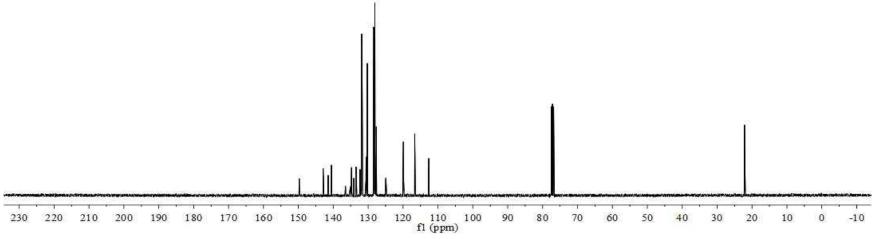


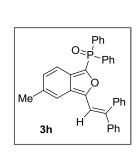
-18.22

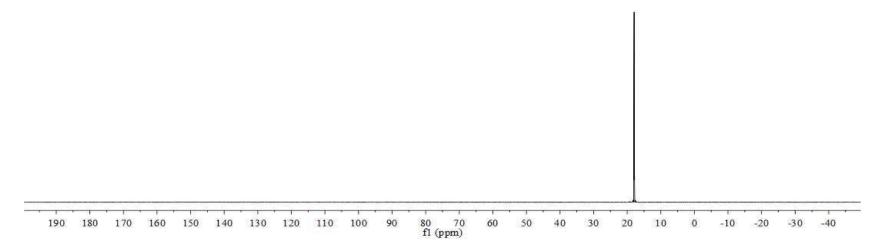


¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5-methylisobenzofuran-1-yl)diphenylphosphine oxide (3h)

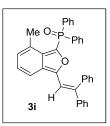
or or or or or or or or	1 4 4 4 4 4 M M M M	7.18 7.18 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15

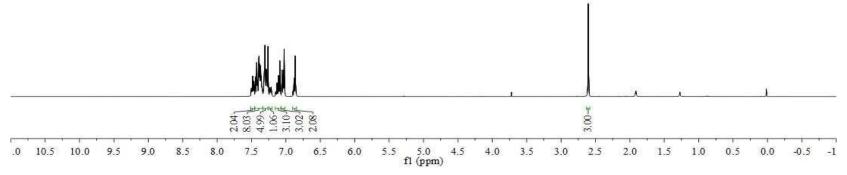

-2.32

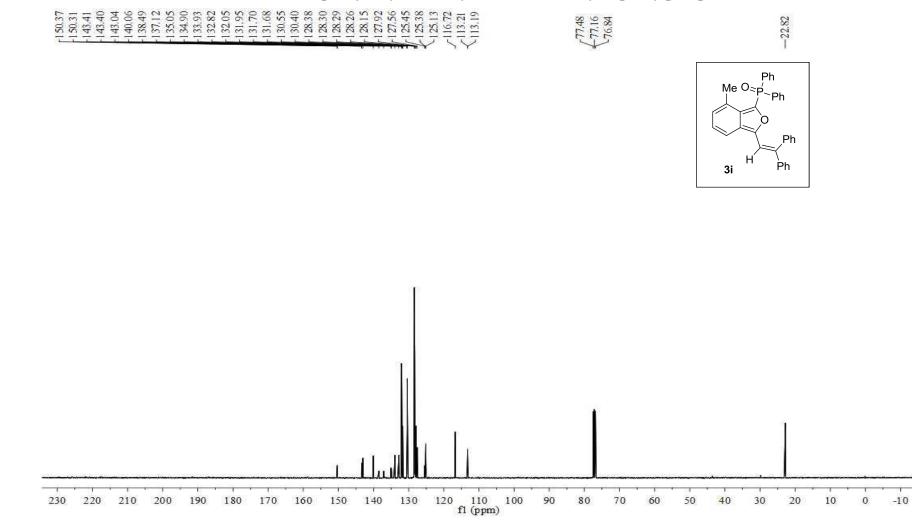

¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5-methylisobenzofuran-1-yl)diphenylphosphine oxide (3h)



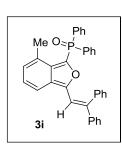
³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5-methylisobenzofuran-1-yl)diphenylphosphine oxide (3h)

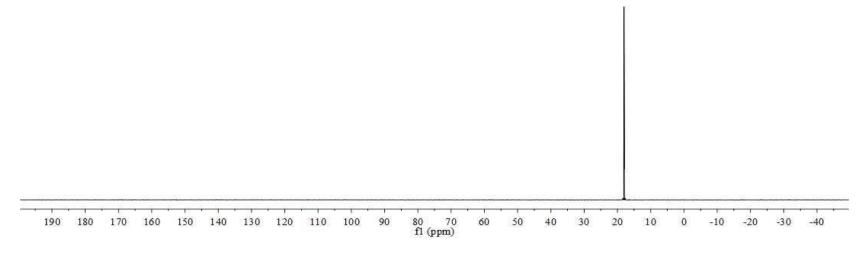



-17.90

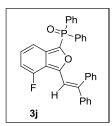

¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-7-methylisobenzofuran-1-yl)diphenylphosphine oxide (3i)

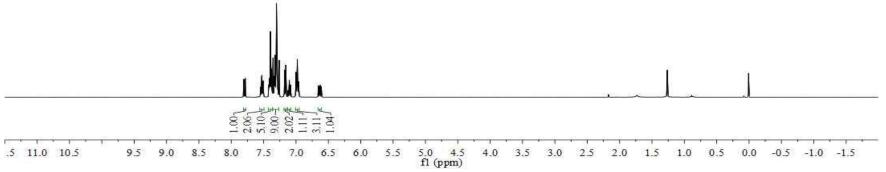
$\begin{array}{c} 0.00000000000000000000000000000000000$		
KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	000	Ci

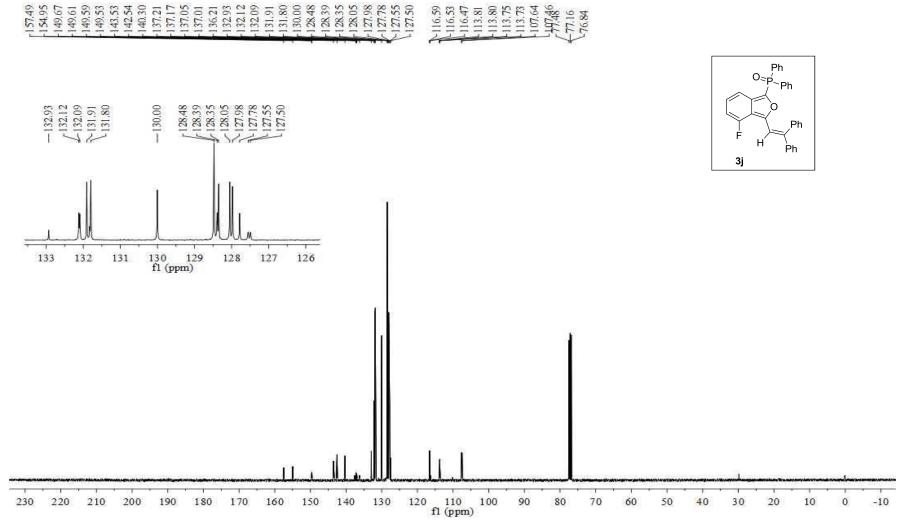




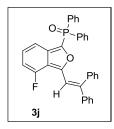
¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-7-methylisobenzofuran-1-yl)diphenylphosphine oxide (3i)

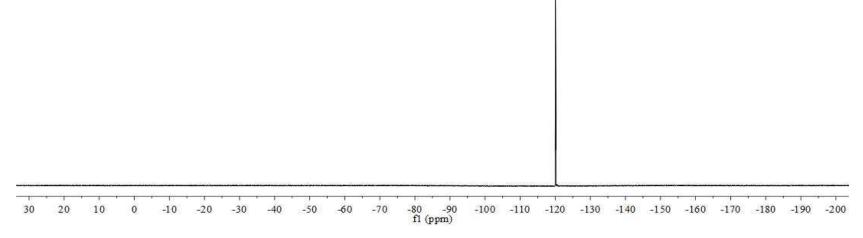

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-7-methylisobenzofuran-1-yl)diphenylphosphine oxide (3i)



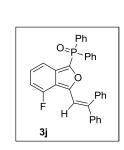

¹ H NMR (400 MHz, CDCl ₃) of (3-(2,2-diphenylvinyl)-4-fluoroisobenzofura	nn-1-yl)diphenylphosphine oxide (3j)
---	--	--------------------------------------

42 2 2 2 2 2 2 2 2 3 2 3 2 4 5 0 5 1 5 2 5 2 3 2 3 2 4 5 0 5 1 5 2 5 2 3 2 3 2 4 5 0 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	331 333 34 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\begin{array}{c} 330\\ 226\\ 226\\ 226\\ 226\\ 200\\ 000\\ 000\\ 00$
	REFERENCEREFERENCE	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>

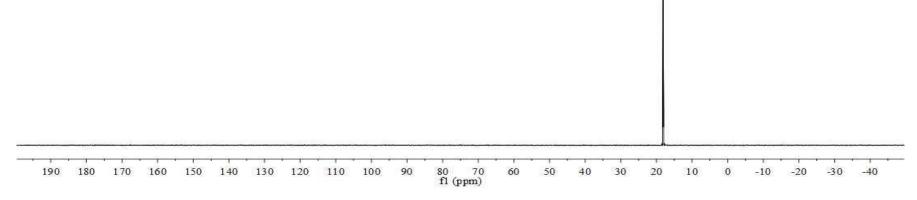




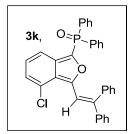
¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-4-fluoroisobenzofuran-1-yl)diphenylphosphine oxide (3j)

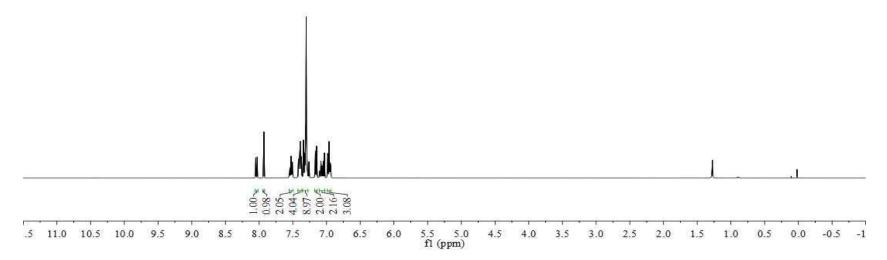


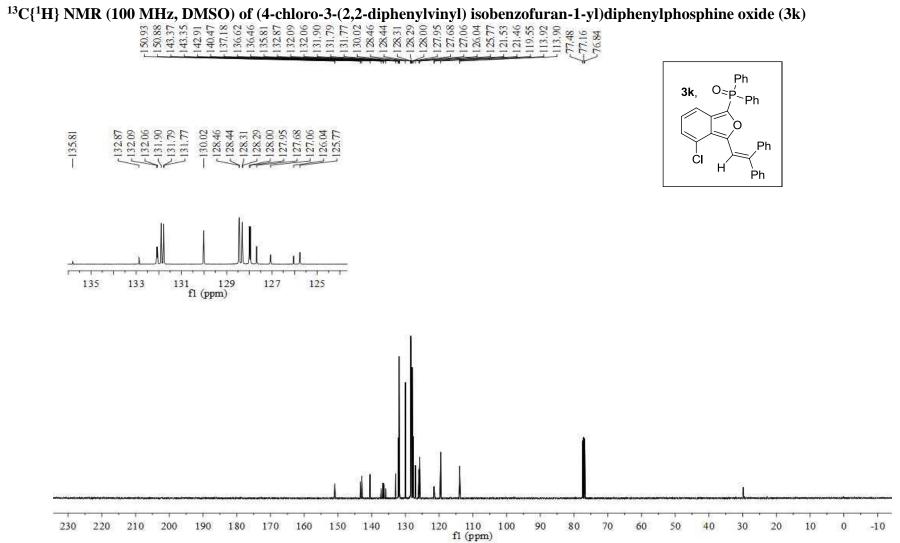
¹⁹F{¹H} NMR (376 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-4-fluoroisobenzofuran -1-yl)diphenylphosphine oxide (3j)



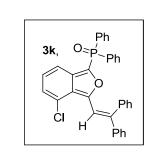
³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-4-fluoroisobenzofuran-1-yl)diphenylphosphine oxide (3j)

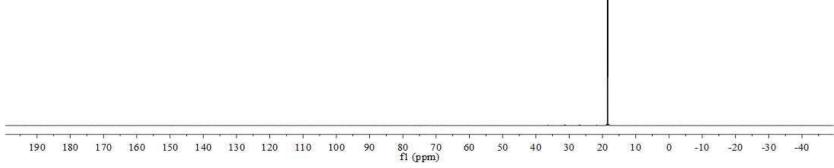


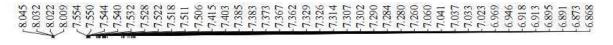

-18,12

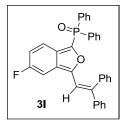


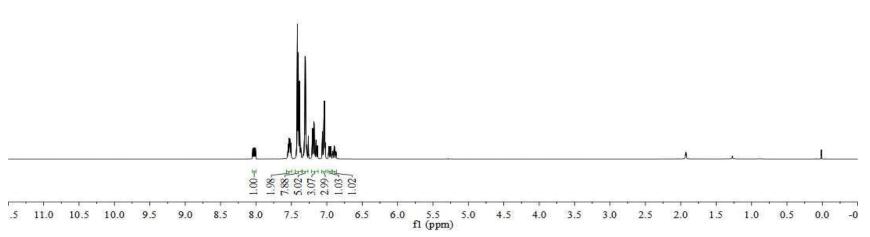
¹H NMR (400 MHz, DMSO) of (4-chloro-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3k)

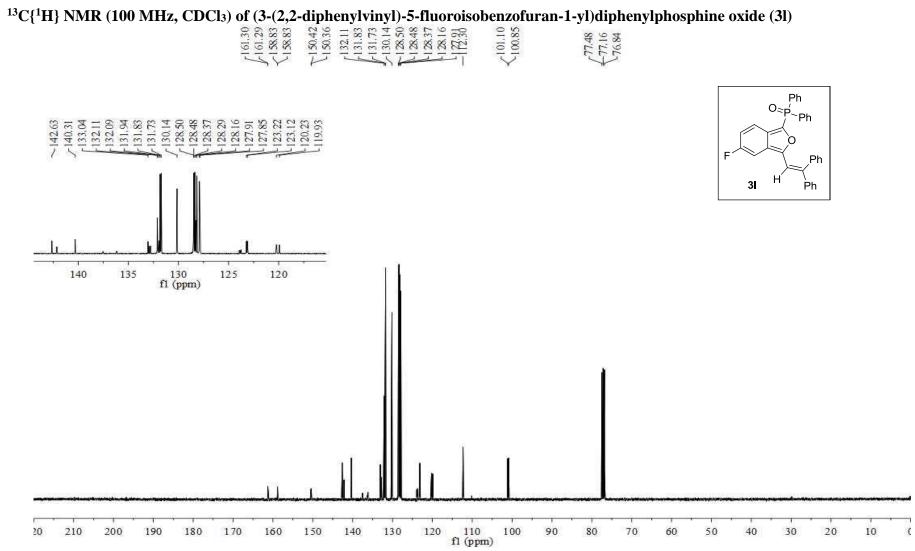

v m m v	0 4 m	nov-			ON	in the state of th		0.0	0	00	0	4.	40	N C	V	0	0	6	0 0	· m	4	0	$\circ \circ$	5	00	00	D.	0	01	00	C 0	3 00	0	9	0 4
0004	n in in i	n in i	nin	S.	N 4	4	4 4	0 0	3	3	3	00 1	m c	5 0	$\circ \circ \circ$	m	10	0	CN -	·	-			0	0	0	0	0	0 0	00	20	0	0	6 1	0 0
7 -7 00 00	·			-	-	~	~ m	-	~	-	~	~ 1			· ~	-	~	~	~ ~		~	~ 1	~ ~	-	-	~	~	m 1	- r		2 10	5.5	10	10.	in in



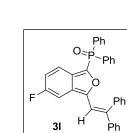

³¹P{¹H} NMR (162 MHz, CDCl₃) of (4-chloro-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3k)

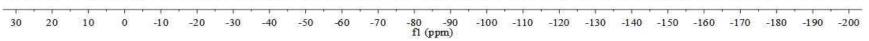


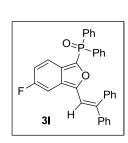

-18,40



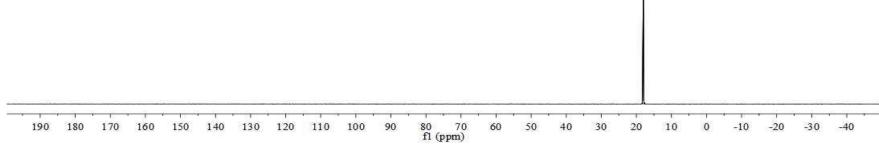
¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5-fluoroisobenzofuran-1-yl)diphenylphosphine oxide (3l)

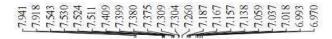


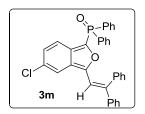


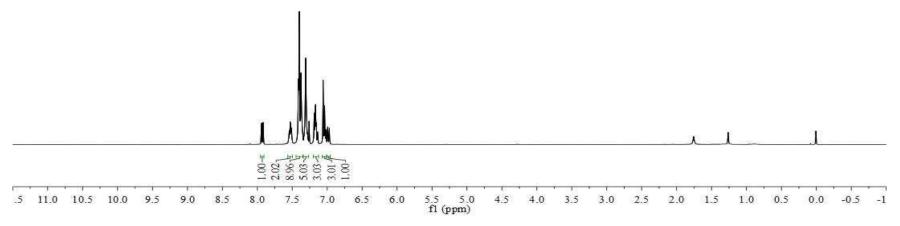


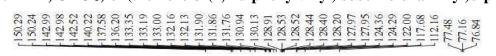
¹⁹F{¹H} NMR (376 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5-fluoroisobenzofuran-1-yl)diphenylphosphine oxide (31)

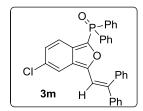


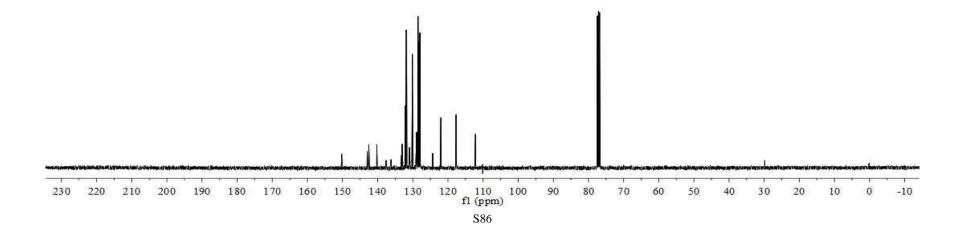

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5-fluoroisobenzofuran-1-yl)diphenylphosphine oxide (3l)

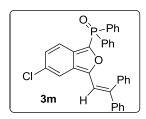



-18,00

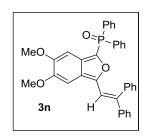

¹H NMR (400 MHz, CDCl₃) of (5-chloro-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3m)

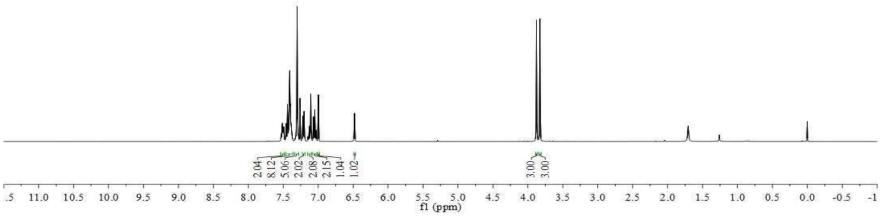





¹³C{¹H} NMR (100 MHz, CDCl₃) of (5-chloro-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3m)

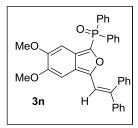
³¹P{¹H} NMR (162 MHz, CDCl₃) of (5-chloro-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3m)

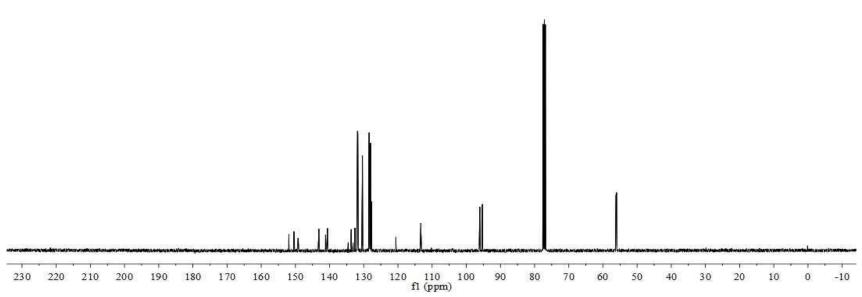

-17.93

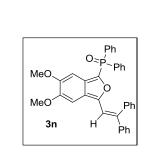


¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5,6-dimethoxyisobenzofuran-1-yl)diphenylphosphine oxide (3n)

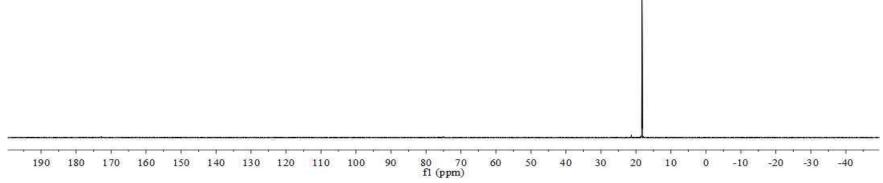
 $\overset{3.88}{<}_{3.83}$


FFFF	NNN	FFFFF	 7.11 7.07 7.05 7.05 7.05 7.05 7.05 7.05 7.05
the local day			THE TTH WAT

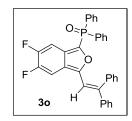


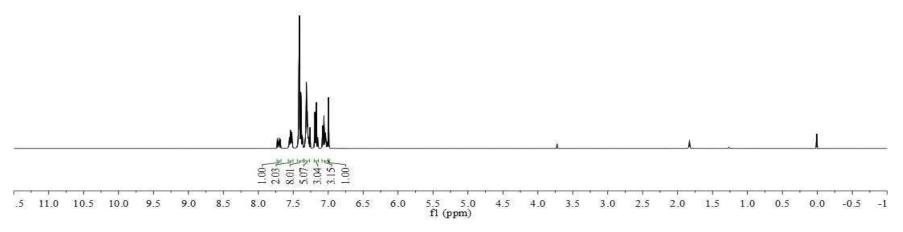

¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5,6-dimethoxyisobenzofuran-1-yl)diphenylphosphine oxide (3n)

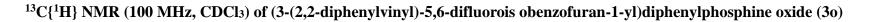
<pre>[51.92 [51.92 [51.90 [51.90 [49.17] [49.17] [49.17] [41.1</pre>	77,48 77,16 76,84	56.18 56.00
		Y

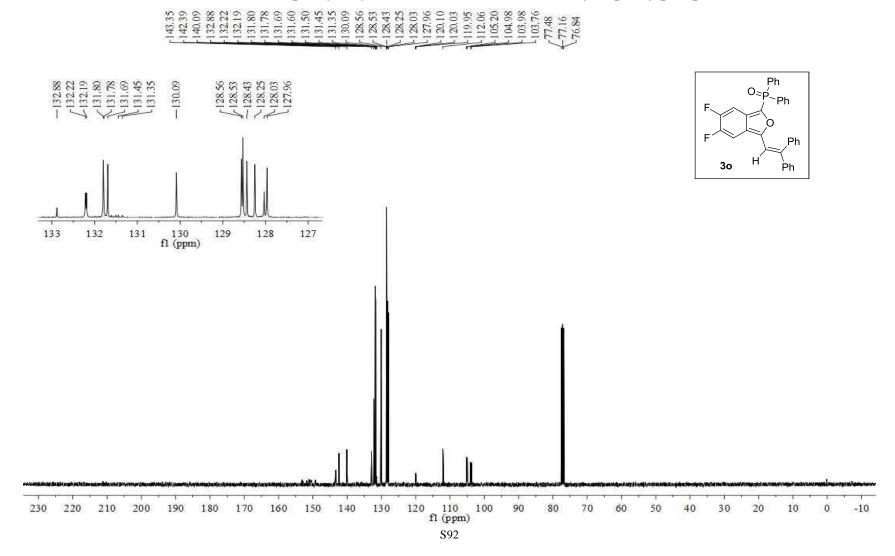


³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5,6-dimethoxyisobenzofuran-1-yl)diphenylphosphine oxide (3n)

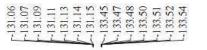


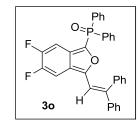

-18.29

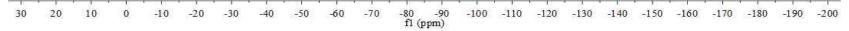



¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5,6-difluoroisobenzofuran-1-yl)diphenylphosphine oxide (30)

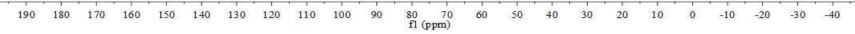
55 56 70 55 55 58 55 55 58 54 59 54 59 55 58 56 70 57 59 57 50 58 58 58 58 58 58 58 58 58 58 58 58 58	5222222222222222222222222222222222222	850
<u><u><u>r</u></u><u>r</u><u>r</u><u>r</u><u>r</u><u>r</u><u>r</u><u>r</u><u>r</u><u>r</u><u>r</u><u>r</u><u></u></u>		r r r

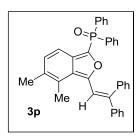


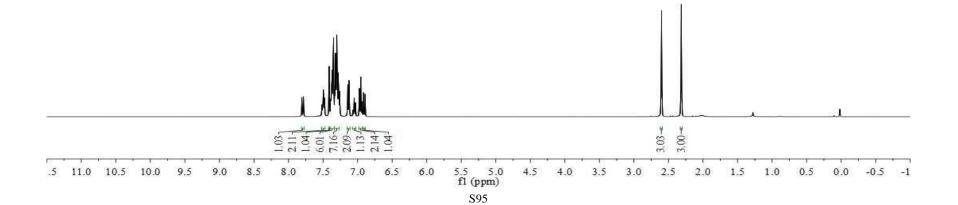


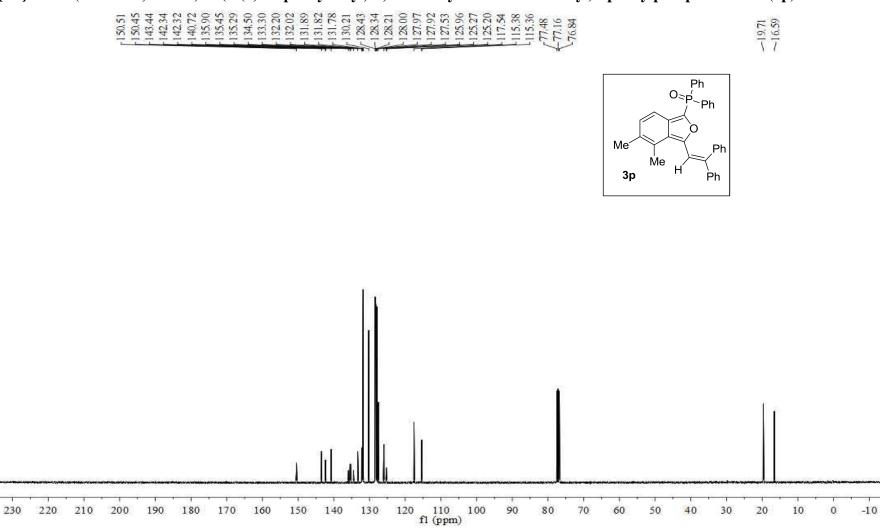


¹⁹F{¹H} NMR (376 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5,6-difluorois obenzofuran-1-yl)diphenylphosphine oxide (30)

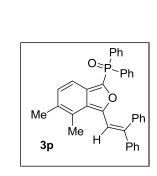



³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-5,6-difluorois obenzofuran-1-yl)diphenylphosphine oxide (30)

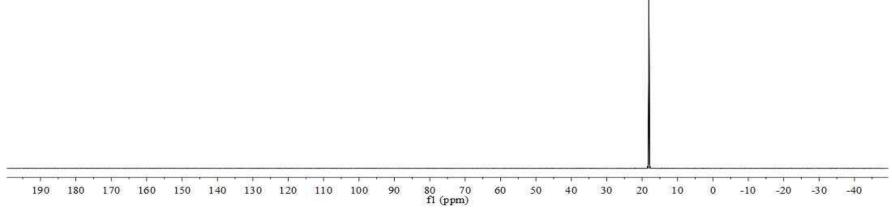

-17.95

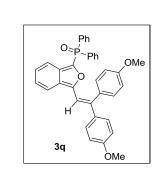

¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-4,5-dimethylisobenzofuran-1-yl)diphenylphosphine oxide (3p)

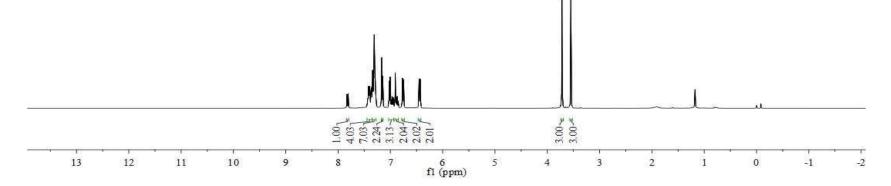
7.81 7.81 7.78 7.51 7.51 7.53 7.78 7.78 7.73	-2.60	-2.31	
--	-------	-------	--



¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-4,5-dimethylisobenzofuran-1-yl)diphenylphosphine oxide (3p)

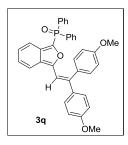


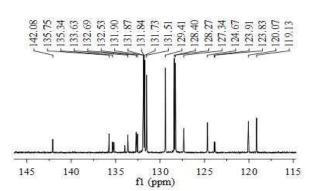

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-4,5-dimethylisobenzofuran-1-yl)diphenylphosphine oxide (3p)

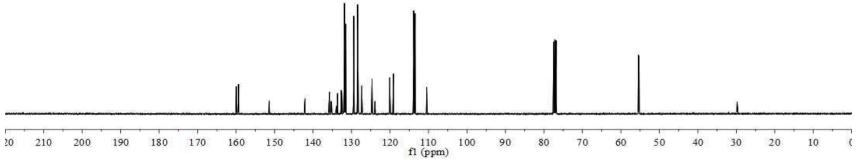


-18,11

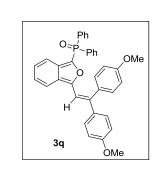

¹H NMR (400 MHz, CDCl₃) of (3-(2,2-bis(4-methoxyphenyl)vinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3q)

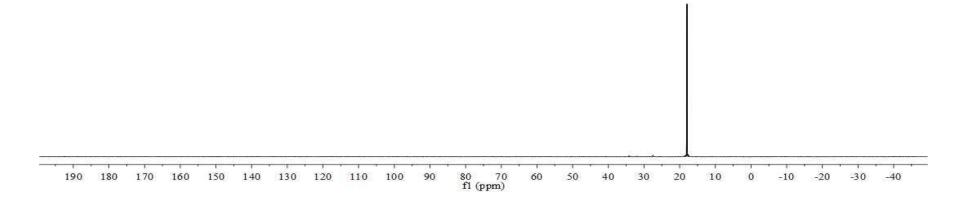


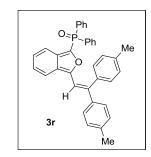


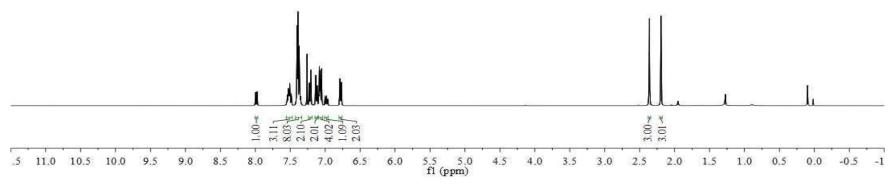


¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-(2,2-bis(4-methoxyphenyl)vinyl) isobenzofuran-1-yl)diphenylphosphine oxide (3q)

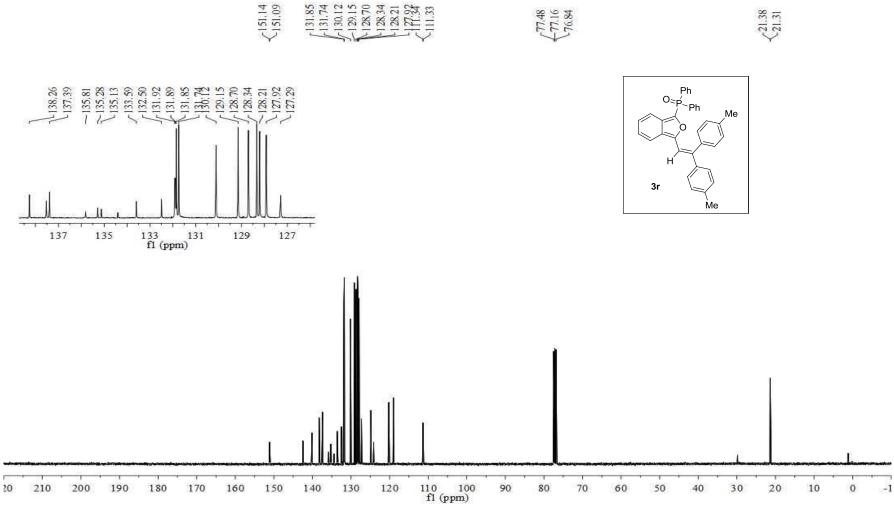


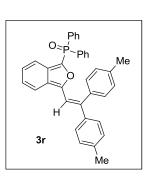


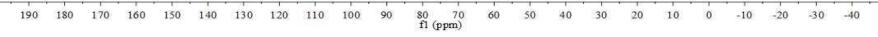

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-bis(4-methoxyphenyl)vinyl) isobenzofuran-1-yl)diphenylphosphine oxide (3q)



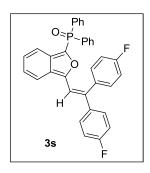
-17.93

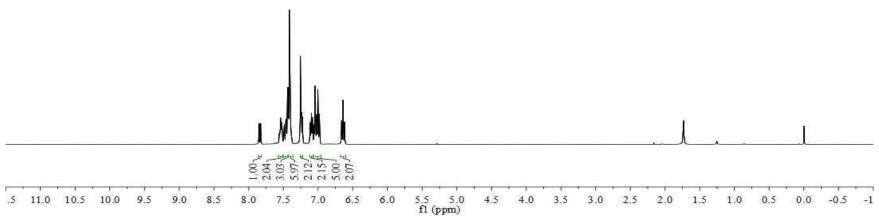


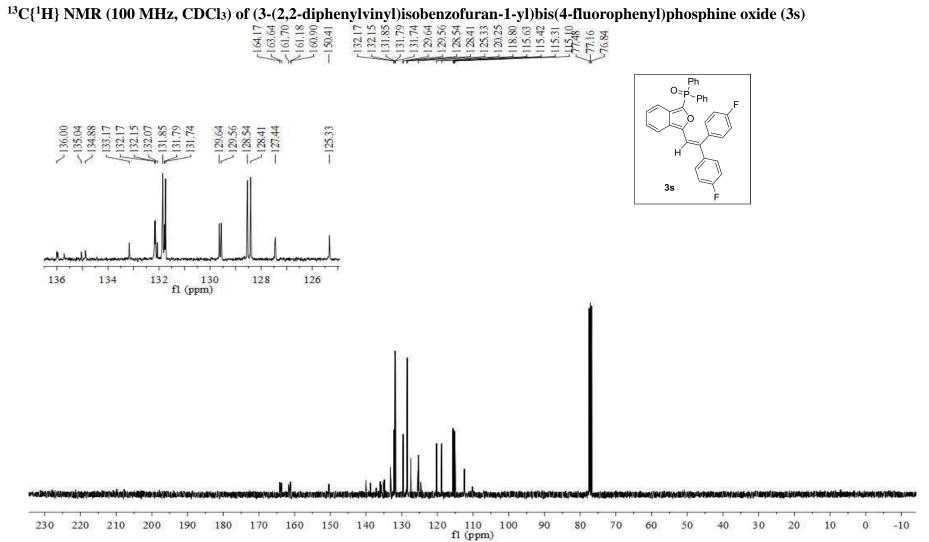



¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-(2,2-di-p-tolylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3r)

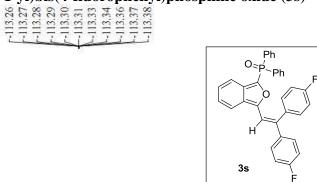
S102

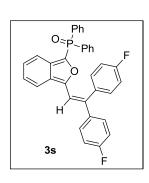

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-di-p-tolylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3r)

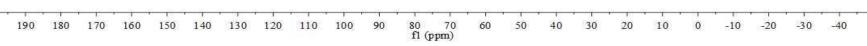


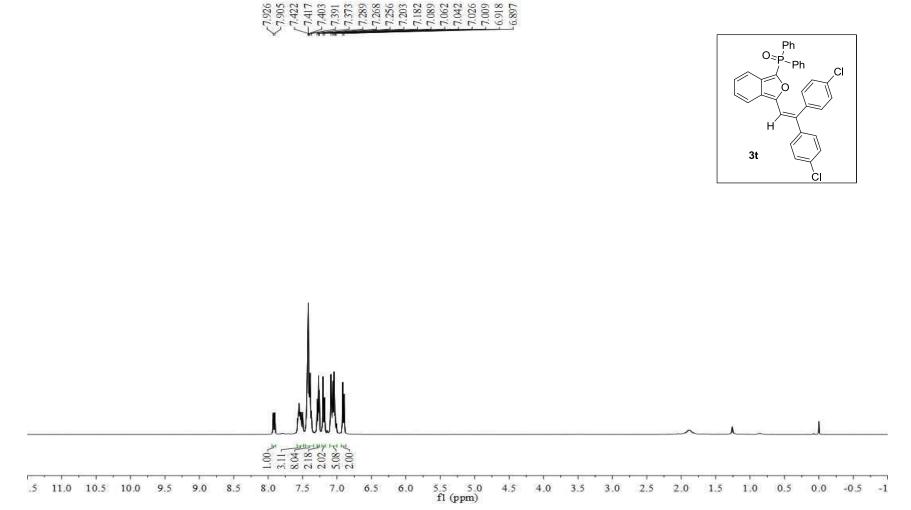


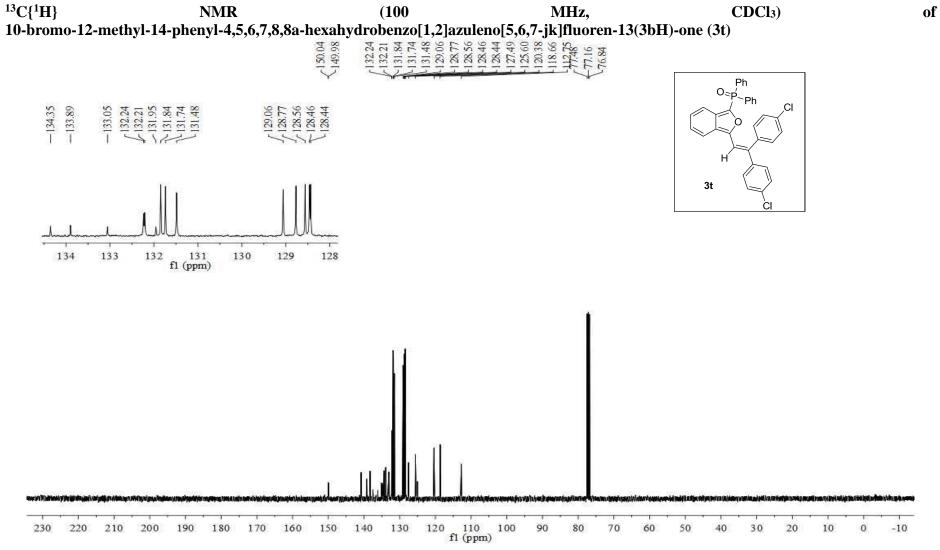
¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)bis(4-fluorophenyl)phosphine oxide (3s)


888 888 888 888 888 888 888 888 888 88	22222222222222222222222222222222222222	62 66 66 66 66 66 66 66 66 66 66 66 66 6
H HHHHHHHHHHHHH	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	<u>, , , , , , , , , , , , , , , , , , , </u>

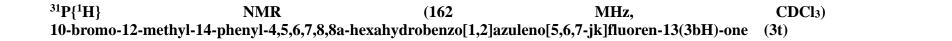


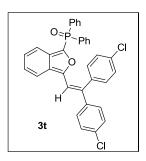

¹⁹F{¹H} NMR (376 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)bis(4-fluorophenyl)phosphine oxide (3s)

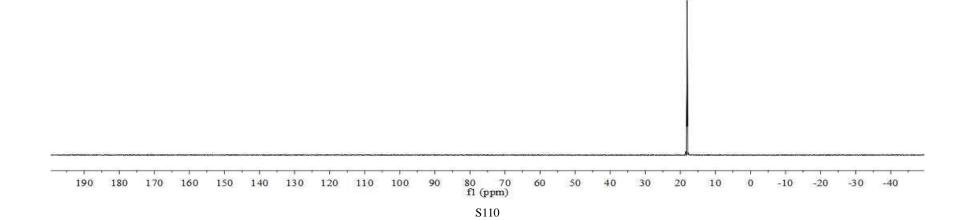

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm) ³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)bis(4-fluorophenyl)phosphine oxide (3s)

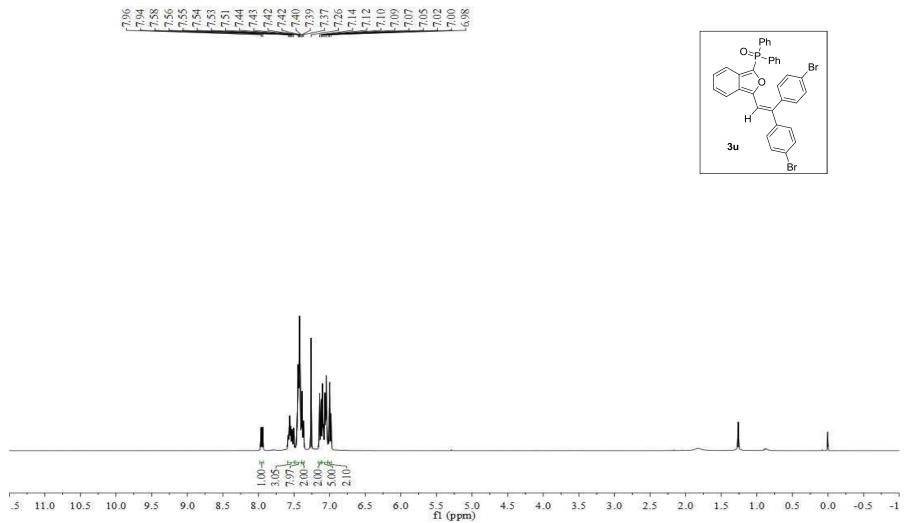


-17.71

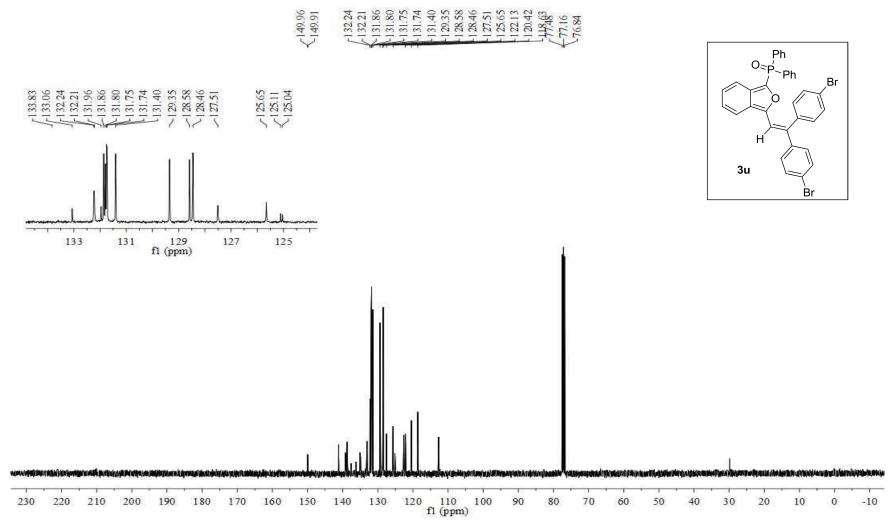



¹H NMR (400 MHz, CDCl₃) of 10-bromo-12-methyl-14-phenyl-4,5,6,7,8,8a-hexahydrobenzo[1,2]azuleno[5,6,7-jk]fluoren-13(3bH)-one (3t)

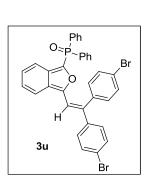


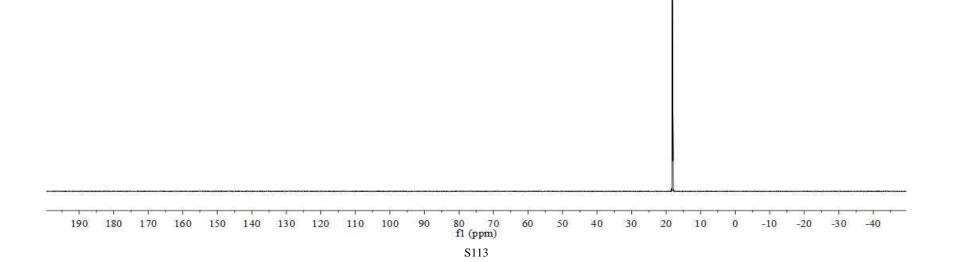


-18,11

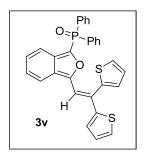


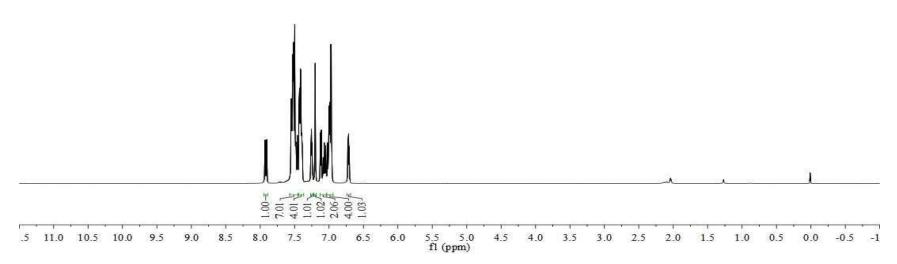
¹H NMR (400 MHz, CDCl₃) of bis(4-bromophenyl)(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)phosphine oxide (3u)

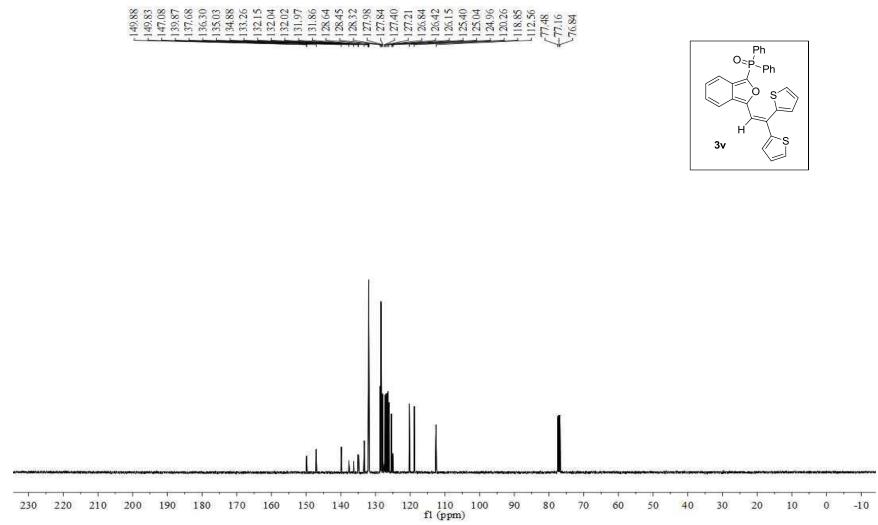




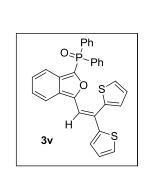
¹³C{¹H} NMR (100 MHz, CDCl₃) of bis(4-bromophenyl)(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)phosphine oxide (3u)


³¹P{¹H} NMR (162 MHz, CDCl₃) of bis(4-bromophenyl)(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)phosphine oxide (3u)

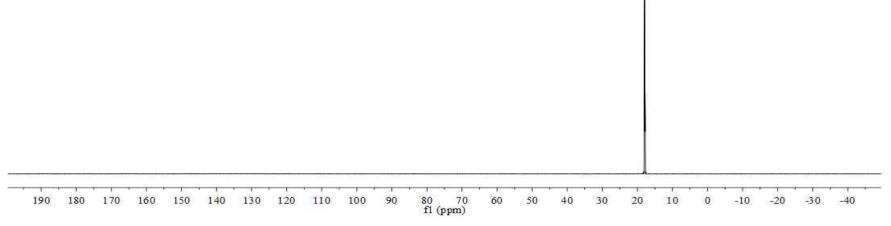



¹H NMR (400 MHz, CDCl₃) of (3-(2,2-di(thiophen-2-yl)vinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3v)

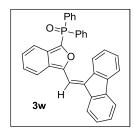
77,928 77,548 77,548 77,548 77,548 77,440 77,447 77,417 77,712 77

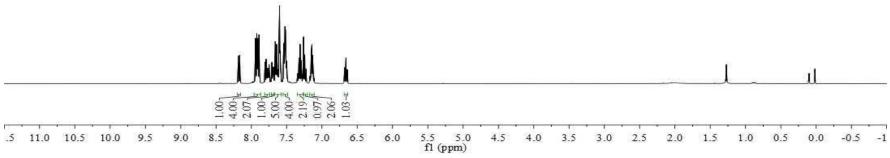


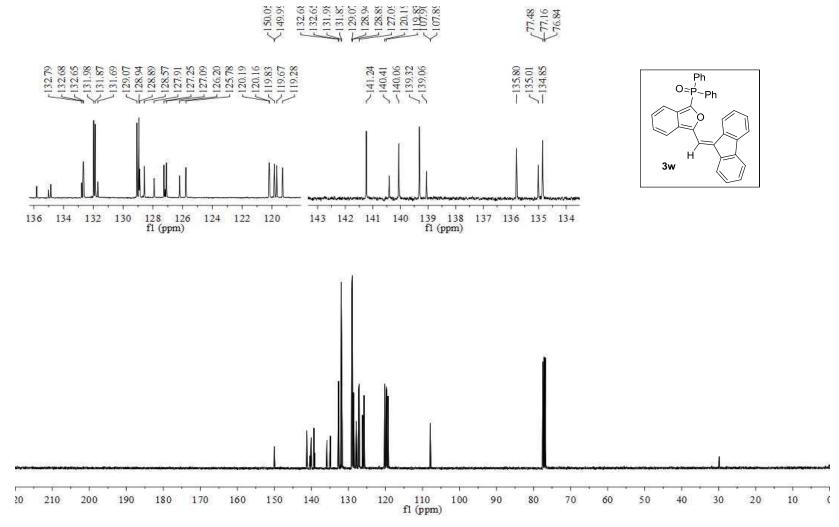
¹³C{¹H} NMR (100 MHz, CDCl₃) of 3-(2,2-di(thiophen-2-yl)vinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3v)



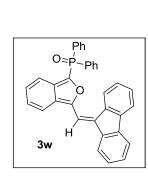
³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-di(thiophen-2-yl)vinyl)isobenzofuran-1-yl)diphenylphosphine oxide (3v)

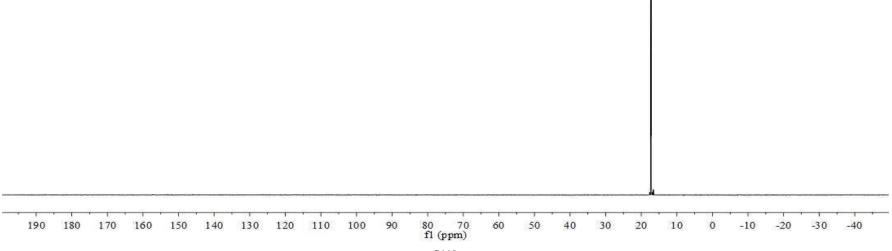



-17.89

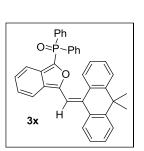

¹H NMR (400 MHz, CDCl₃) of (3-((9H-fluoren-9-ylidene)methyl)isobenzofuran-1-yl)diphenylphosphine oxide(3w)

44m-m0-20-00m0PN	0 V V V 8 4 - 5 V 6 V 0 0 0 - 8 K 0 0 4 0 9 9 4 6 8 9 0 V K 0 0 0 K K 9 9 V - 8 - 0 K 9
x 0 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22222222222222222222222222222222222222
88666666666666666	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
he has done been been been been been been been b	

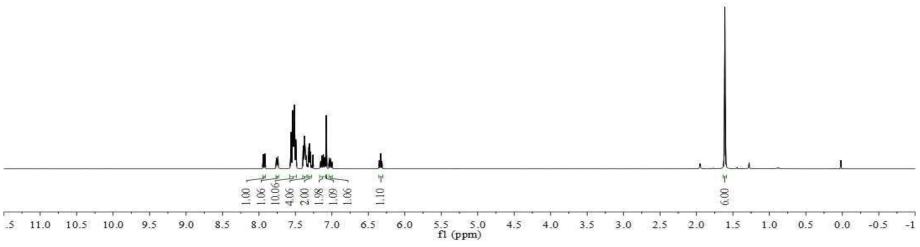




³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-((9H-fluoren-9-ylidene)methyl) isobenzofuran-1-yl)diphenylphosphine oxide (3w)

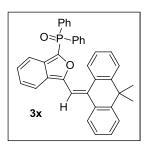


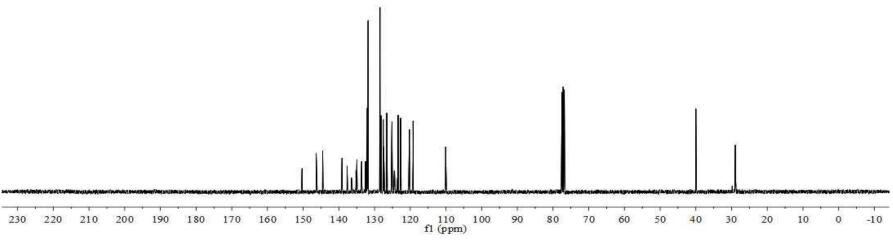
-17.22

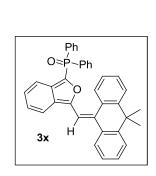


¹H NMR (400 MHz, CDCl₃) of (3-((10,10-dimethylanthracen-9(10H)-ylidene)methyl)isobenzofuran-1-yl)diphenylphosphine oxide(3x)

000000000000000000000000000000000000000	8 8 8 8 1 = 6 8 8 8 8 8 8 8



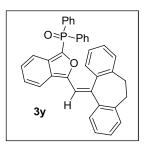

-1.610

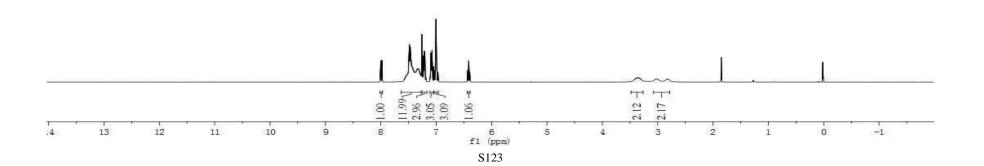

¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-((10,10-dimethylanthracen-9(10H)-ylidene)methyl)isobenzofuran-1-yl)diphenylphosphine oxide(3x)

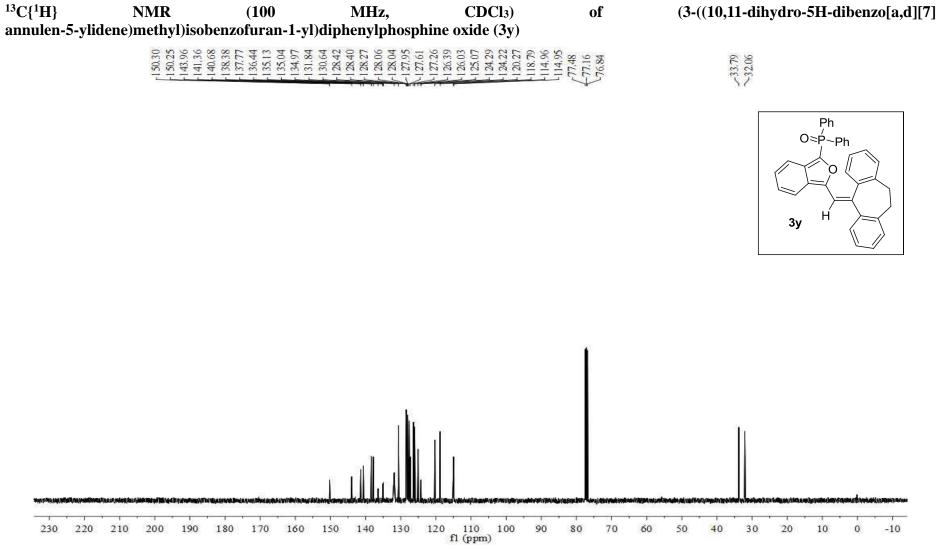
000 32 33 32 41 12 22 45 28 45 10 00 22 10 23 20 20 20 20 20 20 20 20 20 20 20 20 20	x v 4	8 0
100 2 2 3 3 4 5 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 4 5 2 0 0 100 2 3 3 3 5 4 5 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	4 - 8 9	8.9
		-2-



³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-((10,10-dimethylanthracen-9(10H)-ylidene)methyl)isobenzofuran-1-yl)diphenylphosphine oxide(3x)

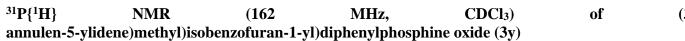


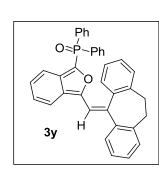

-17.83

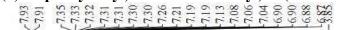


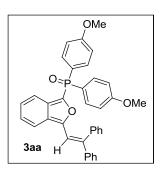
¹H NMR (400 MHz, CDCl₃) of(3-((10,11-dihydro-5H-dibenzo[a,d][7]annulen-5-ylidene)methyl)isobenzofuran-1-yl)diphenylphosphine oxide (3y)

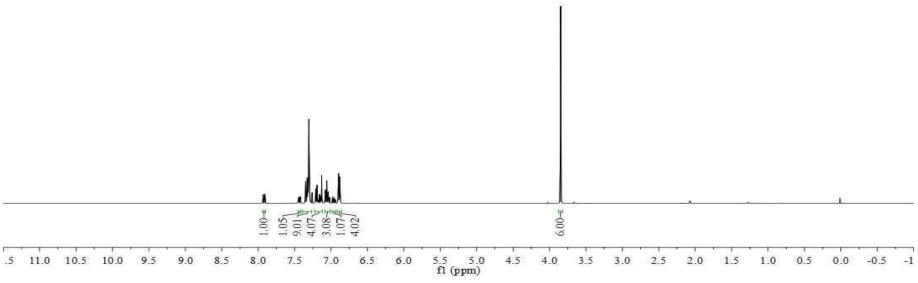
$\begin{smallmatrix} & & & & & & \\ & & & & & & \\ & & & & & $	33
x	in min
	151





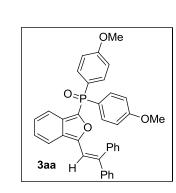

(3-((10,11-dihydro-5H-dibenzo[a,d][7]

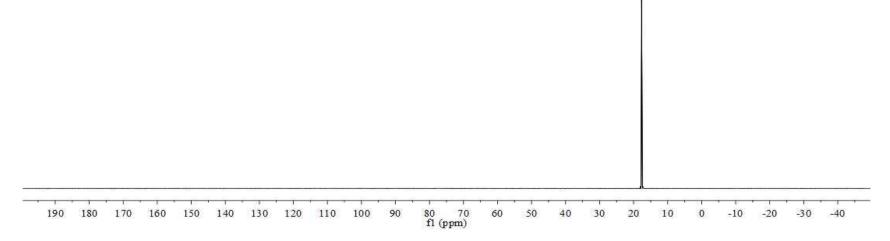


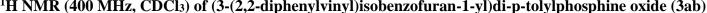


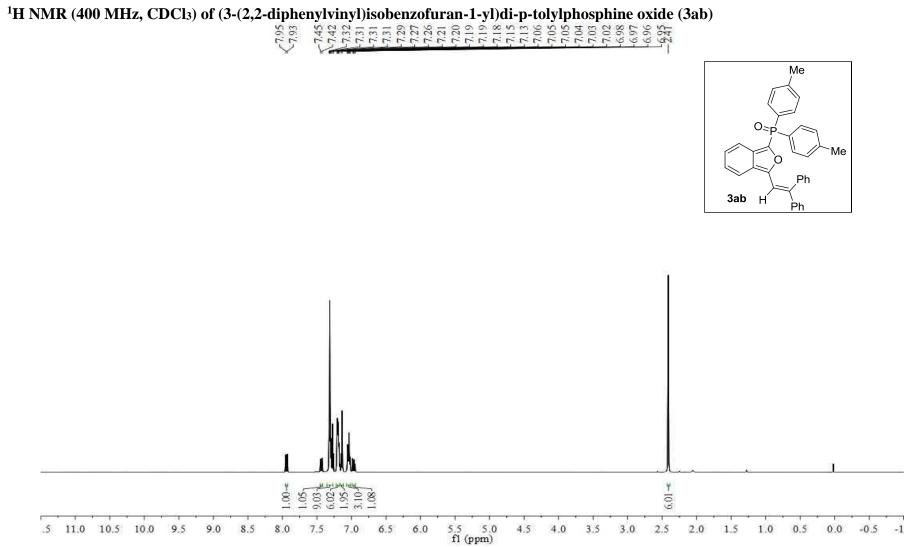
-18.12

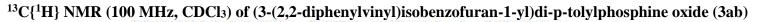
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm) ¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)bis(4-methoxyphenyl)phosphine oxide (3aa)

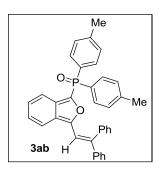


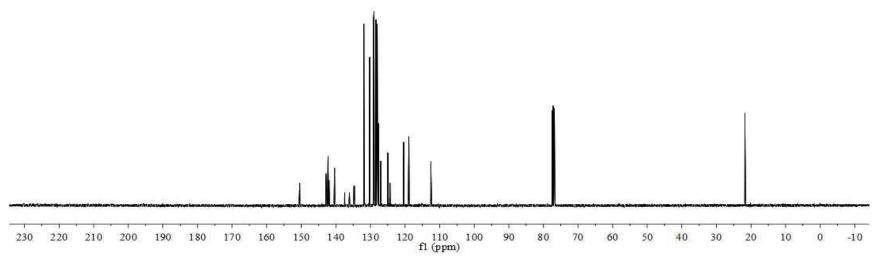




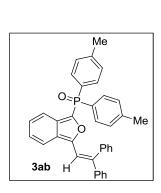


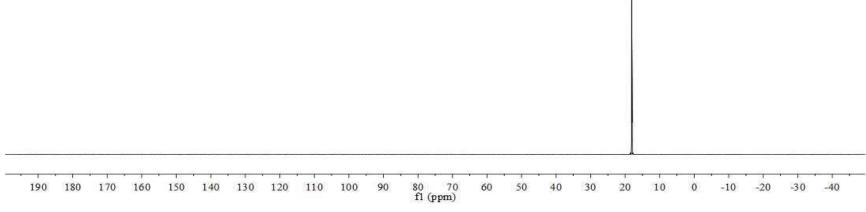


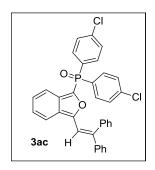


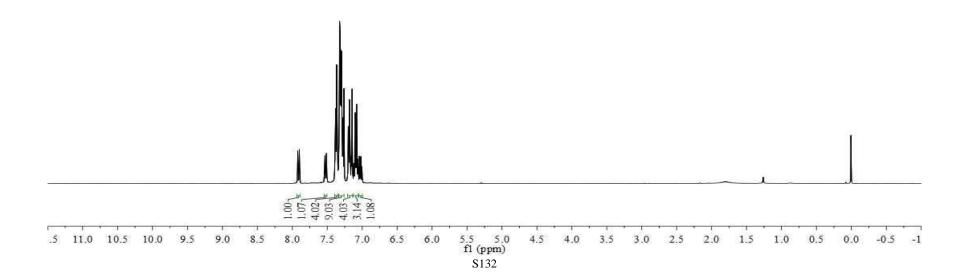


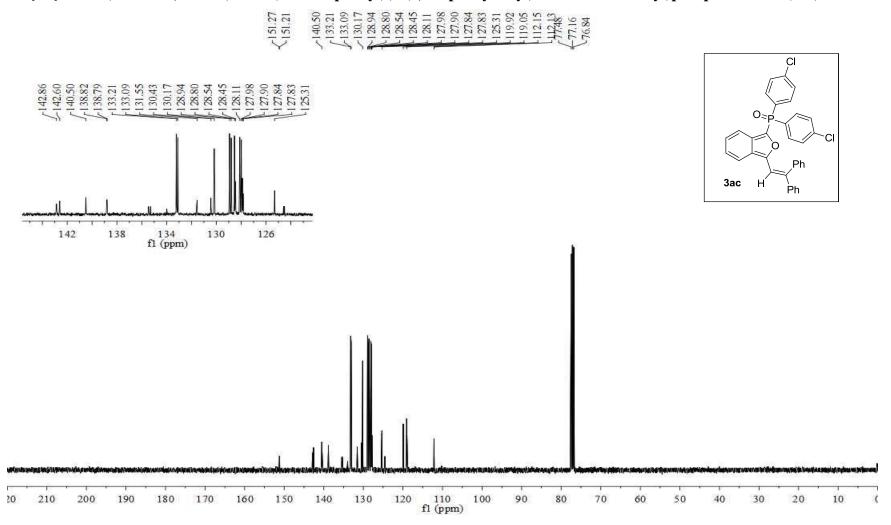
$\begin{array}{c} 150 \\ 142 \\$	50.49	CX CI		27.24	12.26	11.99	11.97	t0.37	87.45	36.06	34.78	34.62	31.91	31.80	30,30	80.20	29,18	29.11	28,98	28.42	28.14	28.04	27.94	17.71	10.12	25.01	24,43	24.36	20.38	8.89	2.55	2.53	7,48	7.16	20	
			+ +	4	-	-	-	-	-	-	-	-	-	4	-	-	-	-	-	-	-	7	-	-	-	-	-	-	-	Ŧ	Ŧ	=	5	5	ř	

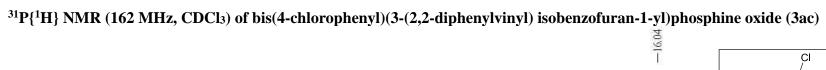


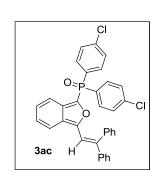

21.77
21.76

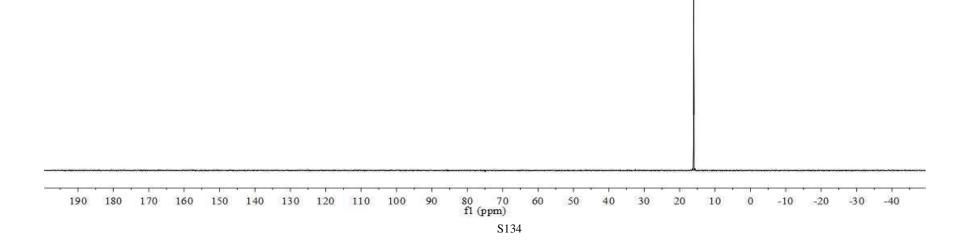


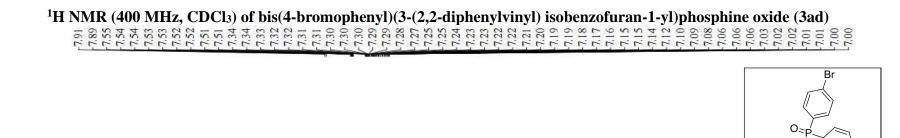

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)di-p-tolylphosphine oxide (3ab)

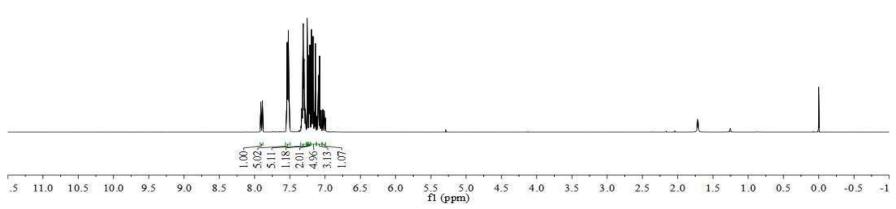


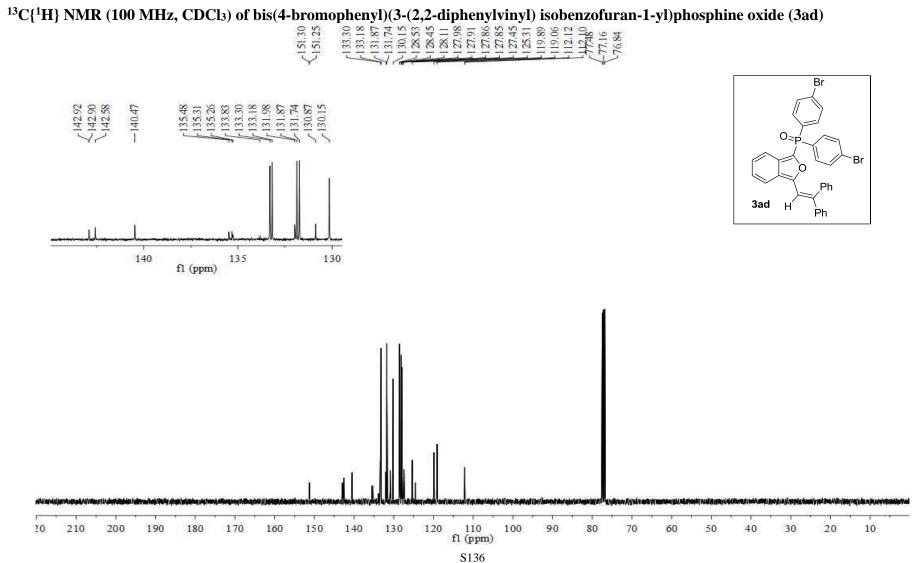

¹H NMR (400 MHz, CDCl₃) of bis(4-chlorophenyl)(3-(2,2-diphenylvinyl) isobenzofuran-1-yl)phosphine oxide (3ac)

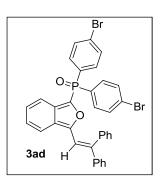


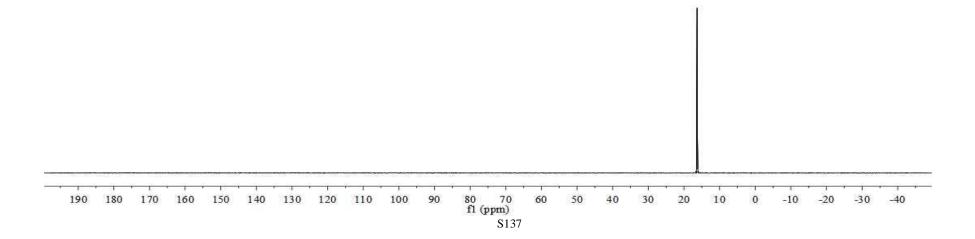



¹³C{¹H} NMR (100 MHz, CDCl₃) of bis(4-chlorophenyl)(3-(2,2-diphenylvinyl) isobenzofuran-1-yl)phosphine oxide (3ac)

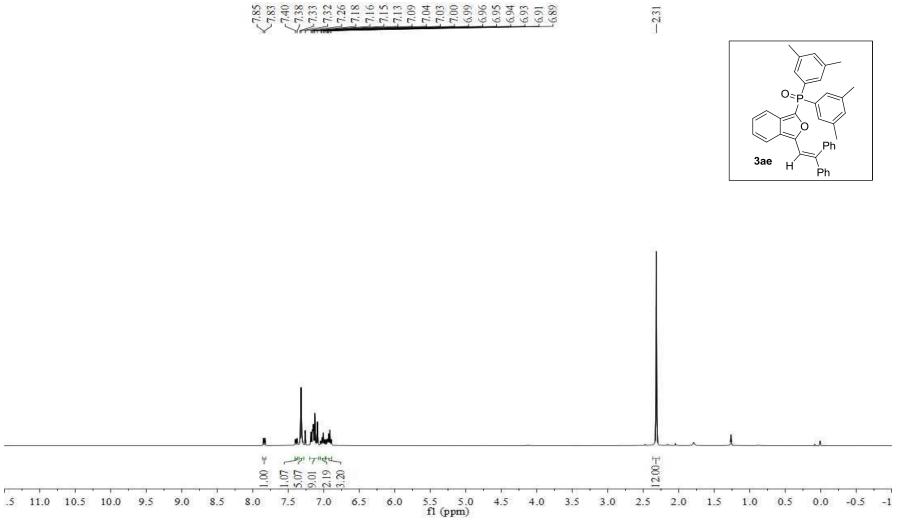




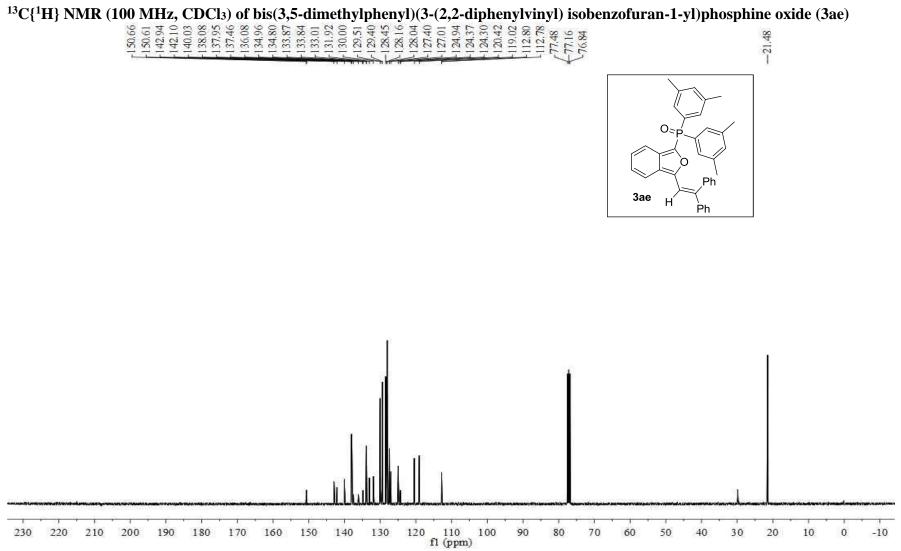

Ph


Ρh

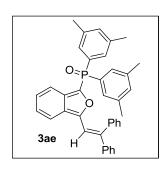
3ad

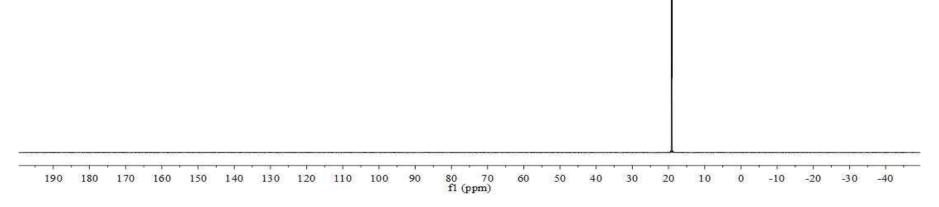


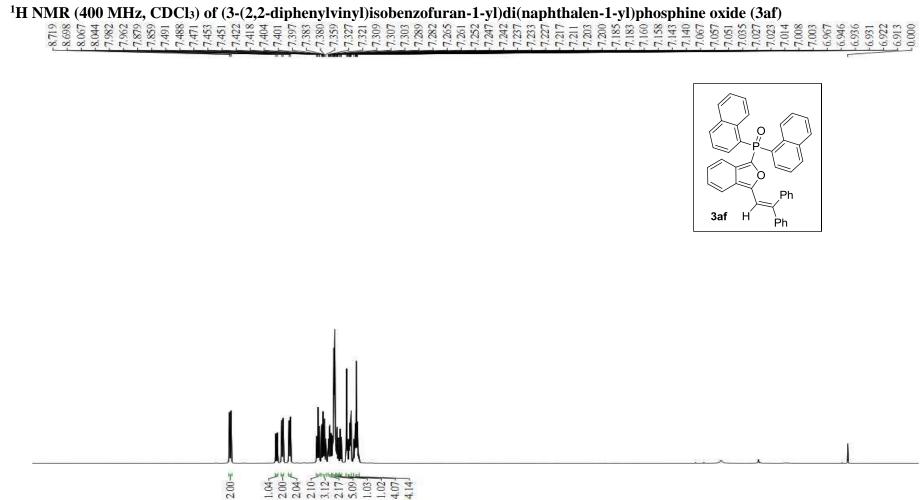
³¹P{¹H} NMR (162 MHz, CDCl₃) of bis(4-bromophenyl)(3-(2,2-diphenylvinyl) isobenzofuran-1-yl)phosphine oxide (3ad)



¹H NMR (400 MHz, CDCl₃) of bis(3,5-dimethylphenyl)(3-(2,2-diphenylvinyl) isobenzofuran-1-yl)phosphine oxide (3ae)







³¹P{¹H} NMR (162 MHz, CDCl₃) of bis(3,5-dimethylphenyl)(3-(2,2-diphenylvinyl) isobenzofuran-1-yl)phosphine oxide (3ae)

S141

5.5 5.0 fl (ppm)

4.5 4.0

3.5

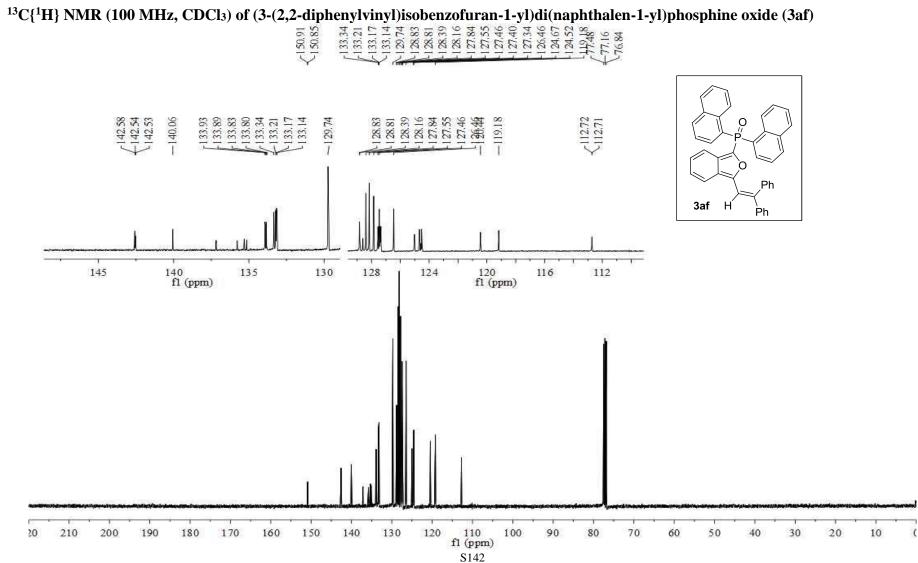
3.0 2.5

2.0

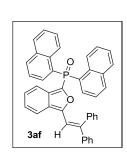
1.5 1.0 0.5

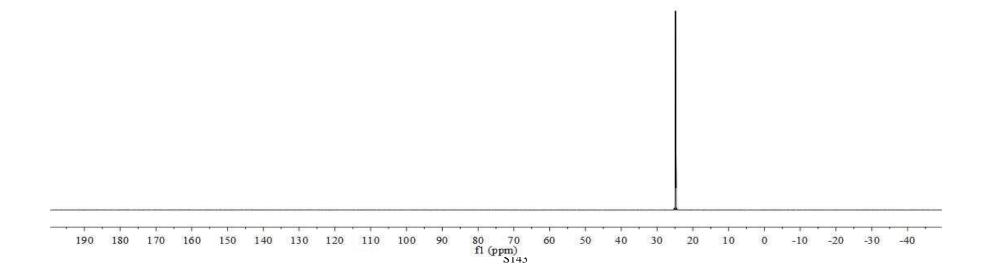
0.0 -0.5 -1

6.0

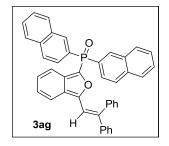

1.04 2.00 2.04 2.10 4.14 4.14

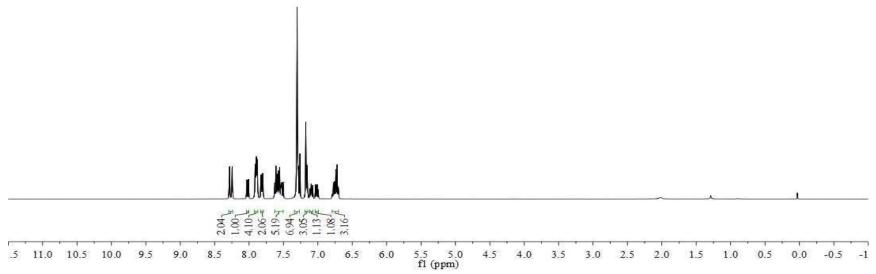
7.5 7.0 6.5

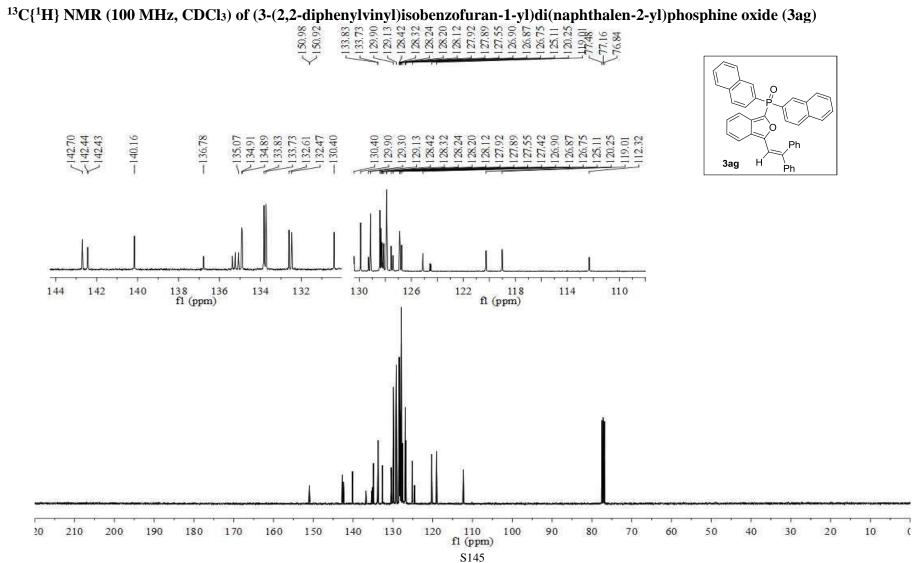

9.0 8.5


8.0

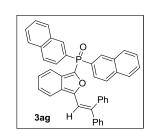
.5 11.0 10.5 10.0 9.5

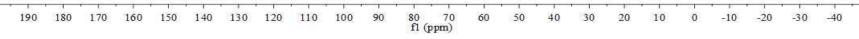

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)di(naphthalen-1-yl)phosphine oxide (3af)

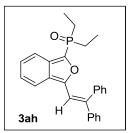




¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)di(naphthalen-2-yl)phosphine oxide (3ag)

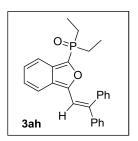


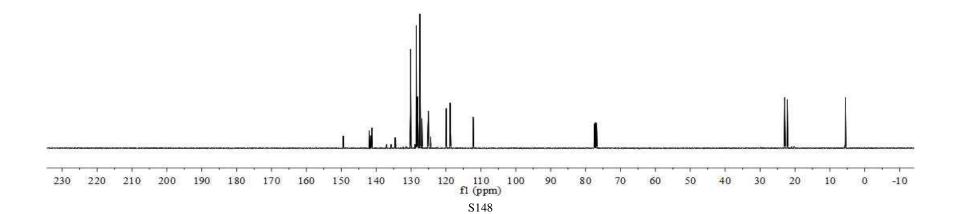




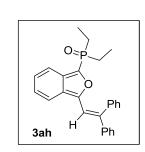

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)di(naphthalen-2-yl)phosphine oxide (3ag)

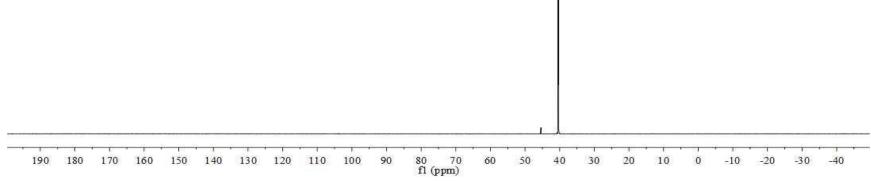
¹ H NMR (400 MHz, CDCl ₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diethylphosphine oxide (3ah)					
	2222 2222 22222 22222 22222 22222 22222 2222				
CECECEC	, , , , , , , , , , , , , , , , , , ,	4			

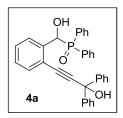


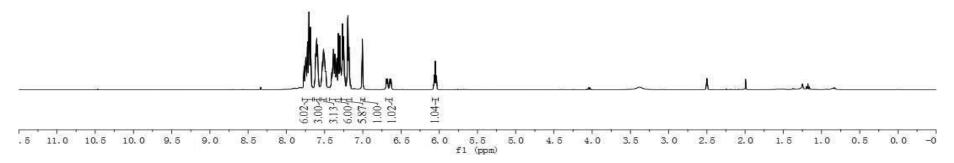


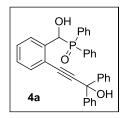
1-1. • 1 $(\mathbf{2},\mathbf{1})$

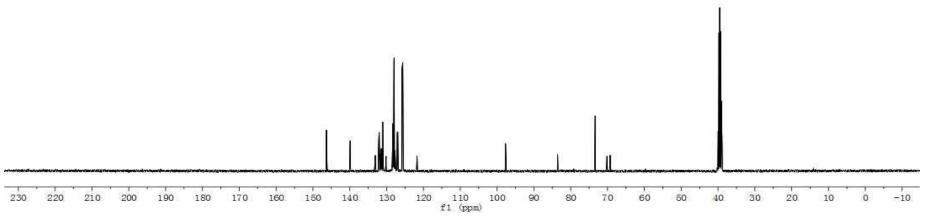

¹³C{¹H} NMR (100 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diethylphosphine oxide (3ah)

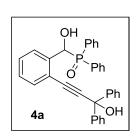

149,47 149,47 142,42 141,60 141,59 141,59 141,54 141,54 141,54 141,54 123,55 112,552 1	22.93 22.21 22.21 5.54 5.54 5.49
---	--

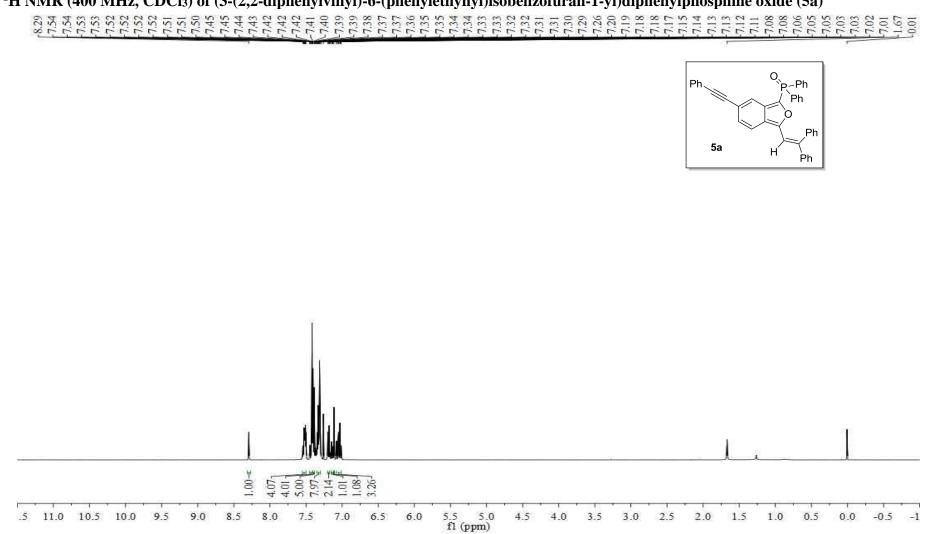

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diethylphosphine oxide (3ah)



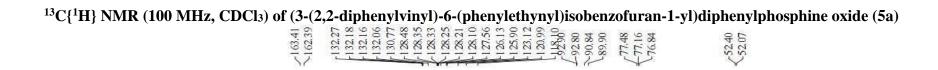

¹H NMR (400 MHz, DMSO) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diethylphosphine oxide (4a)

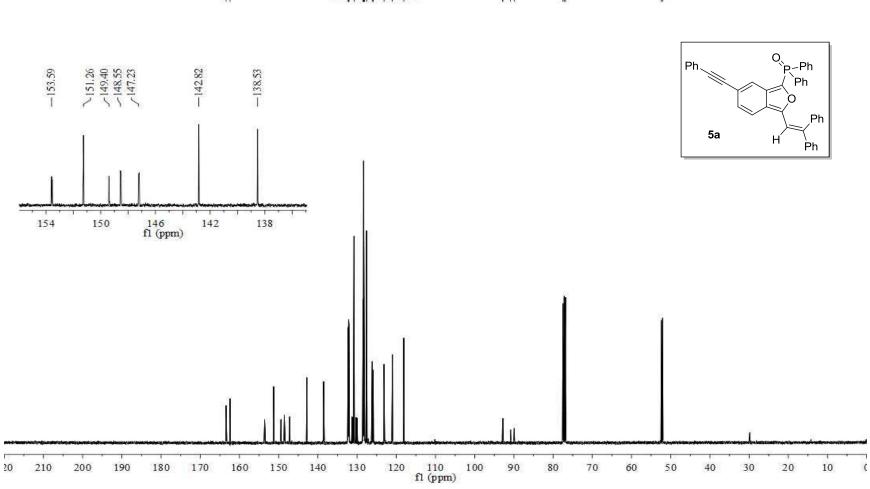

,,,,,,,,, _	J = J = J = J = J = J = J = J = J = J =
00000-00-000000000000000000000000000000	20 X X - V 7 000
00000mmmmmmmm0000000001111	
KKKKKKKKKKKKKKKKKKKKKK	
	\rightarrow \rightarrow \rightarrow


$^{13}C{^{1}H}$	NMR	(100	MHz,	DMSO)	of	(3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diethylphosphine oxid	le (4a)
	-146.39 -146.33 -139.87 -133.09	-132.16 -132.08 -132.00 -132.00	-131.54 -131.64 -131.06 -131.06	-130.15 -128.43 -128.39 -128.30 -128.19 -128.19	128.03	00 00m m 177778		

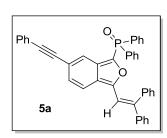


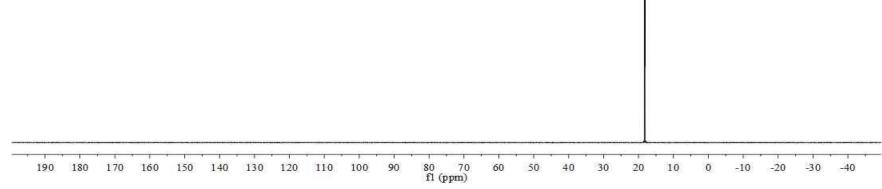
S151

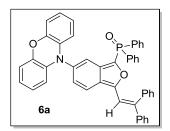

³¹P{¹H} NMR (162 MHz, DMSO) of (3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diethylphosphine oxide (4a)

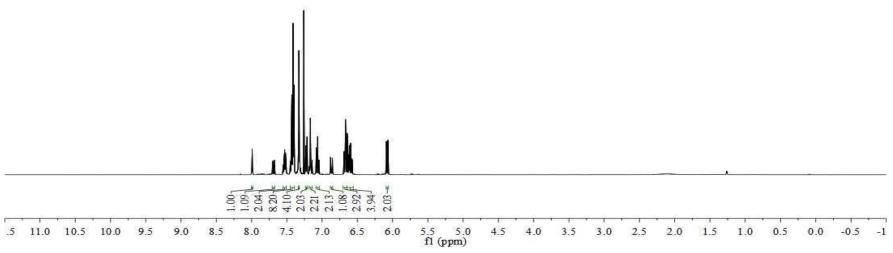


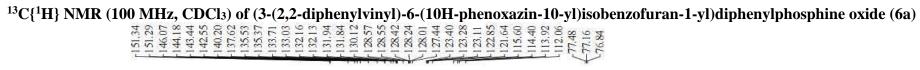
190 180 80 70 f1 (ppm) 40 30 20 10 170 160 150 140 130 120 110 100 90 60 50 0 -10 -20 -30 -40

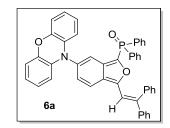

¹H NMR (400 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-6-(phenylethynyl)isobenzofuran-1-yl)diphenylphosphine oxide (5a)

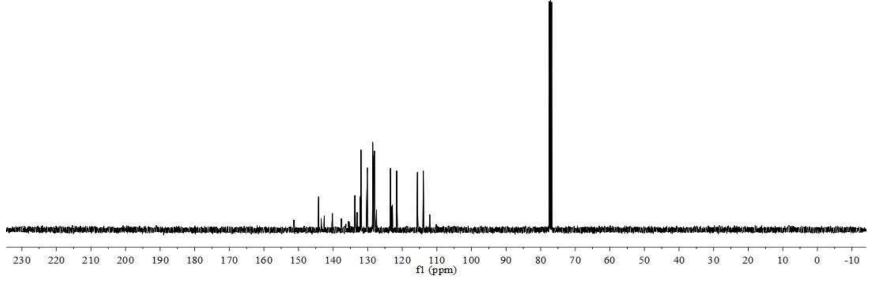


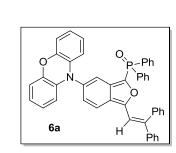


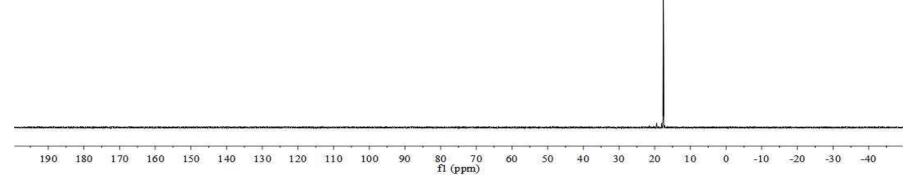

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-6-(phenylethynyl)isobenzofuran-1-yl)diphenylphosphine oxide (5a)

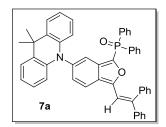


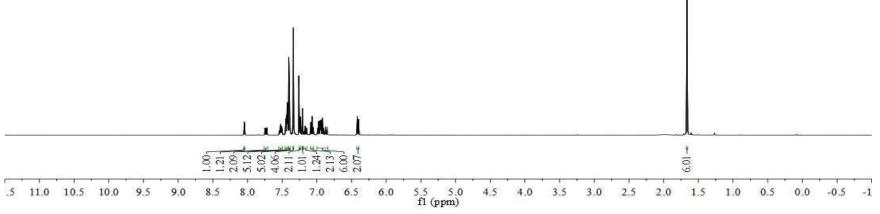


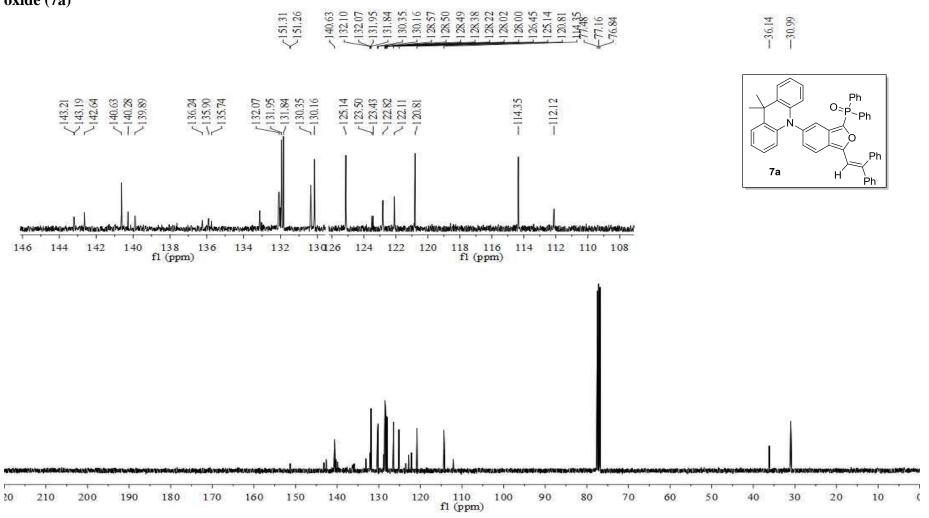

¹ H NMR (400 MHz, CDCl ₃) of (3-(2,2-diphenylvinyl)-6-(10H-phenoxazin-10-yl)isobenzofuran	ı-1-yl)diphenylphosphine oxide (6a)
 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	



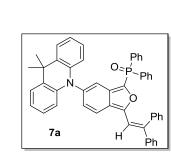


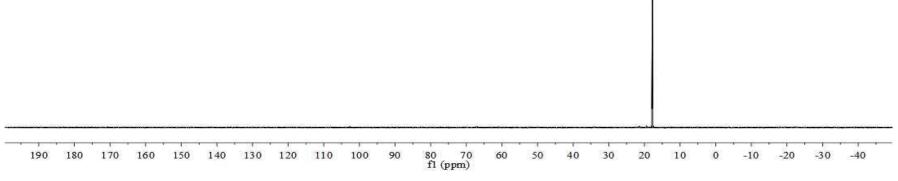

³¹P{¹H} NMR (162 MHz, CDCl₃) of (3-(2,2-diphenylvinyl)-6-(10H-phenoxazin-10-yl)isobenzofuran-1-yl)diphenylphosphine oxide (6a)

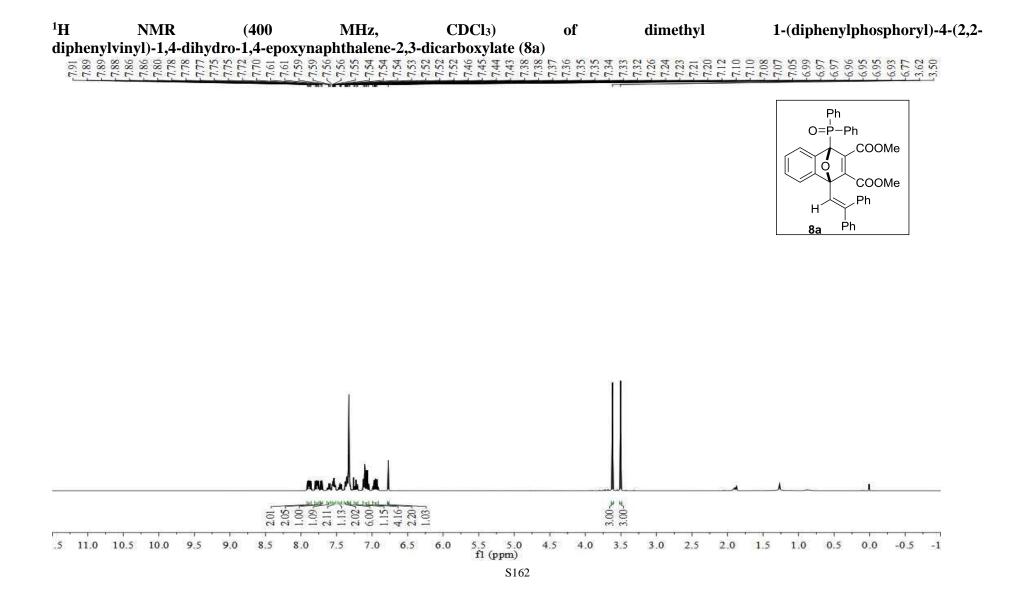


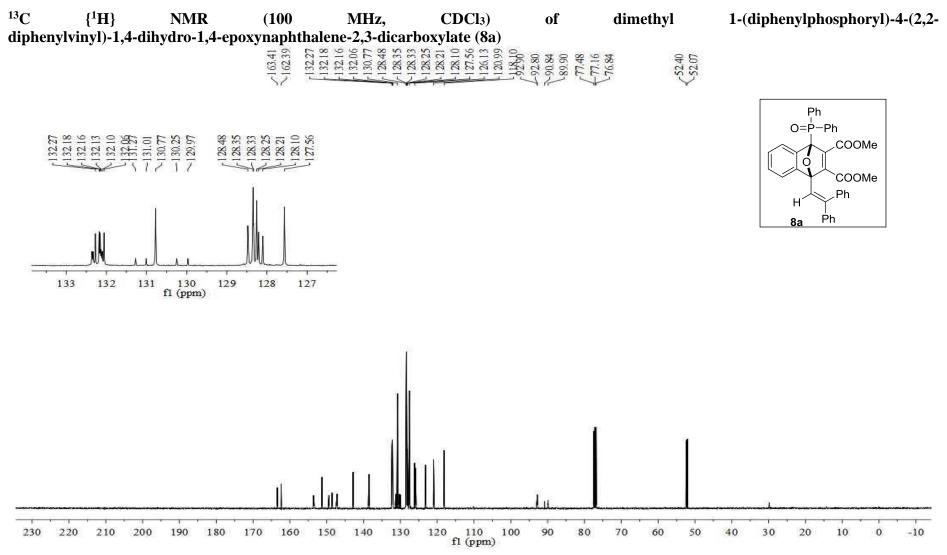

¹H NMR (400 MHz, CDCl₃) of (6-(9,9-dimethylacridin-10(9H)-yl)-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (7a)

NN44000400000-C	000044460000084000440-000080000	2 2 2 2 3 3 4 4 4 4 4 4 4 4 6 8 8 9 9 4 4 4 4 6 6 9 8 9 9 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	00000000000000000000000000000000000000	

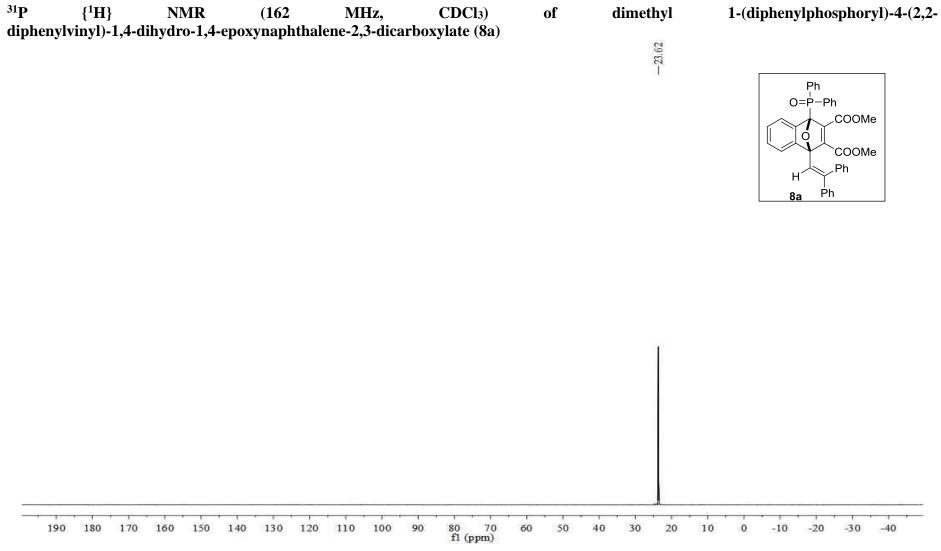


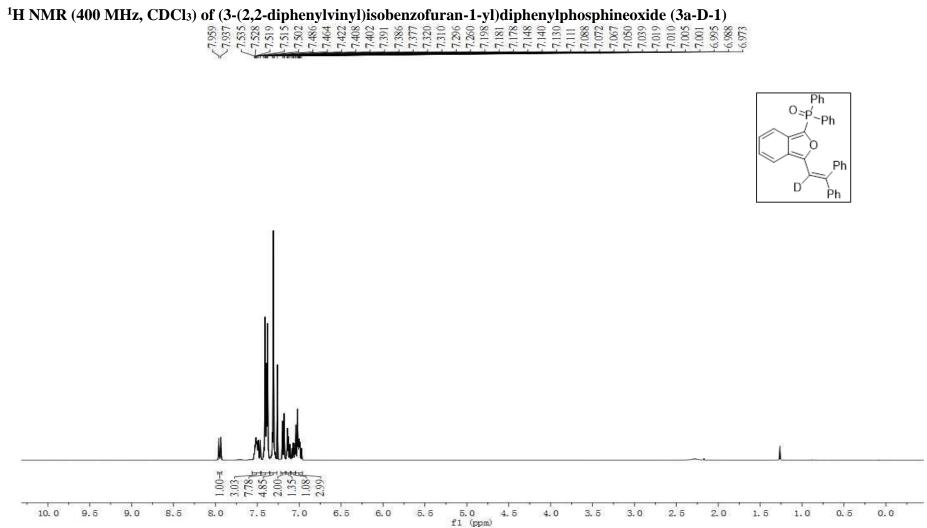

¹³C{¹H} NMR (100 MHz, CDCl₃) of (6-(9,9-dimethylacridin-10(9H)-yl)-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (7a)

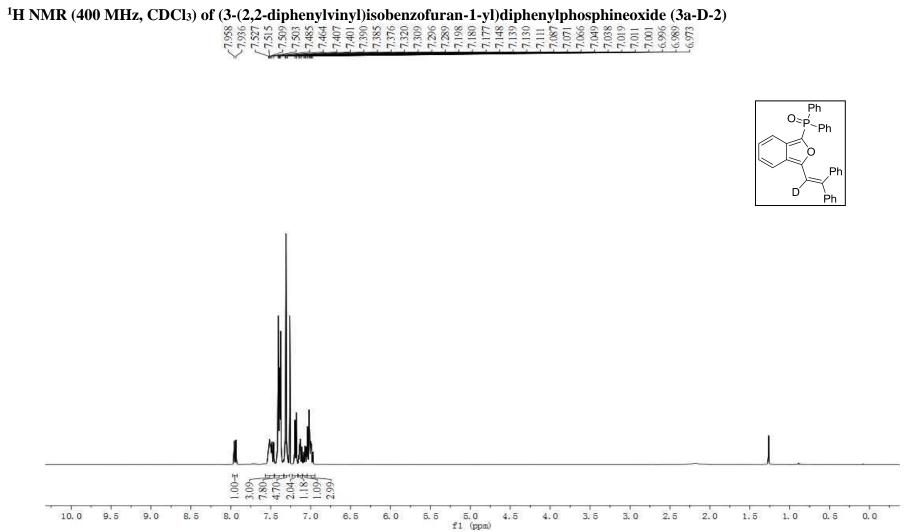



S160

³¹P{¹H} NMR (162 MHz, CDCl₃) of (6-(9,9-dimethylacridin-10(9H)-yl)-3-(2,2-diphenylvinyl)isobenzofuran-1-yl)diphenylphosphine oxide (7a)







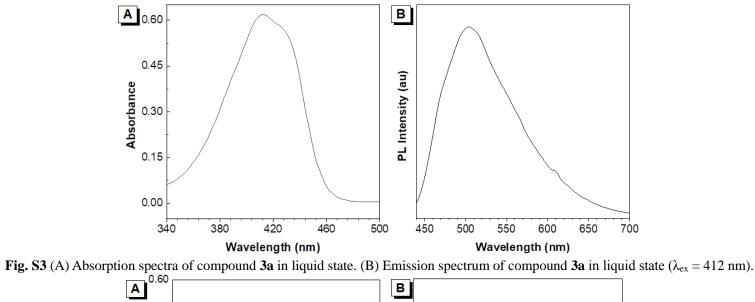
S163

Photophysical Properties of IBFPOs

With the positive results in synthesis of **IBFPOs**, we also investigated the AIE performance of **IBFPOs**. the photophysical data of all synthesized compounds are summerized in Table S3 and corresponding spectra are given (Fig. S3-S37).

		1 5	1		
		Solution(nm)	$\mathbf{ au}\mathbf{F}^{[b]}$	(ns)
Title compound	$\lambda_{abs}{}^{[a]}$	$\lambda_{em}^{[a]}$	Stoke's shift	Solid	Solution
3a	412	507	94	5.19	0.28
3b	415	508	92	1.41	0.28
3c	414	507	93	0.39	0.31
3d	412	514	102	2.08	0.39
3e	414	509	95	4.60	0.21
3f	414	514	100	5.56	0.33
3g	415	509	94	5.25	0.18

3h	413	499	86	1.60	0.34
3i	413	510	97	1.74	0.31
3j	413	515	102	2.34	0.26
3k	417	502	85	2.44	0.90
31	410	486	76	1.40	0.29
3m	414	497	83	0.82	0.24
3n	409	489	80	0.67	0.34
30	405	495	90	1.08	0.29
3р	418	505	87	1.54	0.30
3q	426	518	92	0.34	1.25
3r	417	515	98	2.46	1.12


3s	411	505	94	4.83	0.23
3t	414	505	91	1.64	0.38
3u	416	506	90	1.09	0.40
3v	426	490	64	0.60	2.05
3w	442/471	508/544	66/73	0.67	3.95
3x	446	514	68	2.73	1.59
3у	399	464	65	1.61	0.78
3 aa	415	503	88	1.91	0.33
3ab	412	501	89	1.49	0.32
3ac	413	509	96	1.02	1.48
3ad	414	511	97	1.48	0.17

7a	414	599	185	13.72	0.16
6a	413	643	230	2.32	2.89
5a	421	502	81	1.15	0.41
3ag	413	505	92	0.61	0.28
3af	412	505	93	2.78	0.24
3ae	413	502	89	1.39	0.31

[a] λ_{abs} and λ_{em} refer to optimal absorption wavelength and photoluminescence (PL) Peak, respectively. [b] τF is fluorescence lifetime. [c] Φ_F is absolute fluorescence quantum yield.

Investigation on the Absorption and Emission Spectra

The absorption and emission spectra of all synthesized compounds (Fig. S3-S37) were investigated firstly.

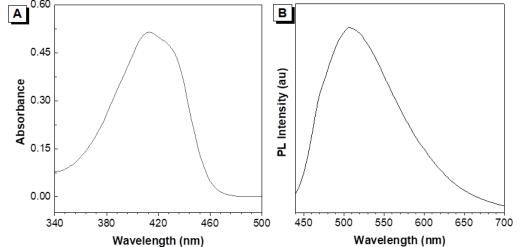


Fig. S4 (A) Absorption spectra of compound 3b in liquid state. (B) Emission spectrum of compound 3b in liquid state ($\lambda_{ex} = 415$ nm).

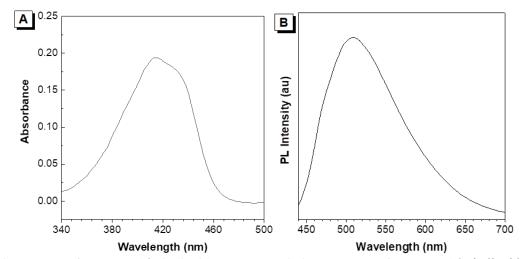


Fig. S5 (A) Absorption spectra of compound 3c in liquid state. (B) Emission spectrum of compound 3c in liquid state ($\lambda_{ex} = 414$ nm).

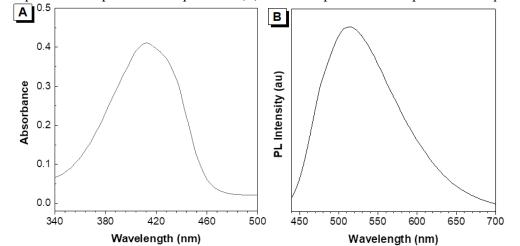


Fig. S6 (A) Absorption spectra of compound 3d in liquid state. (B) Emission spectrum of compound 3d in liquid state ($\lambda_{ex} = 412 \text{ nm}$).

Fig. S7 (A) Absorption spectra of compound 3e in liquid state. (B) Emission spectrum of compound 3e in liquid state ($\lambda_{ex} = 414$ nm).

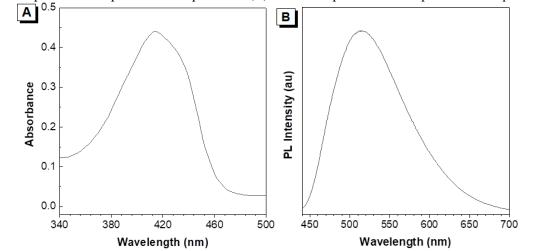


Fig. S8 (A) Absorption spectra of compound 3f in liquid state. (B) Emission spectrum of compound 3f in liquid state ($\lambda_{ex} = 414$ nm).

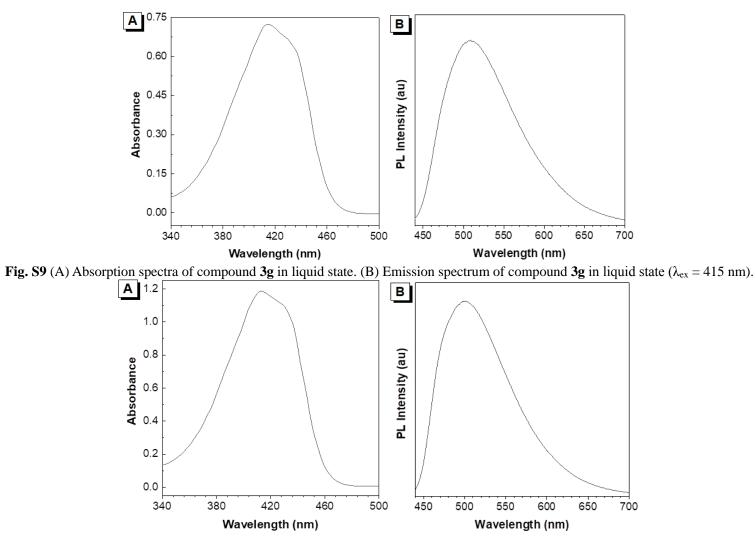


Fig. S10 (A) Absorption spectra of compound 3h in liquid state (B)Emission spectrum of compound 3h in liquid state ($\lambda_{ex} = 413$ nm).

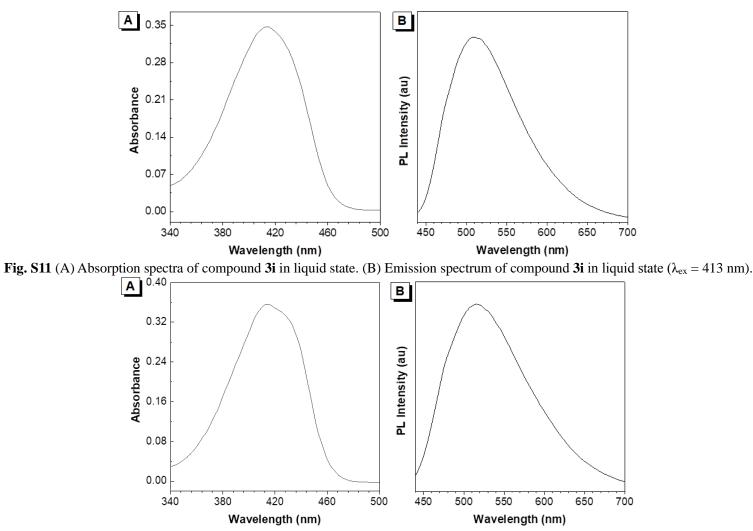


Fig. S12 (A) Absorption spectra of compound 3j in liquid state. (B) Emission spectrum of compound 3j in liquid state ($\lambda_{ex} = 413$ nm).

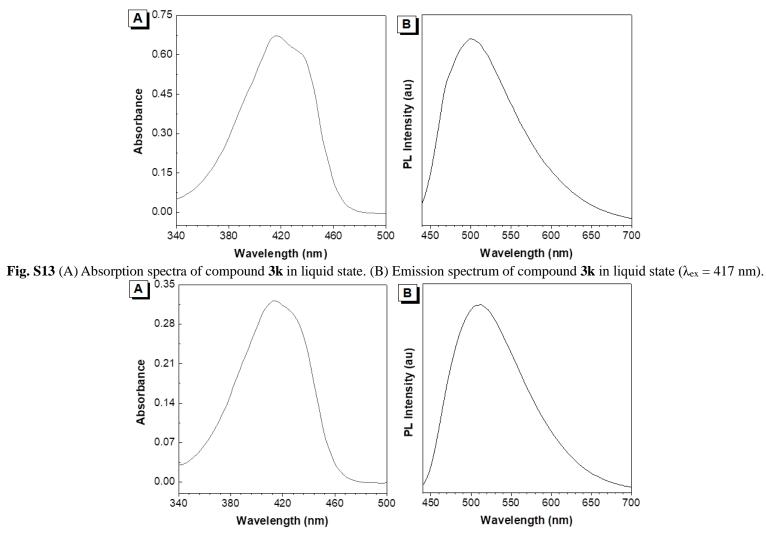


Fig. S14 (A) Absorption spectra of compound 31 in liquid state. (B) Emission spectrum of compound 31 in liquid state ($\lambda_{ex} = 410 \text{ nm}$).

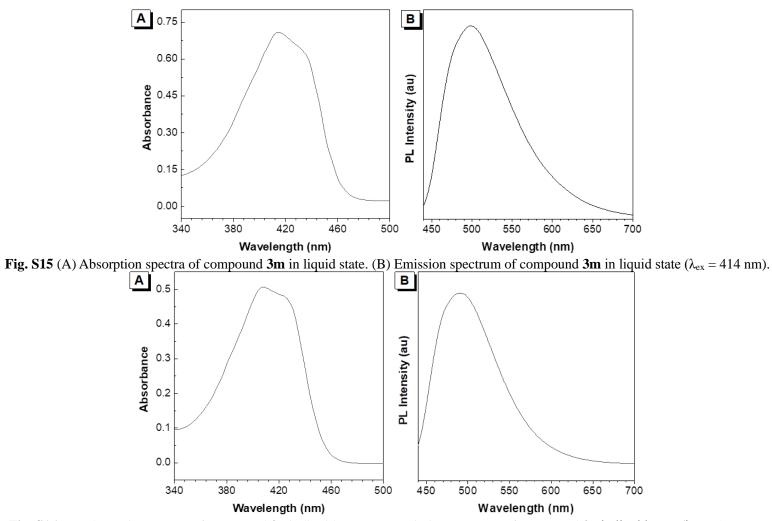


Fig. S16 (A) Absorption spectra of compound 3n in liquid state. (B) Emission spectrum of compound 3n in liquid state ($\lambda_{ex} = 409$ nm).

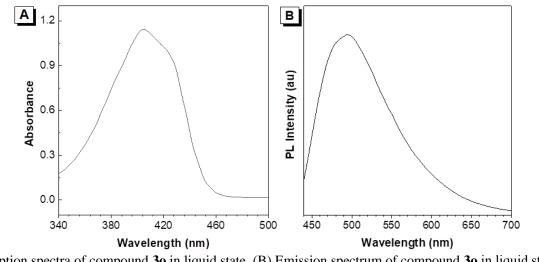


Fig. S17 (A) Absorption spectra of compound 30 in liquid state. (B) Emission spectrum of compound 30 in liquid state ($\lambda_{ex} = 405 \text{ nm}$).

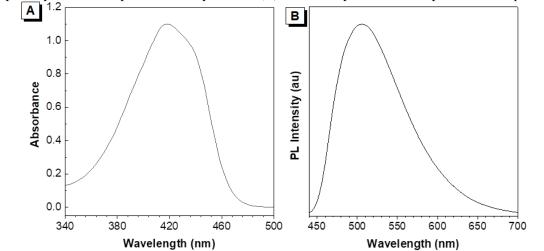


Fig. S18 (A) Absorption spectra of compound 3p in liquid state. (B) Emission spectrum of compound 3p in liquid state ($\lambda_{ex} = 418$ nm).

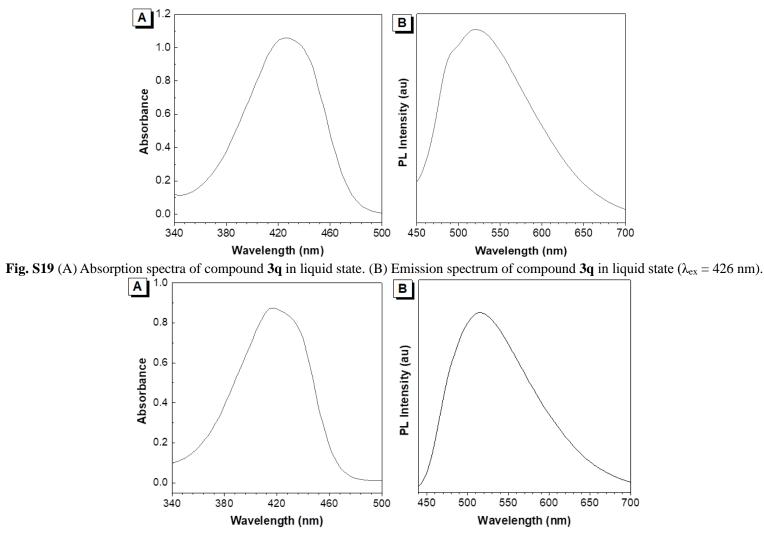


Fig. S20 (A) Absorption spectra of compound 3r in liquid state. (B) Emission spectrum of compound 3r in liquid state ($\lambda_{ex} = 417$ nm).

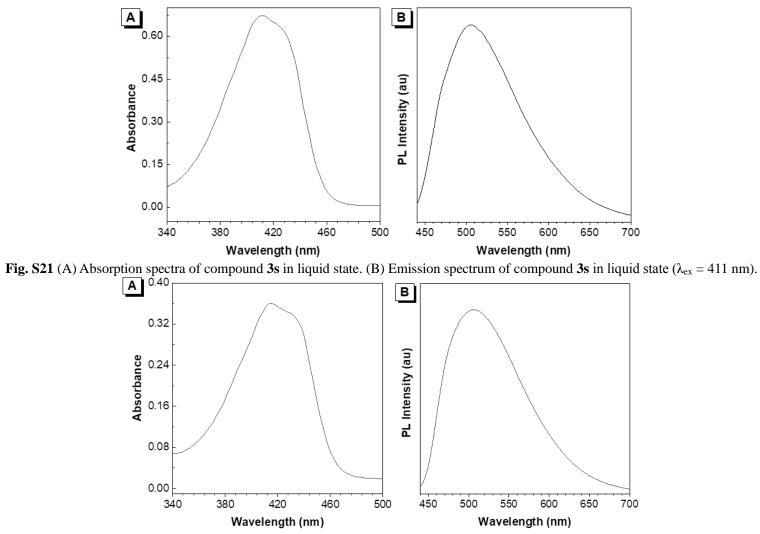
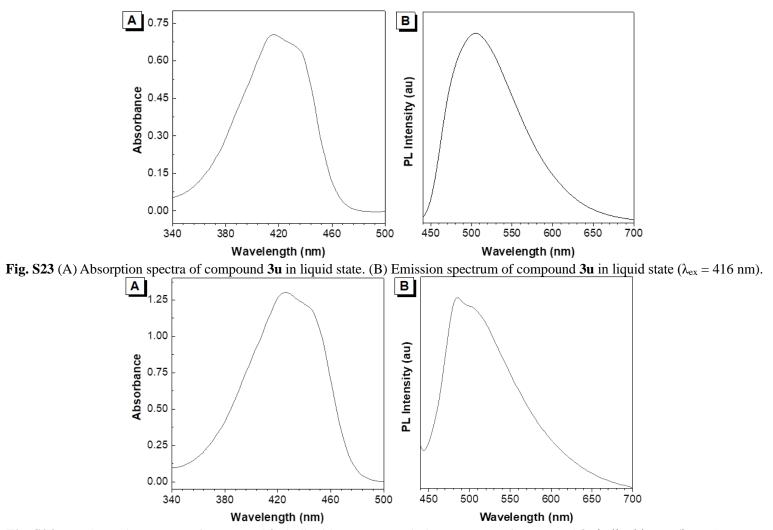



Fig. S22 (A) Absorption spectra of compound 3t in liquid state. (B) Emission spectrum of compound 3t in liquid state ($\lambda_{ex} = 414$ nm).

Fig. S24 (A) Absorption spectra of compound **3v** in liquid state. (B) Emission spectrum of compound **3v** in liquid state ($\lambda_{ex} = 426$ nm).

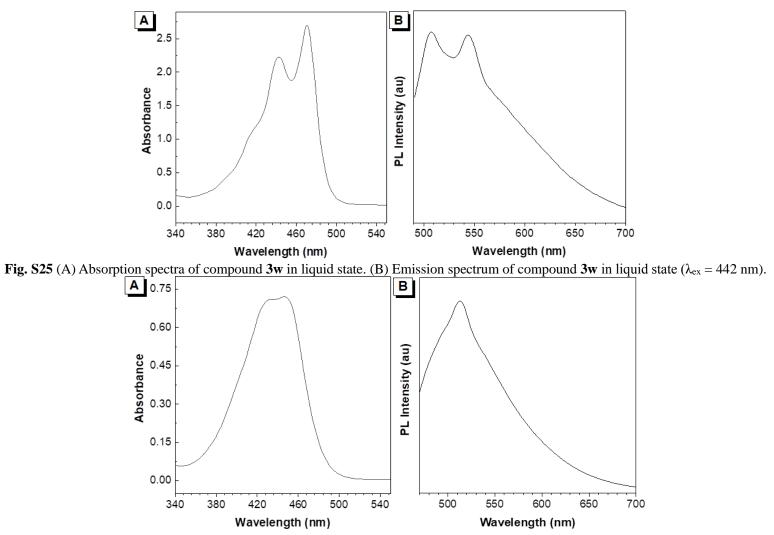


Fig. S26 (A) Absorption spectra of compound 3x in liquid state. (B) Emission spectrum of compound 3x in liquid state ($\lambda_{ex} = 446$ nm).

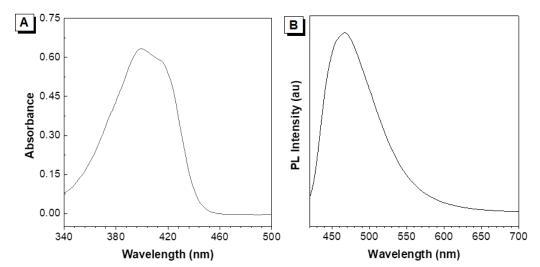


Fig. S27 (A) Absorption spectra of compound 3y in liquid state. (B) Emission spectrum of compound 3y in liquid state ($\lambda_{ex} = 399$ nm).

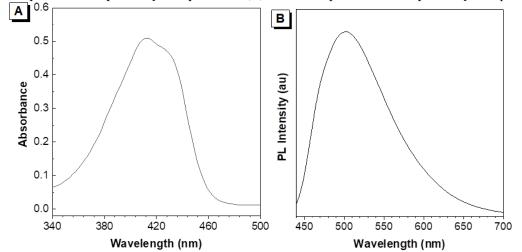


Fig. S28 (A) Absorption spectra of compound 3aa in liquid state. (B) Emission spectrum of compound 3aa in liquid state ($\lambda_{ex} = 415$ nm).

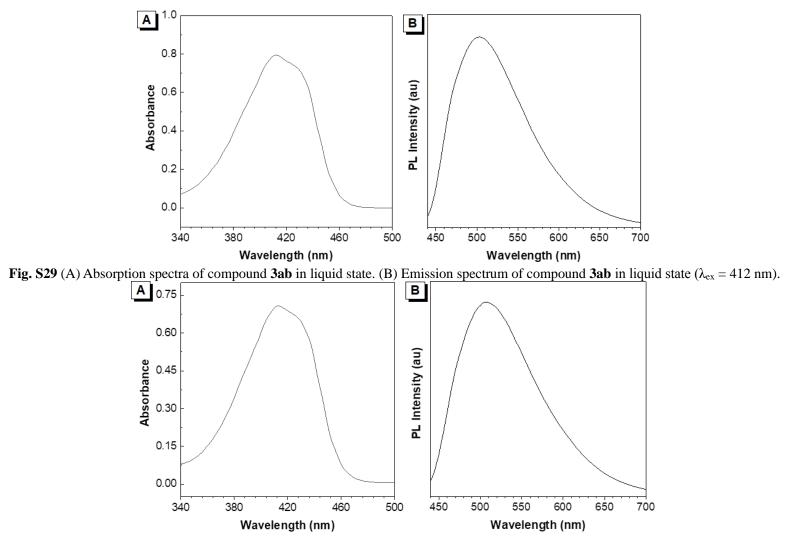


Fig. S30 (A) Absorption spectra of compound 3ac in liquid state. (B) Emission spectrum of compound 3ac in liquid state ($\lambda_{ex} = 413$ nm).

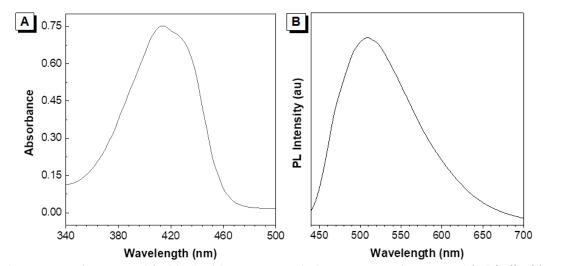


Fig. S31 (A) Absorption spectra of compound 3ad in liquid state. (B) Emission spectrum of compound 3ad in liquid state ($\lambda_{ex} = 414$ nm).

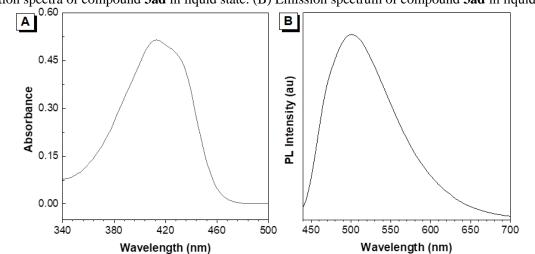


Fig. S32 (A) Absorption spectra of compound 3ae in liquid state. (B) Emission spectrum of compound 3ae in liquid state ($\lambda_{ex} = 413$ nm).

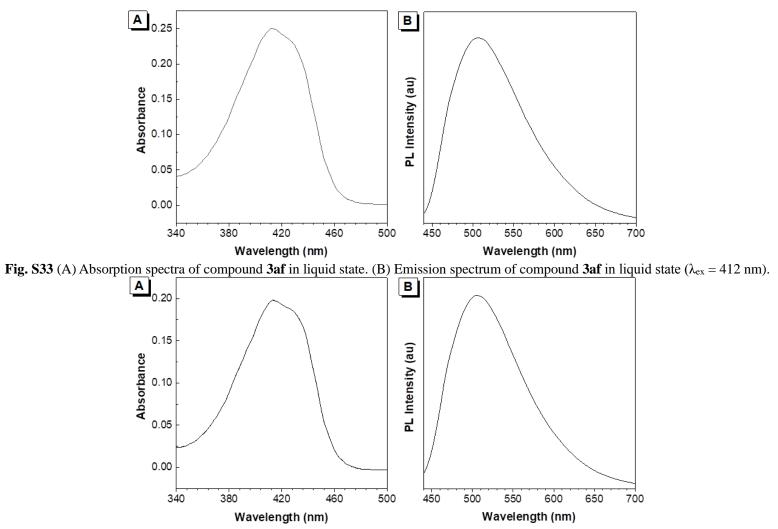


Fig. S34 (A) Absorption spectra of compound 3ag in liquid state. (B) Emission spectrum of compound 3ag in liquid state ($\lambda_{ex} = 413$ nm).

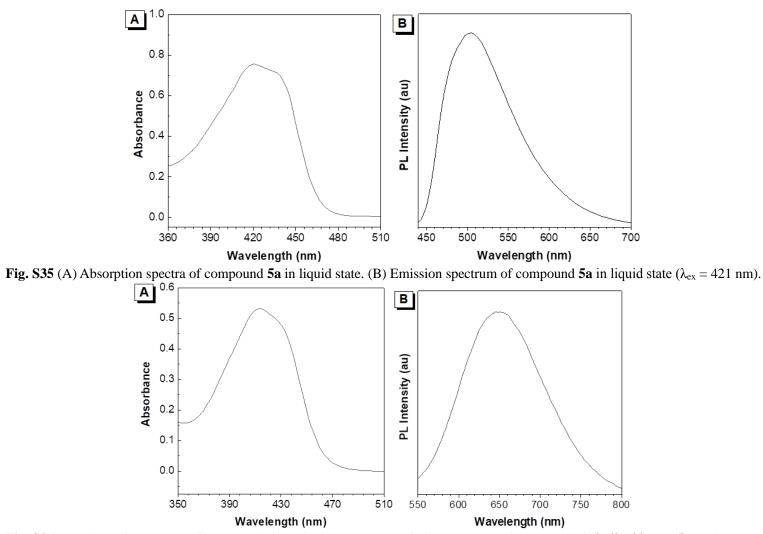


Fig. S36 (A) Absorption spectra of compound 6a in liquid state. (B) Emission spectrum of compound 6a in liquid state ($\lambda_{ex} = 413$ nm).

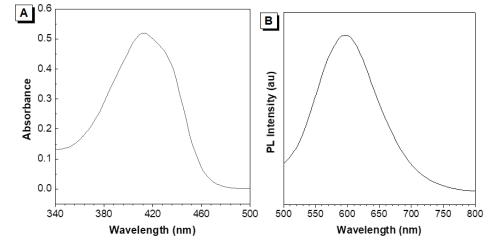


Fig. S37 (A) Absorption spectra of compound 7a in liquid state. (B) Emission spectrum of compound 7a in liquid state ($\lambda_{ex} = 414$ nm).

Investigation on the Fluorescence Lifetime

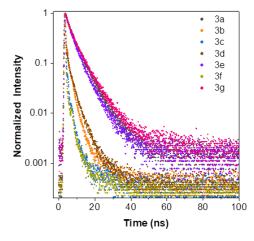


Fig. S38 Fluorescence decay curves of 3a, 3b, 3c, 3d, 3e, 3f and 3g (in solid state).

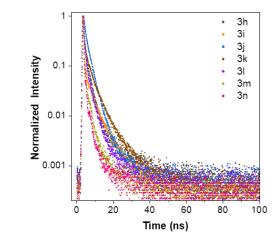


Fig. S39 Fluorescence decay curves of 3h, 3i, 3j, 3k, 3l, 3m and 3n (in solid state).

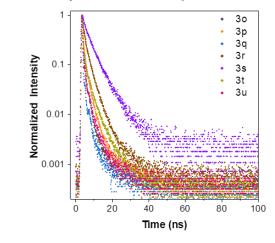


Fig. S40 Fluorescence decay curves of 30, 3p, 3q, 3r, 3s, 3t and 3u (in solid state).

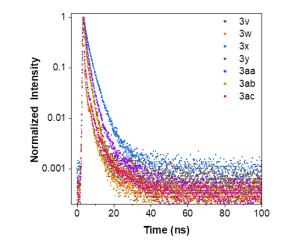


Fig. S41 Fluorescence decay curves of 3v, 3w, 3x, 3y, 3aa, 3ab and 3ac (in solid state).

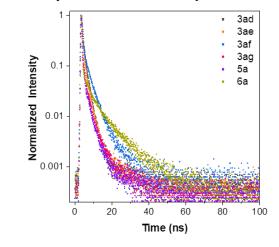


Fig. S42 Fluorescence decay curves of 3ad, 3ae, 3af, 3ag, 5a and 6a (in solid state).

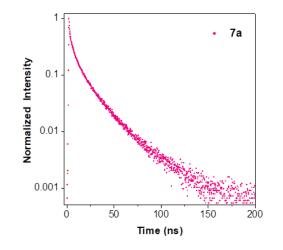


Fig. S43 Fluorescence decay curves of 7a (in solid state).

Fluorescence properties of some compounds

PL spectra of some compounds in good solvents and good/bad solvent mixture with different bad solvent fraction. [compound] = 1.0×10^{-5} M. Fluorescence intensity ratio of I/I_0 in different good/bad solvent mixture.

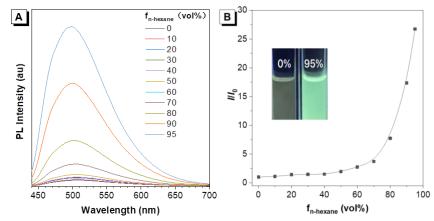


Fig. S44 (A) PL spectra of 3a in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 412 nm, $[3a] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

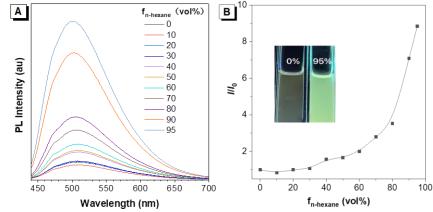


Fig. S45 (A) PL spectra of 3b in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 415 nm, $[3b] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

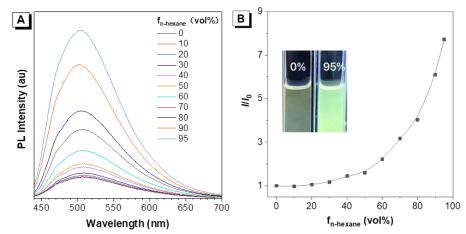


Fig. S46 (A) PL spectra of 3c in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 414 nm, $[3c] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

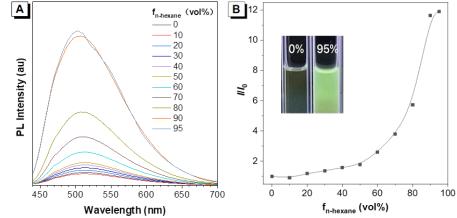


Fig. S47 (A) PL spectra of 3d in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 412 nm, $[3d] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

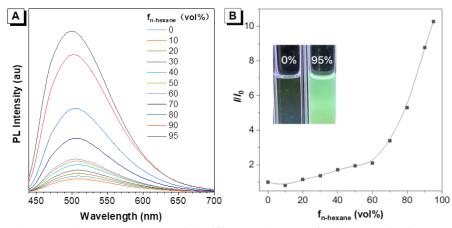


Fig. S48 (A) PL spectra of 3e in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 414 nm, $[3e] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

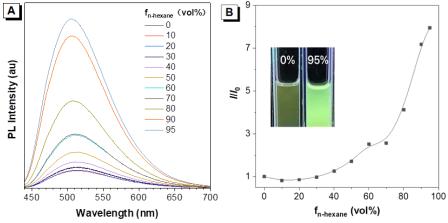


Fig. S49 (A) PL spectra of 3f in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 414 nm, $[3f] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

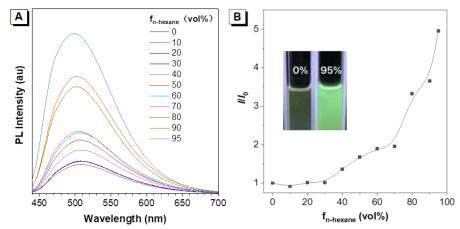


Fig. S50 (A) PL spectra of 3g in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 415 nm, $[3g] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

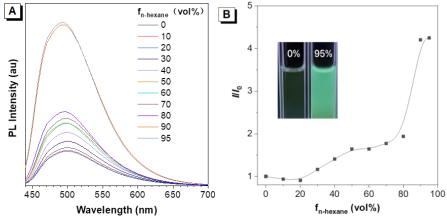


Fig. S51 (A) PL spectra of 3h in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 413 nm, $[3h] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

Fig. S52 (A) PL spectra of 3i in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 413 nm, $[3i] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

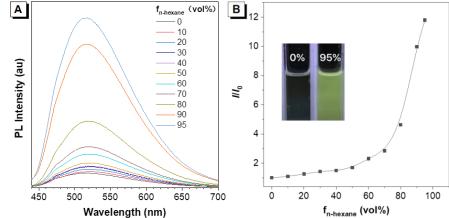


Fig. S53 (A) PL spectra of 3j in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 413 nm, $[3j] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

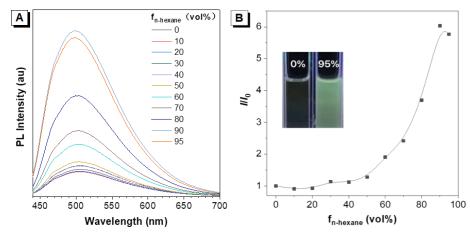


Fig. S54 (A) PL spectra of 3s in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 411 nm, $[3s] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different <u>DCM/n-hexane mixture</u>.

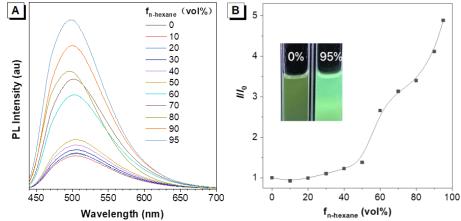


Fig. S55 (A) PL spectra of 3t in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 414 nm, $[3t] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

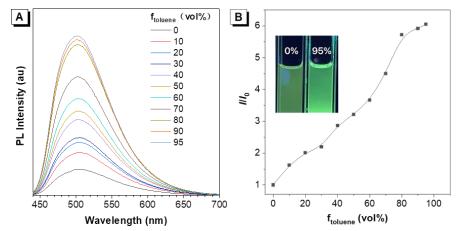


Fig. S56 (A) PL spectra of 3u in DCM and DCM/toluene mixture with different toluene fraction. Excitation wavelength: 416 nm, $[3u] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/toluene mixture.



Fig. S57 (A) PL spectra of $3\mathbf{v}$ in DCM and DCM/toluene mixture with different toluene fraction. Excitation wavelength: 426 nm, $[3\mathbf{v}] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/toluene mixture.

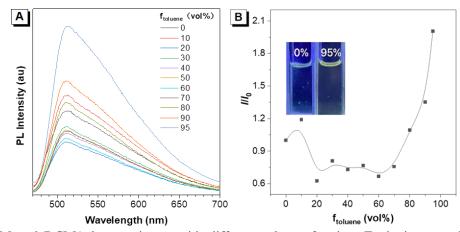


Fig. S58 (A) PL spectra of $3\mathbf{w}$ in DCM and DCM/toluene mixture with different toluene fraction. Excitation wavelength: 442 nm, $[3\mathbf{w}] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/toluene mixture.

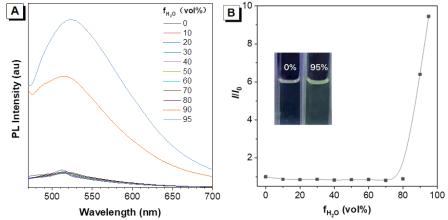


Fig. S59 (A) PL spectra of $3\mathbf{x}$ in THF and THF/water mixture with different water fraction. Excitation wavelength: 446 nm, $[3\mathbf{x}] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different THF/water mixture.

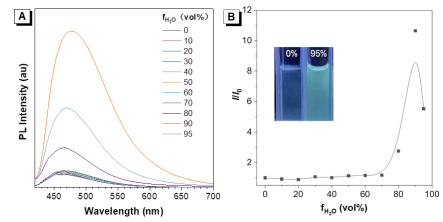


Fig. S60 (A) PL spectra of 3y inTHF and THF/water mixture with different water fraction. Excitation wavelength: 399 nm, $[3y] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different THF/water mixture.

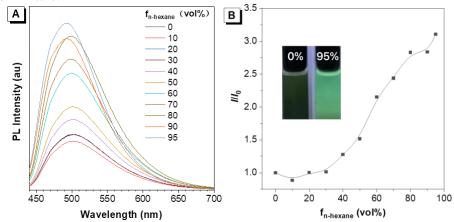


Fig. S61 (A) PL spectra of 3aa in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 415 nm, $[3aa] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

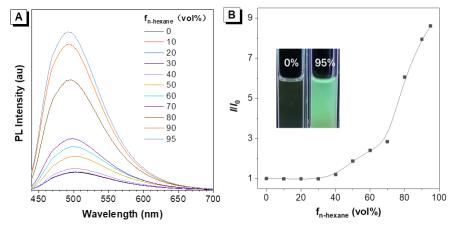


Fig. S62 (A) PL spectra of 3ab in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 412 nm, $[3ab] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

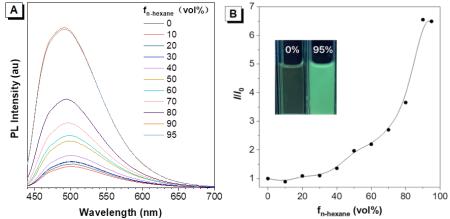


Fig. S63 (A) PL spectra of **3ae** in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 413 nm, $[3ae] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

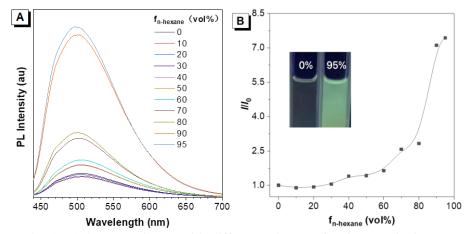


Fig. S64 (A) PL spectra of 3af in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 412 nm, $[3af] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

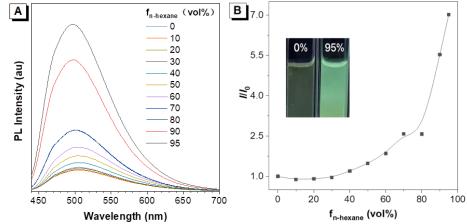


Fig. S65 (A) PL spectra of 3ag in DCM and DCM/n-hexane mixture with different n-hexane fraction. Excitation wavelength: 413 nm, $[3ag] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/n-hexane mixture.

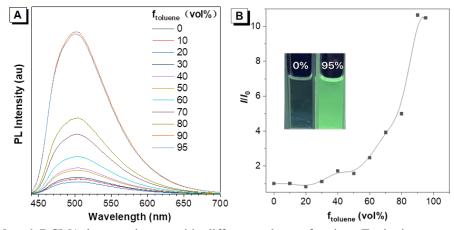


Fig. S66 (A) PL spectra of 5a in DCM and DCM/toluene mixture with different toluene fraction. Excitation wavelength: 421 nm, $[5a] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/toluene mixture.

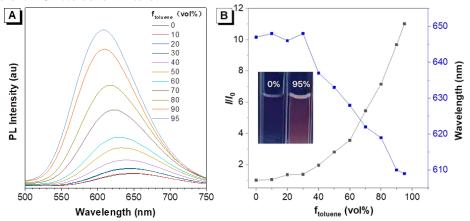


Fig. S67 (A) PL spectra of 6a in DCM and DCM/toluene mixture with different toluene fraction. Excitation wavelength: 413 nm, $[6a] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/toluene mixture.

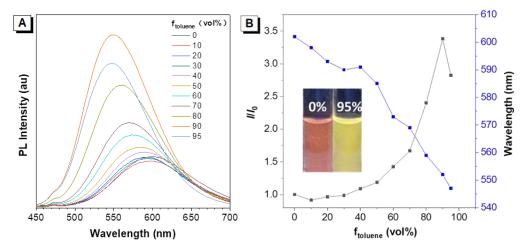


Fig. S68 (A) PL spectra of 7a in DCM and DCM/toluene mixture with different toluene fraction. Excitation wavelength: 414 nm, $[7a] = 1.0 \times 10^{-5}$ M. (B) Fluorescence intensity ratio of I/I_0 in different DCM/toluene mixture.

Analysis on the Results of Crystalline Structure

The determination and analysis on the single-crystal structure are useful for revealing AIE mechanism. we studied the molecular and packing structure of **3a** and **3j** (Fig. 4 in the main text, and Fig. S69). The dihedral angle between the benzene ring of **3a** and the central double bond is measured at 66.55°, indicating a significantly distorted conformation when packing. Molecular configuration is impeded not only by weak C-H… π interactions among molecules but also by hydrogen bonding that restricts intramolecular rotation (Fig. S69), which in turn activates luminescence in AIEgens. In summary, the origin of luminescence in aggregated or solid states can be ascribed to this distorted conformation.

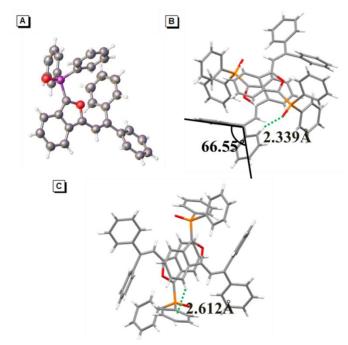


Fig. S69 (A) Molecular conformation of 3a. (B) and (C) Side view of packing structure of 3a crystal.

More Discussion on Theoretical Calculation

The optimized structure of 3j, 3y, 6a and 7a were calculated to further comprehend the relationship between optical performance and electronic structure.

It can be observed in Fig. S70 that, compounds **3j** and **3y** have similar HOMO and LUMO energy levels. And their electron cloud is distributed on the whole molecule, indicating that these two compounds have good molecular conjugation. Therefore, they have similar optical characteristic.

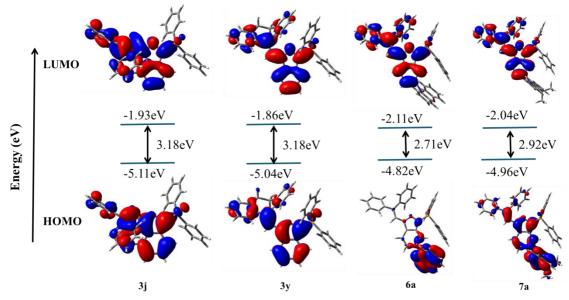


Fig. S70 Frontier molecular orbitals and energy levels of compounds 3j, 3y, 6a and 7a.

EST

The energy gap was computed to be 3.18 eV (Figure S72). In addition, the lowest energy gap of singlet and triplet states (ΔE_{S1-T2}) of **3y** was computed to be 0.29 eV and **3j** was computed to be 0.222 eV.

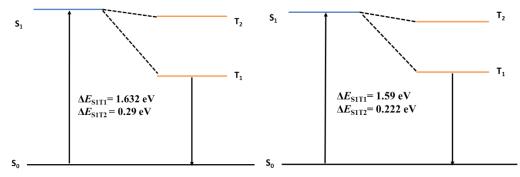
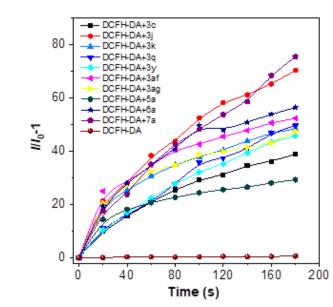
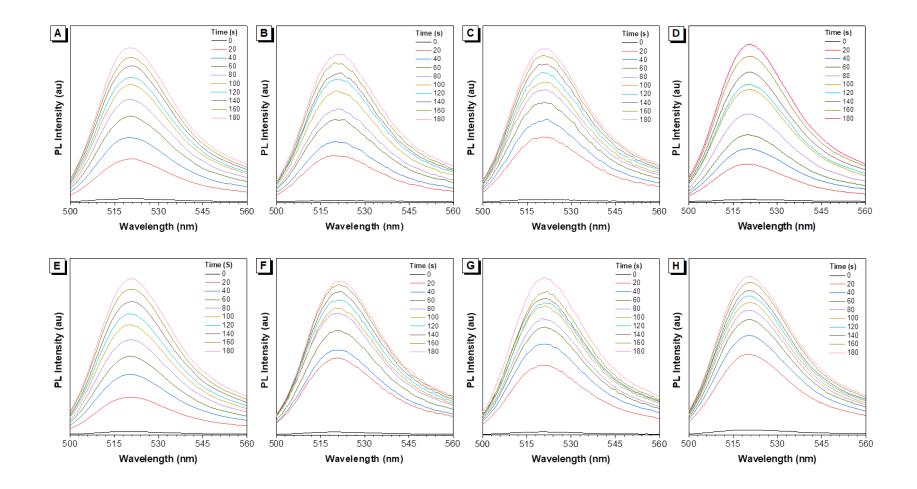




Fig. S71 Calculated energy level diagram between singlet and triplet states of 3y and 3j.

ROS Detection of IBFPOs

Fig. S72 Fluorescence intensity ratio of DCFH-DA (10 µM) with 3c, 3j, 3k, 3q, 3y, 3af, 3ag, 5a, 6a and 7a (10 µM) ROS detection under white light irradiation for different times.

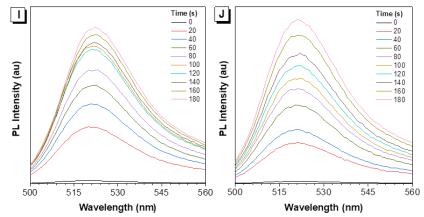


Fig. S73 PL spectra changes of DCFH-DA (10 μ M) in the presence of compounds ((A) 3c, (B) 3j, (C) 3k, (D) 3q, (E) 3y, (F) 3af, (G) 3ag, (H) 5a, (I) 6a, (J) 7a (10 μ M)) under white light irradiation for different times (0–180 s).

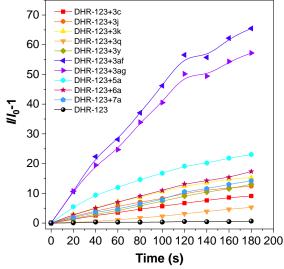
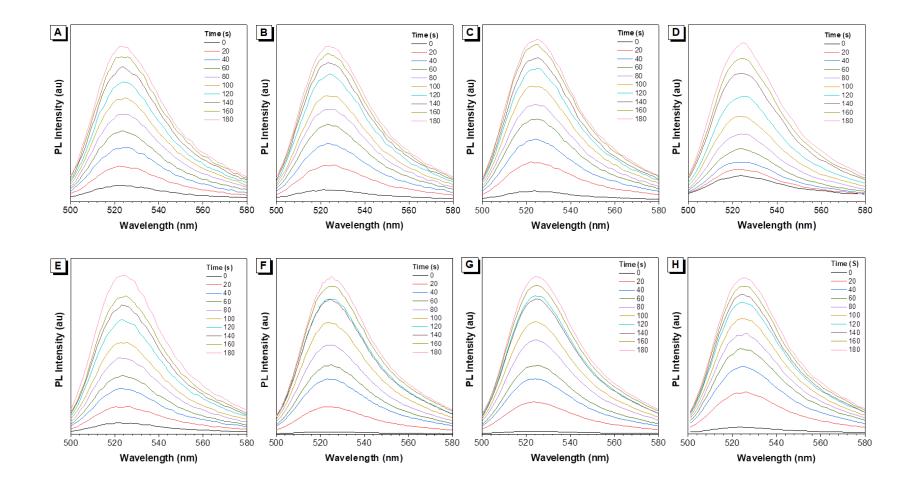



Fig. S74 Fluorescence intensity ratio of DHR-123 (10 µM) with 3c, 3j, 3k, 3q, 3y, 3af, 3ag, 5a, 6a and 7a (10 µM) ROS detection under white light irradiation for different times.

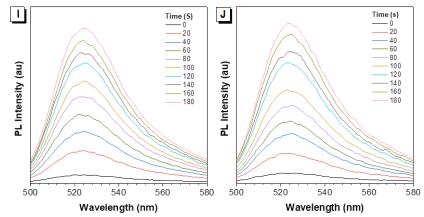


Fig. S75 PL spectra changes of DHR-123 (10 μ M) in the presence of compounds ((A) 3c, (B) 3j, (C) 3k, (D) 3q, (E) 3y, (F) 3af, (G) 3ag, (H) 5a, (I) 6a, (J) 7a (10 μ M))under white light irradiation for different times (0–180 s).

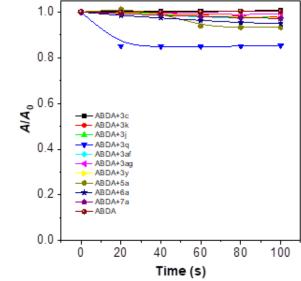
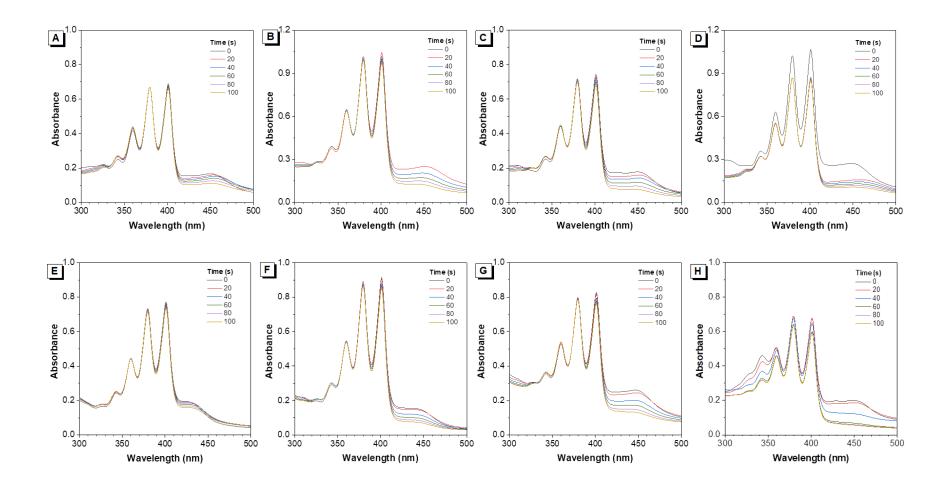



Fig. S76 Decomposition rates of ABDA (50 µM) with 3c, 3j, 3k, 3q, 3y, 3af, 3ag, 5a, 6a and 7a (10 µM) under white light irradiation for different times.

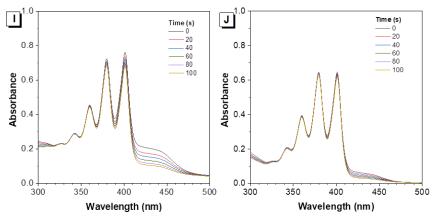
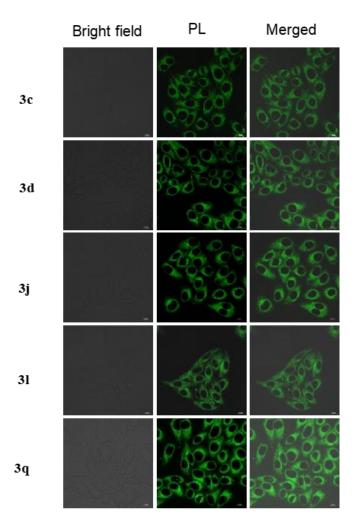
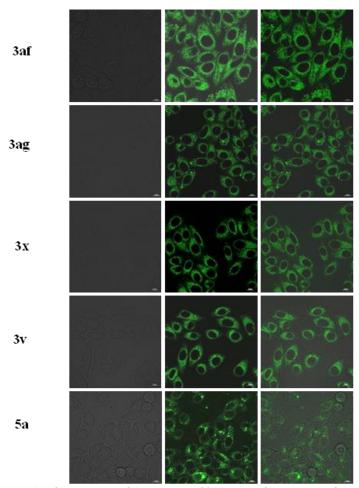
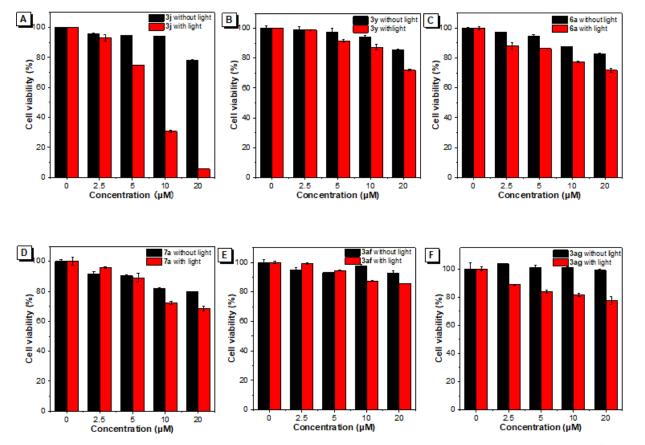
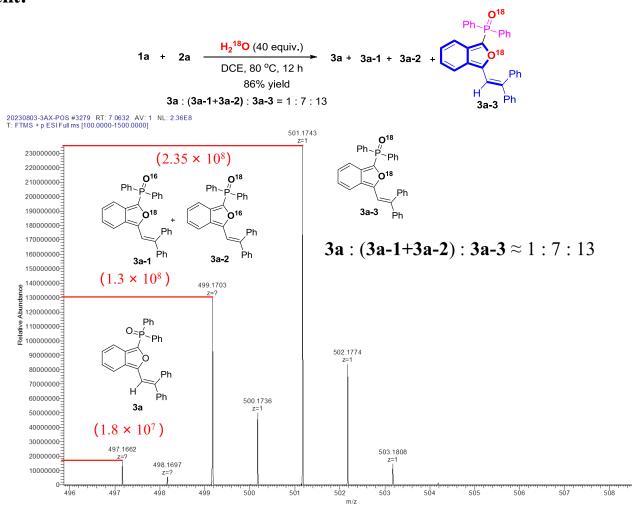
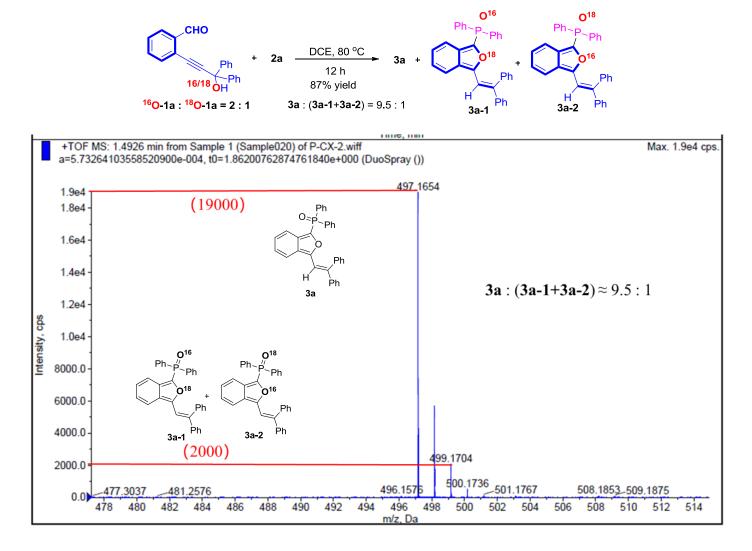



Fig. S77 Absorbance spectra changes of ABDA (50 μ M) in the presence of compounds ((A) 3c, (B) 3j, (C) 3k, (D) 3q, (E) 3y, (F) 3af, (G) 3ag, (H) 5a, (I) 6a, (J) 7a (10 μ M))under white light irradiation for different times (0–100 s).

Cell imaging of IBFPOs


Fig. S78 Fluorescence images of HeLa cells incubated with $3c (10 \mu M)$, $3d (10 \mu M)$, $3j (5 \mu M)$, $3l (10 \mu M)$, $3q (5 \mu M)$, $3af (10 \mu M)$, $3ag (10 \mu M)$, $3x (10 \mu M)$, $3v (10 \mu M)$ and $5a (10 \mu M)$ for 4 h.



CCK-8 assay of IBFPOs

Fig. S79 CCK-8 assays of HeLa cells treated with various concentrations of (A) 3j, (B) 3y, (C) 6a, (D) 7a, (E) 3af and (F) 3ag under dark and white light irradiation, respectively.

H₂O¹⁸ Experiment:

