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1. General Methods

'H NMR and 3C NMR spectra were recorded on a 400 MHz Bruker Biospin avance
11 HD spectrometer or a 600 MHz JEOL JNM-ECZ600S spectrometer. Deuterated
reagents for characterization and in situ reactions were purchased from Sigma-Aldrich
Chemical Co. and Cambridge Isotope Laboratories, Inc. (purity > 99.9%). The chemical
shifts (8) for tH NMR spectra, given in ppm, are referenced to the residual proton signal
of the deuterated solvent. Mass spectra were recorded on a Bruker IMPACT-II or
Thermo Scientific LCQ Fleet spectrometer. The UV-Vis spectra were recorded on a
Shimadzu UV-1700i spectrometer. All other reagents were obtained from commercial
sources and used without further purification, unless indicated otherwise.

Irradiation experiments. The UV and Visible light irradiation experiments were carried
out on a CEL-HXF300 xenon lamp with bandpass filters at 313 = 10 and 650 + 10 nm,
respectively.

Dynamic covalent reactions in solution. Dynamic Covalent Reactions (DCRS) were
performed in situ in CDCl3 at room temperature without isolation and purification, and
the mixture was characterized by *H NMR (400 MHz). See specific conditions in figure
or scheme captions of the main text or supplementary information if necessary.

The regulation of macrocycles. The regulation of macrocycles was performed in situ
in CDCI3 at room temperature, and the mixture was characterized by *H NMR (400
MHz). See specific conditions in figure captions of the main text or supplementary
information if necessary.
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2. Synthesis and Characterization

Scheme S1. Synthesis of 1,
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1a: 3,5-dibromo-2-methylthiophene (prepared according to the literature procedure,!
(5.12 g, 20.2 mmol) and 3-formylphenylboronic acid (3.60 g, 24.0 mmol) were
dissolved in toluene/ethanol (6:1, 70 mL). Pd(PPhz)s (185 mg, 0.16 mmol), Na.COs
(8.48 g, 80.0 mmol), and water (5 mL) were then added. The resulting mixture was
refluxed for 12 h. After the completion of reaction, the mixture was diluted by ethyl
acetate (150 mL). The combined organic layer was dried over Na>SOs, and the solvents
were evaporated in vacuo. The residue was purified by silica gel column
chromatography (petroleum ether/dichloromethane 20:1 to 8:1) to give the product 1la
(4.52 g, 80 %) as a white solid. '"H NMR (400 MHz, CDCls): 6 = 10.04 (s, 1H), 8.00 (s,
1H), 7.82 — 7.72 (m, 2H), 7.55 (t, J = 7.7 Hz, 1H), 7.21 (s, 1H), 2.44 (s, 3H). *C{*H}
NMR (101 MHz, CDCls): 192.0, 139.5, 137.1, 135.0, 134.6, 131.0, 129.8, 129.1, 126.7,
126.1, 110.4, 15.1. APCI-HRMS: m/z calculated for C12H1oBrOS [M + H]": 280.9630;
found: 280.9641.

1b: To a solution of 1a (2.31 g, 8.25 mmol) in toluene (120 mL), were added ethylene
glycol (5.12 g, 82.5 mmol) and p-TsOH H.O (157 mg, 0.82 mmol). The resulting
mixture was refluxed in a Dean-Stark trap until water ceased to be removed (16 h).
After the completion of reaction, EtsN (10 mL) was added. The mixture was washed
with brine (3 <50 mL), and the organic layer was dried over Na>SO4 and evaporated
in vacuo to give a yellow oil. The obtained crude product and PdCl2(PPhs). (288 mg,
0.41 mmol) were dissolved in degassed toluene (70 mL), and then pinacolborane (4.5
mL, 30.9 mmol) and EtzN (9.6 mL, 69.3 mmol) were added. The reaction was refluxed
for 13 h, cooled down, and then quenched with water (10 ml). The mixture was filtered
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through a pad of silica gel, and the solvents were washed with brine (3 <50 mL) and
dried over Na>SO4. Evaporation of the solvents in vacuo gave the product as a black
oil. The obtained crude product was dissolved in tetrahydrofuran (40 mL), and HCI
aqueous solution (1 M, 10 mL) and MeOH (5 mL) was added. The resulting mixture
was stirred for 4 h at room temperature. After the completion of reaction, the mixture
was diluted by ethyl acetate (150 mL) and washed with brine (3 <50 mL). The
combined organic layer was dried over Na2SO4 and evaporated in vacuo. The residue
was purified by silica gel column chromatography (petroleum ether/ethyl acetate 40:1
to 20:1) to give the product 1b (1.21 g, 45 %) as a white solid. '"H NMR (400 MHz,
CDCl): & = 10.03 (s, 1H), 8.06 (s, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 7.6 Hz,
1H), 7.53 (s, 1H), 7.50 (t, J = 7.7 Hz, 1H), 2.72 (s, 3H), 1.34 (s, 12H). *C{'H} NMR
(101 MHz, CDCl3): 6 = 192.4, 153.5, 139.2, 137.0, 135.6, 131.4, 130.2, 129.6, 128.0,
126.7,83.6,25.1, 16.1. ESI-HRMS: m/z calculated for C1sH22BOsS [M +H]": 329.1377;
found: 329.1385.

le: 3,4-dibromo-5-methoxyfuran-2(5H)-one (prepared according to the literature
procedure,? 0.66 g, 2.4 mmol), Pd(dppf)Cl, (0.15 g, 0.20 mmol), and 1b (0.65 g, 2.0
mmol) were dissolved in tetrahydrofuran (50 mL), and cesium fluoride (0.91 g, 6.0
mmol) and water (5 mL) were added. The reaction mixture was stirred at room
temperature for 48 h. After the completion of reaction, the mixture was diluted by ethyl
acetate (150 mL). The combined organic layer was washed with brine (3 x 20 mL),
dried over Na>SO4, and evaporated in vacuo. The residue was purified by silica gel
column chromatography (petroleum ether/ethyl acetate 20:1 to 10:1) to give the product
1c¢ (0.39 g, 50%) as a white solid. '"H NMR (400 MHz, CDCls): § = 10.06 (s, 1H), 8.05
(s, IH), 7.83 —7.80 (m, 2H), 7.58 (t, J="7.7 Hz, 1H), 7.55 (s, 1H), 6.11 (s, 1H), 3.60 (s,
3H), 2.58 (s, 3H). *C{'H} NMR (101 MHz, CDCls): = 192.0, 166.3, 153.0, 142.5,
140.3, 137.1, 134.4, 131.4, 129.9, 129.5, 127.6, 126.2, 123.6, 112.8, 103.8, 56.7, 15.9.
ESI-HRMS: m/z calculated for C17H12BrO4S [M - H]: 390.9645; found: 390.9644.

le: 1c (0.87 g, 2.22 mmol) and 1d (prepared according to the literature procedure,>
2.45 g, 6.66 mmol) were disssolved in THF/H>O (10:1, 75 mL), and then PdCI>(PPh3),
(0.16 g, 0.22 mmol) and Na,COs3 (0.94 g, 8.88 mmol) were added. The reaction mixture
was refluxed for 10 h. The mixture was diluted by ethyl acetate (250 mL). The organic
layer was washed with brine (3 x 50 mL), dried over Na>SQO4, and evaporated in vacuo.
The residue was purified by silica gel column chromatography (petroleum ether/ethyl
acetate 20:1 to 10:1) to give the product 1e (1.01 g, 82%) as a white solid. 'H NMR
(400 MHz, CDCl3): 6 =10.05 (s, 1H), 8.02 (s, 1H), 7.80 (d, J= 7.6 Hz, 1H), 7.76 (d, J
= 7.8 Hz, 1H), 7.66 — 7.54 (m, 5H), 7.35 (m, 2H), 6.12 (s, 1H), 3.69 (s, 3H), 2.09 (s,
3H), 2.06 (s, 3H). '°F NMR (376 MHz, CDCl3): § =-62.54. 1*C{'H} NMR (101 MHz,
CDCl3): 6=191.9,170.0, 150.4, 141.8, 140.8, 140.4, 139.6, 137.1, 137.0, 134.4, 131.2,
129.8,129.4,129.4,129.1,128.2, 125.9,125.9, 125.9, 125.8, 125.6, 125.5, 125.4, 125.2,
123.5,122.7,102.9, 56.9, 14.8. ESI-HRMS: m/z calculated for C20H20F304S2, [M - H]:
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553.0761; found: 553.0760.

1o: 1e (0.50 g, 0.9 mmol) was dissolved in acetic acid (30 mL), and 48% HBr (6 mL)
was added. The resulting mixture was refluxed for 14 h. After the completion of
reaction, the mixture was diluted with ethyl acetate (150 ml). The organic layer was
washed with saturated NaHCO3 solution and then brine, dried over Na;SO4, and
evaporated in vacuo. The residue was purified by silica gel column chromatography
(petroleum ether/ethyl acetate 20:1 to 10:1) to give the product 1, (0.41 g, 85%) as a
white solid. 'TH NMR (400 MHz, CDsCN): § = 10.00 (s, 1H), 8.02 (s, 1H), 7.81 (t, J =
6.8 Hz, 2H), 7.72 (d, J= 8.1 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.58 (t, J="7.7 Hz, 1H),
7.46 (s, 1H), 7.41 (s, 1H), 6.52 (s, 1H), 5.60 (s, 1H), 2.11 (s, 3H), 2.08 (s, 3H). '’F NMR
(376 MHz, CD3CN): § = -63.03. 3C{'H} NMR (101 MHz, CDsCN): § = 193.3, 170.8,
154.2, 142.6, 141.6, 140.6, 139.7, 138.3, 138.2, 135.2, 131.8, 130.91, 130.87, 129.96,
129.5,129.5, 129.2, 127.3, 126.9, 126.7, 126.6, 126.5, 125.4, 125.3, 124.0, 98.4, 14.9,
14.6. ESI-HRMS: m/z calculated for CysHigF304S2 [M - H]: 539.0604; found:
539.0602.

Scheme S2. Synthesis of 6, and 10,.

6,n=1
10,n=3

6,: A solution of 1, (32.5 mg, 0.060 mmol) in CH3CN (6.0 mL) was irradiated at 313
nm for 3 h, and N,N'-dimethyl-1,4-butanediamine (3.15 mg, 0.027 mmol) was added.
The reaction was stirred under dark for 12 h at room temperature, and then diluted with
CH3CN (12 mL). The resulting mixture was irradiated at 650 nm until the suspension
turned from black to red. The solvents were evaporated in vacuo. The residue was
purified by silica gel column chromatography (CHCI3) to give the product 6, (17.4 mg,
56%) as a white solid. '"H NMR (400 MHz, CDCl3): § = 9.97 (s, 2H), 7.92 (s, 2H), 7.72
(d, J=17.7 Hz, 2H), 7.68 — 7.64 (m, 2H), 7.62 (d, J = 8.4 Hz, 4H), 7.57 (d, J = 8.3 Hz,
4H), 7.52 — 7.45 (m, 2H), 7.32 (s, 2H), 7.20 (d, J = 3.8 Hz, 2H), 6.06 (s, 2H), 2.77 —
2.58 (m, 4H), 2.24 (s, 6H), 2.02 (s, 6H), 1.99 (s, 6H), 1.45 — 1.26 (m, 4H). '°F NMR
(376 MHz, CDCl): § = -62.52. 3C{'H} NMR (101 MHz, CDCl3): § = 191.9, 170.9,
151.5, 141.2, 140.4, 140.02, 139.6, 137.3, 137.1, 134.5, 131.2, 130.3, 129.9, 129.8,
129.5,129.1, 129.0, 126.2, 126.00, 125.8, 125.7, 125.5, 125.4, 124.0, 122.9, 98.6, 52.7,
34.7,24.9, 15.1, 14.9. ESI-HRMS: m/z calculated for CeHsoN20sSsF¢Na [M + Na]",
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1183.2348; found: 1183.2307.

10,: 10, was synthesized from 1, (32.5 mg, 0.060 mmol) and N,N'-dimethyl-1,6-
hexanediamine (3.90 mg, 0.027 mmol) according to the procedure of 6,. The residue
was purified by silica gel column chromatography (CHCls) to give the product 10, (18.2
mg, 57%) as a white solid. 'H NMR (400 MHz, CDCl;s): § = 10.00 (s, 2H), 7.97 (s, 2H),
7.75 (d,J=17.5 Hz, 2H), 7.70 (d, /= 7.7 Hz, 2H), 7.64 (d, J= 8.4 Hz, 4H), 7.59 (d, J =
8.3 Hz, 4H), 7.52 (t, J = 7.7 Hz, 2H), 7.37 (s, 2H), 7.24 (s, 2H), 6.07 (s, 2H), 2.80 —
2.59 (m, 2H), 2.31 (s, 6H), 2.06 (s, 6H), 2.04 (s, 6H), 1.48 — 1.33 (m, 4H), 1.22 — 1.05
(m, 4H). ’F NMR (376 MHz, CDCls): § = -62.53.13C{'H} NMR (101 MHz, CDCl;):
0=191.9,171.0, 151.6, 141.2, 140.4, 139.9, 139.5, 137.3, 137.1, 134.6, 131.2, 130.3,
129.9,129.6, 129.4,129.1, 129.1, 126.1, 126.0, 125.8, 125.7, 125.6, 124.1, 122.9, 98.6,
53.1, 34.8, 27.6, 27.0, 15.1, 14.9. ESI-HRMS: m/z calculated for CesHs4N204S4F¢Na
[M + Na]", 1211.2661; found: 1211.2662.
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'H NMR and 3C NMR Spectra
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Figure S1. "H NMR spectrum of 1a in CDCls.
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Figure S2. °C NMR spectrum of 1a in CDCls.
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Table S1. Summary of crystallographic data.

Compound 1
Formula CseH3sF608S4
Formula weight 1081.10
T/IK 100.00(13)
Crystallization solvent acetonitrile
Color colorless
Crystal system triclinic
Space group P-1
alA 10.8235(3)
b/A 15.9748(5)
c/A 17.4694(5)
al © 63.306(3)
pl< 80.700(2)
yl < 87.091(2)
I 2662.30(15)
z 2
Dx/gcm 1.349
w/mm? 1.491
F(000) 1112.0
fOrange /@ 4.984 t0 110.376
GOF on F? 1.351
Ri[lI>20(D] 0.1015
WR: (all data) 0.3378
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Photoswitching Experiment

A
‘C}HOHO o,
c) b + 650 nm i _JL
cHoN, | B
N CHO/o-1, | ECT,/MC
b)a + 313 nm A L P
_____ | BTSN S E—
{CHO/M, |
i b
a) 1, " _JL
/
| ! ] ! | ! | Y | !
104 10.2 10.0 9.8 6.4
B
J l 1 c)b + 650 nm u
b)a + 313 nm
|- T L SN
J ol o 1L

Figure S15. Photoswitching of 1, (10 mM) in CDCls. (A) (a) '"H NMR spectrum of 1,
(10 mM) in CDCls; (b) Irradiation of 1, with UV light (313 nm, 150 min), the ratio of
1, and 1. is 4:96, and the ratio of ¢-1¢ and o-1¢ is 57:43; (c) Further irradiation with

visible light (650 nm, 150 min). (B) The full '"H NMR spectra of A.
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Figure S16. Photocyclization of 1, to give 1c: changes in absorption spectra upon
irradiation of 1, (25 uM, CHCIl3) with 313 nm light. Inset: the change of absorbance at

590 nm with irradiation time.
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Figure S17. Photocycloreversion of 1¢ to give 1,: changes in absorption spectra upon
irradiation of 1. (25 uM, CHCIl3) with 650 nm light. Inset: the change of absorbance at

590 nm with irradiation time.
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Figure S18. The UV-Vis absorbance spectra of 1, (25 uM, CHCls) after multiple
alternating irradiations at 313 nm (64 s) and 650 nm (8 min). Inset: the change of

absorbance at 590 nm after alternating irradiations.
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3. Formation and Characterization of [1+1] Macrocycles

CHM,-b
CHy/1,-b \
N
.l ‘. | b)a+1-butylamine , - W

CHA,

J l \l a) 1,

11.0 10.5 10.0 9.5 9.0 85 80 7.5 7.0 65 60 55 50 45 40 35 3.0 25 20 15 1.0
1 (ppm)

Figure S19. The reaction of 1, with primary monoamine. (a) '"H NMR spectrum of 1,
(10 mM) in CDCls; (b) The addition of 1-butylamine (1.0 equiv.) to panel a. 1,
converted to 1,-b after 1 day, and the conversion of reaction was 82%. The hemiacetal
from site a remained nearly unreactive.

CHOM,
N
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CHO/M,-a CHA -2
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1 1 ¢) b + 650 nm

A Il
CHON,-a
CH,/1 -a
\

{ ij l l I b) a + 1-butylamine

CHOM,
¢CHO/O-1° I CHle-,
i ‘F_-‘:I J‘_';i: a) 1C .

105 10.0 95 90 85 80 75 70 65 6.0 55 50 45 40 35 30 25 20 15 1.0

1 (ppm)

Figure S20. The reaction of 1. with primary monoamine. (a) '"H NMR spectrum of 1
(10 mM, created from the irradiation of 1,at 313 nm) in CDCIs; (b) The addition of 1-

butylamine (1.0 equiv.) to panel a. 1. converted to 1c-a within 3 min. (c) Irradiation of

panel b at 650 nm for 120 min to give 1o,-a. The aldehyde from site b remained nearly

unreactive.
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CHy/1,-ac
\ CH./M,-ac

L R

b) a + benzylamine

CHOM,-
P 2 CH,/1.-a

11.010.510.0 9.5 9.0 85 8.0 7.5 7.0 65 60 55 50 45 40 3.5 3.0 25 2.0 1.5 1.0
1 (ppm)

Figure S21. The exchange reaction of 1,-a with primary monoamine. (a) 'H NMR
spectrum of 1,-a (10 mM, as the procedure in Figure S20) in CDCls; (b) The addition
of benzylamine (1.0 equiv.) to panel a. 1,-a converted to 1,-ac after 2 days, and the
conversion of reaction was 90%. The hemiaminal ether from site a remained nearly
unreactive. In Figures S21 and S22, the a and c refer to the amine adducts from 1-

butylamine and benzylamine, respectively.
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e) a + 1-butylamine

d) ¢ + benzylamine

CHOM-c
c)1.c /\_ :
CHM-ce | CH/laC Ch1.ca
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a) 1.a J | .L ] l I A L/\MA_L
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S22

Figure S22. The exchange reaction of 1c-a with primary monoamine. (a) 'H NMR
spectrum of 1¢c-a (10 mM, as the procedure in Figure S20) in CDCls; (b) The addition
of benzylamine (1.0 equiv.) to panel a. The system reached equilibrium in 2 days; (c)
"H NMR spectrum of 1.-¢ (10 mM, created in situ from 1. and benzylamine (1.0 equiv.)
for 3 min) in CDCI; for comparison; (d) The addition of benzylamine (1.1 equiv.) to
panel c. 1.-¢ converted to 1c.-cc after 1 day; (e) The addition of 1-butylamine (1.1 equiv.)
to panel a. 1c-a converted to 1.-aa after 1 day; (B) The full '"H NMR spectra of A. The

amine exchange of hemiaminal ether from site a remained occurred.



Scheme S3. (A) Synthesis of [1+1] type macrocycles. (B) List of the selected diamines

for the formation of [ 1+1] type macrocycles.

n

o1+1]
R= 4-CF,Ph

B

- 2a: HZN*’H/\NHZ

. HoN
2< 2ot TN, o-[1+1]: R

. 2c: HZN*’71/1\NH2

Synthesis of c-[1+1] type macrocycles: The c-[1+1] type macrocycles were created in
situ. A solution of 1, (10 mM, CDCl3) was irradiated at 313 nm for 150 min. The
primary diamine (1.0 eq.) was then added, and the resulting mixture was stirred under
dark for 70 min at room temperature. The yield of ¢-[1+1] macrocycles was nearly

quantitative.
Synthesis of o-[1+1] type macrocycles: The o-[1+1] type macrocycles were created

by irradiation of c-[1+1] macrocycles at 650 nm for 75 min. The conversion of ¢-[1+1]

to o-[1+1] macrocycles was quantitative.
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Figure S23. '"H NMR spectra of 3a. (created in situ from 1. (10 mM) and 2a (1,8-
diaminooctane, 1.0 equiv.) for 1 h) in CDCls.
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Figure S24. Partial 2D 'H-'H COSY NMR spectrum of 3a. (created in situ from 1. (10

mM) and 2a (1.0 equiv.) for 1 h) in CDCls.
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Figure S25. Partial 2D '"H-'"H NOESY NMR spectrum of 3a. (created in situ from 1.
(10 mM) and 2a (1.0 equiv.) for 1 h) in CDCls.
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g) 70 min
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c) 10 min
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CHOM,
a) 1, \"H
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Figure S26. (A) Stacked 'H NMR spectra of the reaction of 1. (10 mM) with 2a (1.0

equiv.) in CDCls. The conversion of reaction was 97%. (B) The kinetics profile of the
reaction of 1¢ with 2a in 70 min.
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CH,/3a,

CHO/4a, o3 2CH,/4a,
2/9a, 1

A
I B
f )

a) 2a
10.3 10.2 10.1 10.0 9.9 9.8 8.4 83 35 34 33 32 31 30 29 28 27 26 25
B 1 (ppm)

bla*i. , I )

a) 2a ‘L

11.010.5 10.0 9.5 9.0 85 8.0 75 7.0 65 6.0 55 50 45 40 3.5 3.0 25 20 15 1.0
1 (ppm)

Figure S27. The reaction progress of 1. and 2a. (A) (a) 'H NMR spectrum of 2a (10
mM) in CDCIs; (b) The addition of 2a (1.0 equiv.) to 1c (10 mM, CDCI3). After the
reaction for 5 min, the peak at 2.67 ppm (CH2/2a) disappeared, with the formation of
intermediate 4a. and macrocycle 3ac; (B) The full 'H NMR spectra of A.
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Figure S29. Partial 2D 'H-'H COSY NMR spectrum of 3a, (10 mM, created by
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Figure S28. '"H NMR spectra of 3a, (10 mM

for 75 min) in CDClIs.
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Figure S30. Partial 2D 'H-'"H NOESY NMR spectrum of 3a, (10 mM, created by
irradiation of 3a. at 650 nm for 75 min) in CDCls.
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Figure S31. ESI mass spectrum of 3a, (created by irradiation of 3a. at 650 nm for 75

min).
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Figure S32. The changes of 'H NMR spectrum of 3a with photoswitching. (A) (a) 'H
NMR spectrum of 3ac (10 mM, created in situ from 1. and 2a) in CDCl3; (b) Irradiation
of 3a. at 650 nm for 75 min to give 3a,. The conversion of 3a. to 3a, was quantitative;
(c) Further irradiation with UV light (313 nm, 120 min) to restore 3a.. The ratio of 3a.
and 3a, is 98:2. (B) The full 'H NMR spectra of A.
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Figure S33. 'H NMR spectra of 3b. (created in situ from 1. (10 mM) and 2b (1,10-
diaminodecane, 1.0 equiv.) for 1 h) in CDCls.
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Figure S34. Partial 2D 'H-'H COSY NMR spectrum of 3b. (created in situ from 1. (10

mM) and 2b (1.0 equiv.) for 1 h) in CDCls.
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Figure S35. Partial 2D 'H-'"H NOESY NMR spectrum of 3b, (created in situ from 1

(10 mM) and 2b (1.0 equiv.) for 1 h) in CDCls.
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Figure S36. '"H NMR spectra of 3b, (10 mM, created by irradiation of 3b. at 650 nm

for 75 min) in CDClIs.
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Figure S37. Partial 2D 'H-'"H COSY NMR spectrum of 3b, (10 mM, created by

irradiation of 3b. at 650 nm for 75 min) in CDCls.
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Figure S38. Partial 2D 'H-'"H NOESY NMR spectrum of 3b, (10 mM, created by

irradiation of 3b. at 650 nm for 75 min) in CDCls.
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Figure S39. ESI mass spectrum of 3b, (created by irradiation of 3b. at 650 nm for 75

min).
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Figure S40. '"H NMR spectra of 3¢, (created in situ from 1. (10 mM) and 2¢ (1,12-

diaminododecane, 1.0 equiv.) for 1.5 h) in CDCls.
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Figure S41. Partial 2D 'H-'H COSY NMR spectrum of 3¢, (created in situ from 1. (10

mM) and 2¢ (1.0 equiv.) for 1.5 h) in CDCls.
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Figure S42. Partial 2D 'H-'"H NOESY NMR spectrum of 3¢, (created in situ from 1.
(10 mM) and 2¢ (1.0 equiv.) for 1.5h) in CDCls.
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Figure S43. '"H NMR spectra of 3¢, (10 mM, created by irradiation of 3c. at 650 nm
for 75 min) in CDCls.
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Figure S44. Partial 2D 'H-'H COSY NMR spectrum of 3¢, (10 mM, created by

irradiation of 3¢. at 650 nm for 75 min in CDCIl3) in CDCls.
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Figure S45. Partial 2D 'H-'"H NOESY NMR spectrum of 3¢, (10 mM, created by

irradiation of 3¢, at 650 nm for 75 min in CDCIl3) in CDCl3.
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Figure S46. ESI mass spectrum of 3¢, (created by irradiation of 3cc at 650 nm for 75
min in CDCls).
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4. Regulation of [1+1] Macrocycles
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Figure S47. The regulation of [1+1] macrocycles. (A) 'H NMR spectra of pre-formed
macrocycle 3a. (10 mM) in CDCl;3 (a), 3a, (b), the addition of MA (2.0 equiv.) into 3a,
(c) and then DBU (2.3 equiv.) (d) to break/remake 3a,, as well as the irradiation at 313
nm for 150 min (e), followed by the addition of DBU (2.3 equiv.) (f) and then irradiation
at 650 nm to restore 3a, (g). (B) The full 'H NMR spectra of A.
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Figure S48. Precise formation/scission of o-[1+1] macrocycles with acid/base stimuli.
(A) (a) '"HNMR spectrum of 3a, (10 mM) in CDCls; (b) The addition of MA (2.0 equiv.)
to 3a,. 3a, converted to 4a,-2H" immediately (3 min); (c) The addition of DBU (2.3
equiv.) to the panel b. 4a,-2H" converted to 3a, after 80 h.
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Figure S49. Precise formation/scission of [ 1+1] macrocycles through a combination of
light and acid/base stimuli. (a) '"H NMR spectrum of 4a,-2H" (10 mM) in CDCl3, as
generated in Figure S48; (b) Irradiation of panel a at 313 nm for 150 min. The
hydrolysis of hemiaminal ether was turned on to afford 1c; (c) The addition of DBU
(2.3 equiv.) to panel b. 1. converted to 3a. after 3 h, the ratio of 1. and 3ac is 4:96. Due
to the basicity of the solution, the peak of CHa/3a. disappeared; (d) Irradiation of panel
¢ at 650 nm for 75 min to give 3a,; (¢) 'H NMR spectrum of 3a, (10 mM) in CDCls for

comparison.
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Figure S50. Dissociation of pseudorotaxane via construction of [ 1+1] macrocycles. (a)
'"H NMR spectrum of pseudorotaxane 2a@P[5] (created by mixing P[5] (10 mM) and
2a (1 equiv.) in CDCIl3); (b) The addition of 1 (1.0 equiv.) to panel a. After 1 h, 2a@P[5]
and 1. converted to the macrocycle 3a. and free P[5]; (c) '"H NMR spectrum of mixture
of 3a. (10 mM) and P[5] (1 equiv.) in CDCl;. (B) The full '"H NMR spectra of A.
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Figure S51. The addition of P[5] to the solution of 4a,-2H" (10 mM) in CDCls, as

generated in Figure S48. (a) 'TH NMR spectrum of 4a,-2H* (10 mM) in CDCl;; (b) The

addition of P[5] (1.0 equiv.) to panel a; (c) 'H NMR spectrum of P[5] (10 mM) in

CDCls for comparison. The formation of pseudorotaxane 4a,-2H @P[5] was not found.

| CHOJ4a,-2H"
a) 4a,-2H" “ \
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5. Formation and Characterization of [2+1+1°] Macrocycles

Path A

d) c + 1-butylamine
CHO/M,-A
\
c)b + 650 nm I |
CHOM -A CHJA.-A
X
b)a + piperidinel “M || ih:
CH&OHC
CHO/o-1, CHle-,
a) 1. £ e
11.511.010.510.0 95 9.0 85 80 75 7.0 65 6.0 55 50 45 40 35 3.0 25 20 15 1.0
1 (ppm)

Figure S52. Creation of 1,-B by path A. (a) '"H NMR spectrum of 1. (10 mM, created
from the irradiation of 1,at 313 nm) in CDClIs; (b) The addition of piperidine (1.1 equiv.)
to panel a. After 12 h, 1. converted to 1.-A completely; (c) Irradiation of panel b with
visible light (650 nm, 150 min); (d) The addition of 1-butylamine (1.1 equiv.) to panel
c. 1,-A converted to 1,-B after 5 days. The peaks at 6.0 and 8.3 ppm were assigned to
cyclic hemiaminal ether and open imine methine protons, respectively. The integral
ratio of imine CH peak and hemiaminal ether CH peak is 1:0.93.
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CHy/1,-B CH/1,-B

1.0
10.804

8.4 8.2(~y | 6.05.9 MN’\)\.L‘_L‘

c)b + 650 nm [ |

CH,/1.-B CH.M.-B
b) a + 1-butylamine I_M ;Jhu " -'l]lf A A/\._\__AAVVW\'\.LL

CHO/M.-A CHA.-A

a)1-A r lu“&l N ,l‘f- - . ML._

11.0 10.5 10.0 9.5 9.0 85 8.0 7.5 7.0 65 6.0 55 50 45 40 35 3.0 25 20 15 1.0
1 (ppm)

Figure S53. Creation of 1,-B by path B. (a) 'H NMR spectrum of 1.-A (10 mM, created
in situ from the reaction of 1. and piperidine (1.1 equiv.)) in CDCIs; (b) The addition of
I-butylamine (1.1 equiv.) to panel a. 1.-A converted to 1.-B after 5 days; (c) Irradiation
of panel b with visible light (650 nm, 150 min); (d) '"H NMR spectrum of 1,-B (10 mM,
created by path A in Figure S52) for comparison. The peaks at 6.0 and 8.3 ppm were
assigned to cyclic hemiaminal ether and open imine methine protons, respectively. The
integral ratio of imine CH peak and hemiaminal ether CH peak is 1:0.8.

S45



. r JAA\ CHaf'Eg! JJ

CHO/6, CH,/6, |
1 !
c)a+ 650 nm J | , l

CHO/6, CH,/6,

b) 6. ] LN
|CHO/6 CH,/6,

a)1.+5a | N

11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 25 1.5 0.5
1 (ppm)

Figure S54. Creation of 6, by the reaction of 1¢ and 5a in situ. (a) 'H NMR spectrum
of the reaction of 1. (10 mM) and 5a (0.5 equiv.) in CDCls in 5 days to give 6c; (b) 'H
NMR spectrum of 6. (5 mM) in CDCls. The precipitates formed upon the reaction of 1.
and 5a (0.5 equiv.) in CH3CN for 12 h, which was collected and then dissolved in CDCls;
(c) Irradiation of panel a with visible light (650 nm, 150 min). The yield of 6, is 75%;
(d) '"H NMR spectrum of 6, (5 mM, prepared and isolated as detailed in synthesis
section) in CDCl; for comparison.

S46



Scheme S4. (A) Synthesis of [2+1+1°] type macrocycles. (B) List of the dialdehydes,

primary diamines, and [2+1+1’] type macrocycles.

A
R= 4-CF4Ph
B
Primary diamine: HZN/\/\/\/\/NHQ HZN/\/\/\/NHz HZN/\/\/NHZ
2a 2d 2e
Dialdehyde:

[2+1+1"] type
macrocycles:

/N\/_\/N\ ‘ ‘
NN

General methods: The [2+1+1°] type macrocycles were created in situ. The primary
diamine (1 equiv.) was added into a solution of dialdehyde 6, or 9, (5 mM, CDClz) and
the resulting mixture was stirred under dark at 40 °C for 12 h. The yield of [2+1+1°]

type macrocycles was nearly quantitative.
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Figure S55. 'H NMR spectra of 7, (created in situ from the reaction of 6, (5 mM) and

2d (1,6-diaminohexane, 1 equiv.) at 40 °C for 12 h) in CDCls.

7.0 6.5 6.0 3.5 3.0 25
f2 (ppm)

Figure S56. Partial 2D '"H-'"H COSY NMR spectrum of 7, (created in situ from the
reaction of 6, (5 mM) and 2d (1 equiv.) at 40 °C for 12 h) in CDCls.
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Figure S57. Partial 2D 'H-'"H NOESY NMR spectrum of 7, (created in situ from the
reaction of 6, (5 mM) and 2d (1 equiv.) at 40 °C for 12 h) in CDCls.
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0.5 Chemical Formula: CggHgoFgN404S,
Exact Mass: 1240.3558
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0.0

1240 1241 1242 1243 1244 1245 1246 m/z

Figure S58. ESI mass spectrum of 7, (created in situ from the reaction of 6, and 2d in
CDCl).
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Figure S59. 'H NMR spectra of 8, (created in situ from the reaction of 6, (5 mM) and

2a (1,8-diaminooctane, 1 equiv.) at 40 °C for 12 h) in CDCls.
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Figure S60. Partial 2D '"H-'"H COSY NMR spectrum of 8, (created in situ from the
reaction of 6, (5 mM) and 2a (1 equiv.) at 40 °C for 12 h) in CDCls.
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Figure S61. Partial 2D 'H-'"H NOESY NMR spectrum of 8, (created in situ from the
reaction of 6, (5 mM) and 2a (1 equiv.) at 40 °C for 12 h) in CDCls.
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Figure S62. ESI mass spectrum of 8, (created in situ from the reaction of 6, and 2a in
CDCls).

S51



KrOrOhTNOOODOWN®OWO - ©COLTONO KT
NOoLoOoLLLITTTMMM™T 0O ~ OCNOON®M®
ONNMNNMNMNNMENNNNNNNNNNGOG O ] NN~~~
R \ N e
MO NOOOOW
GaoBnnnddEnn
[ S A A N S S N S A
SV A
N— N
m
9
0
2NN
I T S S e
765 755 7.45 7.35
1 (ppm) \ |
ST
o
P el i 2
il‘i‘ o m
' 3 ‘
OCTUNCOR T ® =) o Nooand
SorNOOTO0OO =1 - orooro
NN NN~ N o < <+ ©©60oss
10.510.0 9.5 9.0 85 80 7.5 7.0 65 6.0 55 50 45 4.0 35 3.0 25 2.0 15 1.0 0.5 0.0

1 (ppm)
Figure S63. 'H NMR spectra of 9, (created in situ from the reaction of 6, (5 mM) and
2e (1,4-diaminobutane, 1 equiv.) at 40 °C for 12 h) in CDCls.
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Figure S64. Partial 2D '"H-'"H COSY NMR spectrum of 9, (created in situ from the
reaction of 6, (5 mM) and 2e (1 equiv.) at 40 °C for 12 h) in CDCl;.
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Figure S65. Partial 2D '"H-'"H NOESY NMR spectrum of 9, (created in situ from the
reaction of 6, (5 mM) and 2e (1 equiv.) at 40 °C for 12 h) in CDCls.
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Figure S66. ESI mass spectrum of 9, (created in situ from the reaction of 6, and 2e in
CDCl).
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Figure S67. "H NMR spectra of 11, (created in situ from the reaction of 10, (5 mM)
and 2a (1,8-diaminooctane, 1.0 equiv.) at 40 °C for 12 h) in CDCls.
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Figure S68. Partial 2D 'H-'H COSY NMR spectrum of 11, (created in situ from the
reaction of 10, (5 mM) and 2a (1.0 equiv.) at 40 °C for 12 h) in CDCls.
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Figure S69. Partial 2D 'H-'H NOESY NMR spectrum of 11, (created in situ from the
reaction of 10, (5 mM) and 2a (1.0 equiv.) at 40 °C for 12 h) in CDCls.
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Figure S70. ESI mass spectrum of 11, (created in situ from the reaction of 10, and 2a

in CDCls.
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6. Regulation of [2+1+1’] Macrocycles

MA
DBU
CHU/7, CH.J/T,
c)b + DBU :'[; M ¥
A~ H [
%HO/BO CH./6,
b)a + MA g | I
)a I L I
CHJT,
Ao | LM f A
11.0 16.0 3‘.0 I 7'.0 5'.0 I 5'.0 I 4'.0 I 3'.0 I 2'.0 ‘ 1'.0 I OI.U
1 (ppm)

Figure S71. Precise formation/scission of [2+1+1°] macrocycles through acid/base
stimuli. (a) 'H NMR spectrum of 7, (5 mM, created in situ from 6, and 2d) in CDCl;;
(b) The addition of MA (2 equiv.) to panel a. 7, converted to 6, and 2d-2H" immediately
(3 min); (c) The addition of DBU (2.3 equiv.) to panel b. 6, converted back to 7, in 80

h.
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c) 3a,
b)a+ 2eq. 2a
qt'?ifsc CH./6
: a c
a) 6. 1
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Figure S72. The addition of 2a (2.0 eq.) to 6. (5 mM) to give mainly 3a.. (A) (a) 'H
NMR spectrum of 6. (5 mM, created by irradiation of 6, at 313 nm for 150 min); (b)
The addition of 2a (2.0 eq.) to panel a. The system reached equilibrium in 2 h; (c) 'H
NMR spectrum of 3a. (10 mM, created in situ from the reaction of 1. and 2a in CDCl;)

for comparison; (d) Irradiation of panel b at 650 nm for 150 min; (e) "H NMR spectrum
of 3a, (10 mM, CDCI;) for comparison. (B) The full '"H NMR spectra of A.
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Figure S73. The changes of 'H NMR spectrum of 8, with photoswitching. (A) (a) 'H
NMR spectrum of 8, (5 mM, created in situ from the reaction of 6, and 2a) in CDCls;
(b) Irradiation of panel a at 313 nm for 120 min; (c) After 5 days, the system reached

equilibrium; (d) Irradiation of panel b at 650 nm for 150 min. The ratio of 8, and 3a, is
82:18; (e) Irradiation of panel ¢ at 650 nm for 150 min, the ratio of 8, and 3a, is 59:41;.
(B) The full 'H NMR spectra of A.
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Figure S74. The conversation of 8. to 3a,. (A) (a) 'H NMR spectrum of 8, (5 mM,
created in situ from the reaction of 6, and 2a) in CDCls; (b) Irradiation of panel a at 313
nm for 120 min; (c¢) The addition of 2a (1.0 equiv.) to panel b. 8 converted to 3a. in
120 min; (d) "H NMR spectrum of 3a. (10 mM, created in situ from the reaction of 1
and 2a) in CDCIs for comparison; (e) Irradiation of panel b at 650 nm for 120 min; (f)
'"H NMR spectrum of 3a, (10 mM) in CDCl; for comparison. (B) The full 'H NMR
spectra of A.
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Figure S75. The conversation of 8, to 3a,. (a) 'H NMR spectrum of 8, (5 mM, created
in situ from the reaction of 6, and 2a) in CDCl;; (b) The addition of 2a (1.0 equiv.) to
panel a. After 3 days, the peaks of CH./3a, and CHy/3a, were not found though the
exchange of imine b took place; (c) Irradiation of panel b at 313 nm for 120 min; (d)
Irradiation of panel ¢ at 650 nm for 120 min; (¢) '"H NMR spectrum of 3a, (5 mM) in

CDCI; for comparison.
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7. Construction of Mechanically Interlocked Assemblies

11,@P[5]

A
CH, /11,@P[5]
"
A N CPIS)
c) P[5 \
CIP5] | "-,CgHbm., JL
NN / CH, I1,@P(5]
. — | cHt,@Pis) e
8.30 8.25 8.20 ! VAt R
1 VA
}ppm) YA CH M,
b) 1,@P[5) k- AT I
r L YN T
P 6.10 6.05 P
P 1 (ppm) P
a) 1, P P
L - [ Sp—
8.5 8.4 8.3 8.2 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0
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B
©) PIs LL M
b) 1,@P(5] )i
a) 1, L, .
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Figure S76. The creation of 11, and 11,@P[5] from the reaction of 10, (7.5 mM), 2a
(1 equiv.), and P[5] (6 equiv.) in situ in CDCls for 3 days. (A) (a) '"H NMR spectrum of
11, (5 mM) in CDCI; for comparison; (b) 'H NMR spectrum of the reaction mixture
containing 11,@P[5]; (c) '"H NMR spectrum of P[5] (10 mM) in CDCls for comparison.
(B) The full 'H NMR spectra of A.
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Figure S77. The geometry-optimized molecular model of 11,@P[5]. The geometry was
optimized by PM3 method embedded in the Gaussian 09 (D.01).5*
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Figure S78. ESI mass spectrum of 11, and 11,@P[5] (as generated in Figure S76).
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Figure S79. ESI mass spectrum of complicated mixture obtained by the reduction of
11, and 11,@P[5]. The species r-11, and r-11,@P[5] were detected. A solution of 11,
and 11,@P[5] (as the procedure in Figure S76) was generated from 10, (71.5 mg, 60
mmol), 2a (1 equiv.), and P[5] (6 equiv.) in CHCI; (6 mL). NaBH4 (1 equiv.) and MeOH
(0.1 mL) were then added. After 5 min the reaction was quenched with water. The
extraction and evaporation in vacuo afforded the crude mixture, which was difficult to
separate.
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Figure S80. Controlled assembly/disassembly of catenane through acid/base stimuli.
(A) (a) '"H NMR spectrum of the mixture of 11,@P[5]; (b) The addition of MA (2 equiv.)
to panel a. The assembly broken down immediately; (c) The addition of DBU (2.3
equiv.) to panel b. The integral ratio of CHp/11,@P[5] and CHO/10,1s 87:13. The imine
macrocycle was re-formed in 7 days.
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