Electronic Supplementary Information:

Stabilization of optically inactive α -helices of peptidic foldamers through sequence control and *i*, *i* + 4 stapling

Naoki Ousaka,^{*,a,b}, Mark J. MacLachlan^{*,a,c,d}, Shigehisa Akine^{*,a,e} and Shigenori Fujikawa,^{*,a,f,g}

^aResearch Center for Negative Emissions Technologies, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. ^bNano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan. ^cDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada. ^dQuantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada. ^eGraduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan. ^fInternational Institute for Carbon-Neutral Energy Research (WPI–I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan. ^gDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.

E-mail: ousaka.naoki.565@m.kyushu-u.ac.jp (N.O.); mmaclach@chem.ubc.ca (M.J.M.); akine@se.kanazawa-u.ac.jp (S.A.); fujikawa.shigenori.137@m.kyushu-u.ac.jp (S.F.)

Table of Contents

1.	Materials and Instruments	S2
2.	Synthetic Procedures	S3
3.	ESI-TOF Mass Spectrum and HPLC Chromatogram of 1C7	S 7
4.	Theoretical Studies on the Effects of Sequence and Chain Length of Non-Stapled	
	Optically Inactive Peptides on the $3_{10}/\alpha$ -Helix Propensity and on the Structures	
	of the Stapled Peptide 1C7	S 8
5.	X-ray Crystallographic Analysis of 1C7	S16
6.	Kinetic and Thermodynamic Analyses of the P/M Interconversion of $1C_7$	S19
7.	¹ H and ¹³ C NMR Spectra	S20
8.	Supporting References	S24

1. Materials and Instruments

Instruments

NMR spectra were measured using a Bruker Ascend 400 spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C or a Bruker AVANCE III 600 operating at 600 MHz for ¹H and 125 MHz for ¹³C using tetramethylsilane (TMS) or a residual solvent peak as the internal standard. Electrospray ionization (ESI) time-of-flight (TOF) mass spectra were recorded using a Bruker Daltonics micrOTOF II spectrometer. The high-performance liquid chromatography (HPLC) fractionation and analysis were performed on a Waters 1525 HPLC system equipped with UV-visible detector (Waters 2489) using a COSMOSIL 5C₁₈-MS-II (0.46 (i.d.) × 25 cm for analysis or 2.0 (i.d.) × 25 cm for fractionation, Nacalai Tesque, Kyoto, Japan); MeOH was used as the eluent at a flow rate of 10 mL/min for fractionation and 1.5 mL/min for analysis.

Materials

All starting materials were purchased from commercial suppliers and were used without further purification unless otherwise noted. Silica gel (SiO₂) and aminopropyl-modified silica gel (NH-SiO₂) for the flash chromatography were purchased from Kanto Chemical Co., Inc. and Fuji Silysia Chemical Ltd. (Kasugai, Japan), respectively. Z-(Ac₆c)₂-OH,¹ Z-Api(Boc)-(Ac₆c)₃-OH,² and Z-Api(Boc)-Ac₆c-Aib-OMe² were synthesized according to the reported methods.

2. Synthetic Procedures

Abbreviations of chemicals and substituents: Z: benzyloxycarbonyl, Boc: *tert*-butoxycarbonyl, Ac₆c: 1-aminocyclohexanecarboxylic acid, Api: 4-aminopiperidine-4-carboxylic acid, HOSu: *N*-hydroxysuccinimide, COMU: 1-[(1-(cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylaminomorpholino)] uronium hexafluorophosphate, EDC·HCl: 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride, DIPEA: *N,N*-diisopropylethylamine,

General Procedures for the Peptide Syntheses.

Boc- and Z-protecting groups were removed by treatment with 4N HCl in 1,4-dioxane and 10% Pd- C/H_2 in MeOH, respectively. The resulting N- or C-deprotected peptides were used without further purification unless otherwise noted. Peptide coupling reactions were carried out by a COMU method.^{3,4}

Scheme S1. Synthesis of 1C7. Reagents and conditions: (a) COMU, DIPEA, CH₂Cl₂, 0 °C to r.t.; (b) 10% Pd-C/H₂, MeOH, r.t.; (c) (*i*) 4N HCl in dioxane, r.t.; (*ii*) DIPEA, DMF, r.t.

Z-Api(Boc)-(Ac₆c)₃-Api(Boc)-Ac₆c-Aib-OMe: To a suspension of Z-Api(Boc)-(Ac₆c)₃-OH (1.93 g, 2.56 mmol) and H-Api(Boc)-Ac₆c-Aib-OMe (1.20 g, 2.56 mmol), which had been obtained by treatment of Z-Api(Boc)-Ac₆c-Aib-OMe with 10% Pd-C/H₂ in MeOH, in dry CH₂Cl₂ (7 mL) was added DIPEA (490 μ L, 2.82 mmol) at room temperature. To this was then added COMU (1.10 g, 2.56 mmol) at 0 °C, and the mixture was stirred at 0 °C for 2 h and further at room temperature for 16 h under N₂. The solution was diluted with EtOAc, and the mixture was washed with 1N aqueous HCl, 5% aqueous NaHCO₃, and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by recrystallization from EtOAc/*n*-hexane (ca. 1/10, v/v), affording Z-Api(Boc)-(Ac₆c)₃-Api(Boc)-Ac₆c-Aib-OMe as a white solid (2.26 g, 73%). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.43 (s, 1H), 7.41–7.32 (m, 6H), 7.12 (s, 1H), 7.02 (s, 1H), 6.98 (s, 1H), 6.55 (s, 1H), 5.49 (s, 1H), 5.16 (s, 2H), 3.90 (bs, 4H), 3.67 (s, 3H), 3.12 (bs, 4H), 2.11–1.25 (m, partially overlapping with H₂O signal). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 176.62, 175.87, 175.57,

175.12, 174.81, 173.83, 173.70, 156.19, 154.75, 154.58, 136.49, 128.71, 128.29, 127.08, 79.98, 79.37, 66.80, 60.15, 59.57, 59.31, 58.98, 58.37, 58.29, 55.84, 52.01, 39.83 (br), 39.40 (br), 28.51, 28.47, 25.67, 25.47, 25.28, 25.01, 21.57 (br). HRMS (ESI-TOF+): *m/z* calcd for (M+Na⁺), 1226.7047; found, 1226.7131.

Z-(Ac₆c)₂-Api(Boc)-(Ac₆c)₃-Api(Boc)-Ac₆c-Aib-OMe: To a solution of Z-(Ac₆c)₂-OH (761 mg, 1.89 mmol), H-Api(Boc)-(Ac₆c)₃-Api(Boc)-Ac₆c-Aib-OMe (1.76 g, 1.64 mmol), which had been obtained by treatment of Z-Api(Boc)-(Ac₆c)₃-Api(Boc)-Ac₆c-Aib-OMe with 10% Pd-C/H₂ in MeOH, and DIPEA (362 µL, 2.08 mmol) in dry CH₂Cl₂ (6 mL) was added COMU (810 mg, 1.89 mmol) at 0 °C. The mixture was stirred at 0 °C for 2 h and further at room temperature for 16 h under N₂. The solution was diluted with EtOAc, and the mixture was washed with 1N aqueous HCl, 5% aqueous NaHCO₃, and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (SiO₂, EtOAc/CH₂Cl₂ (1/1, v/v)), affording Z-(Ac₆c)₂-Api(Boc)-(Ac₆c)₃-Api(Boc)-Ac₆c-Aib-OMe as a white solid (1.70 g, 62%). ¹H NMR (400 MHz, CDCl₃, 25 °C): δ7.48 (s, 1H), 7.38–7.30 (m+s, 6H), 7.23 (s+bs, 2H), 7.17 (s, 1H), 7.10 (s, 1H), 7.00 (s, 1H), 6.48 (s, 1H), 5.56 (s, 1H), 5.16 (s, bs), 3.92–3.89 (m, 4H), 3.67 (s, 3H), 3.06–1.24 (m, partially overlapping with H₂O signal). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ176.69, 176.04, 175.97, 175.82, 175.03, 174.97, 174.64, 174.45, 173.69, 156.14, 154.73, 154.50, 136.74, 128.79, 128.20, 126.53, 79.75, 79.17, 66.84, 60.14, 59.95, 59.56, 59.34, 58.74, 58.33, 57.47, 55.81, 51.96, 39.83, 39.13, 35.10, 28.51, 28.48, 25.69, 25.52, 25.48, 25.38, 25.02, 24.94, 21.72, 21.35. HRMS (ESI-TOF+): *m/z* calcd for (M+Na⁺), 1476.8728; found, 1476.8800.

2: To a solution of pimelic acid (1.00 g, 6.24 mmol) and *N*-hydroxysuccimide (1.51 g, 13.11 mmol) in dry CH_2Cl_2 (50 mL) was added EDC·HCl (2.39 g, 12.5 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and further at room temperature for 18 h under N₂. The solvent was evaporated to dryness under reduced pressure and the residue was dissolved in EtOAc. The solution was washed

with 1N aqueous HCl, 5% aqueous NaHCO₃, and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification by recrystallization from EtOAc/*n*-hexane (ca. 1/3, v/v) afforded title compound **2** (1.69 g, 76%) as a white solid. ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 2.83 (s, 8H), 2.64 (t, *J* = 7.4 Hz, 4H), 1.80 (quin, *J* = 7.8, 7.5 Hz, 4H), 1.58-1.52 (m, partially overlapping with H₂O signal). ¹³C NMR (100 MHz, CDCl₃, 25 °C): δ 169.28, 168.48, 30.72, 27.86, 25.66, 24.13. HRMS (ESI-TOF+): *m/z* calcd for (M+Na⁺), 377.0955; found, 377.0959.

1C₇: To a solution of Z-(Ac₆c)₂-Api(HCl)-(Ac₆c)₃-Api(HCl)-Ac₆c-Aib-OMe (200 mg, 0.151 mmol), which had been obtained by treatment of Z-(Ac₆c)₂-Api(Boc)-(Ac₆c)₃-Api(Boc)-Ac₆c-Aib-OMe with 4N HCl in 1,4-dioxane, and **2** (58.7 mg, 0.166 mmol) in dry DMF (30 mL) was added DIPEA (79 μ L, 0.452 mmol) at room temperature. The reaction mixture was stirred at room temperature for 19 h under N₂. The solvent was evaporated to dryness under reduced pressure and the residue was dissolved in CH₂Cl₂. The solution was washed with water, 1N aqueous HCl, and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification by column chromatography (NH₂-SiO₂, CH₂Cl₂/MeOH (9/1, v/v) and further by reverse-phase HPLC using a COSMOSIL 5C18-MS-II (2.0 (i.d.) × 25 cm, Nacalai Tesque, Kyoto, Japan), afforded title compound **1C**₇ (120 mg, 60%) as a white solid. The ¹H NMR spectral pattern of **1C**₇ in 1,1,2,2-tetrachloroethane-*d*₂ (TCE-*d*₂) at 298 K was complicated, due to the presence of many possible orientations of side-chain amide carbonyl –CO-N(CH₂)– groups that slowly interconvert on the NMR time scale (Figure S9). HRMS (ESI-TOF+): *m/z* calcd for (M+Na⁺), 1400.8204; found, 1400.8261.

Supporting Data

3. ESI-TOF Mass Spectrum and HPLC Chromatogram of 1C7

Figure S1. (a) Experimental (top) and simulated (bottom) electrospray ionization time-of-flight (ESI-TOF) mass spectrum of **1C**₇ and (b) UV (λ = 220 nm) detected HPLC chromatograms of **1C**₇. HPLC conditions: column, COSMOSIL 5C₁₈-MS-II (Nacalai Tesque, 0.46 (i.d.) × 25 cm); eluent, MeOH; flow rate, 2.0 mL/min; column temperature, room temperature.

4. Theoretical Studies on the Effects of Sequence and Chain Length of Non-Stapled Optically Inactive Peptides on the 3₁₀/α-Helix Propensity and on the Structures of the Stapled Peptide 1C₇

Molecular modeling was performed on a Windows 11 PC with the ArgusLab software.⁵ The initial structures of Ac-(Ac₆c)_n-NHCH₃ (n = 6–10 and 12), Ac-(Aib-Ac₆c)_m-Aib-NHCH₃ (m = 3–6), optically inactive nonapeptides composed of Aib and Ac₆c residues with different sequences, and 1C₇ were constructed according to the following procedures: the peptide backbones were set to be a standard (P)- α -helix ((ϕ, ψ, ω) = (-57°, -47°, 180°))⁶⁻⁷ or a standard (P)-3₁₀-helix ((ϕ, ψ, ω) = (-60°, -30° , 180°))⁸, except for the C-terminal Aib methyl ester residue of 1C₇ that took the opposite handedness ((ϕ, ψ, ω) = (+57°, +47°, 180°)) for (P)- α -helix, because the helix inversion at the Cterminus is often found in the analogous peptides.⁹ In the initial structures of the 3_{10} - and/or α -helical oligopeptides, all the amide NH groups of the Ac₆c and Api residues were positioned in the axial orientation of the cyclohexyl and piperidine rings, respectively. However, for 1C7, the initial structures based on crystal structures (molecules A and B) placed the amide NH groups of some Ac₆c and Api residues in the equatorial position of the cyclohexyl and piperidine rings, respectively (see Figure 4). The alkyl crosslinker moieties (CO- C_5H_{10} -CO) in the initial structures of $1C_7$ (except for those derived from crystal structures (molecules A and B)) were selectively geometry-optimized using molecular mechanics calculations (Universal force field (UFF) in ArgusLab software). The resulting structures were then fully optimized by the semi-empirical molecular orbital (MO) calculations (PM6 method¹⁰ in MOPAC2016¹¹) and the geometries were further refined by density functional theory (DFT) calculations using the dispersion corrected B3LYP (B3LYP-D3)¹² functional in Gaussian 16 software (Gaussian, Inc., Pittsburgh, PA).¹³

Figure S2. Top (left) and side (right) views of energy-minimized structures of (P)- α -helical **1C**₇ obtained by DFT calculations, based on different initial structures (**a**–**d**) conformations 1–4, derived from the standard (P)- α -helical conformation with four possible orientations of the side-chain amide carbonyl (–CO-N(CH₂)₂–) groups of the Api residues, and (**e**, **f**) conf-A and conf-B, derived from molecules A and B observed in the solid state. All of the hydrogen atoms except for the amide protons are omitted for clarity. Schematic representations of side-chain carbonyl orientations, energy difference (ΔE) values, and average dihedral angles ($|\phi|/|\psi|$, in °, residues 1–8) are also shown. Detailed dihedral angles (ϕ , ψ and ω) and hydrogen-bonding parameters for these (P)- α -helical **1C**₇ structures are summarized in Tables S1–S12.

Table S1. Conformational angles (°) of (P)- α -helical 1C₇ (conf-1) obtained by DFT calculation

Residue (No.)	ϕ	ψ	ω
Ac ₆ c (1)	-60	-33	-168
Ac ₆ c (2)	-54	-34	-176
Api (3)	-50	-45	-176
$Ac_{6}c(4)$	-50	51	-172
Ac ₆ c (5)	-56	51	-175
$Ac_{6}c$ (6)	-58	-44	-175
Api (7)	-61	-44	-174
Ac ₆ c (8)	-59	-36	-179
Aib (9)	50	42	175
Average (1)-(8)	174	56	42

Table S2. Parameters of the hydrogen bonds (Å, °) of (*P*)- α -helical **1C**₇ (conf-1) obtained by DFT calculation

Intramolecular H-bond Donor	Intramolecular H-bond Acceptor	N…O	H…O	N-H…O	С-О…Н
N(1)	_				
N(2)	_				
N(3)	O(0)	3.016	2.030	163	128
N(4)	O(1)	3.083	2.154	151	122
N(5)	O(2)	3.172	2.372	135	112
N(6)	O(3)	3.087	2.467	119	103
N(7)	O(3)	3.050	2.090	157	161
N(8)	O(4)	3.235	2.294	154	151
N(9)	O(6)	3.202	2.417	134	97

Residue (No.)	ϕ	ψ	ω
Ac ₆ c (1)	-61	-30	-169
Ac ₆ c (2)	-53	-33	-176
Api (3)	-50	-46	-175
Ac ₆ c (4)	-49	-52	-172
Ac ₆ c (5)	-57	-48	-174
Ac ₆ c (6)	-61	-39	-175
Api (7)	-65	-24	-174
Ac ₆ c (8)	-87	14	179
Aib (9)	52	35	-172
Average (1)-(8)	60	36	174

Table S3. Conformational angles (°) of (P)- α -helical 1C₇ (conf-2) obtained by DFT calculation

Table S4. Parameters of the hydrogen bonds (Å, °) of (*P*)- α -helical **1C**₇ (conf-2) obtained by DFT calculation

_						
	Intramolecular	Intramolecular	N…O	H…O	N-H…O	С-О…Н
	H-bond Donor	H-bond Acceptor				
	N(1)	-				
	N(2)	-				
	N(3)	O(0)	3.062	2.069	165	128
	N(4)	O(1)	3.115	2.187	151	123
	N(5)	O(2)	3.143	2.337	136	112
	N(6)	O(3)	3.077	2.429	121	103
	N(7)	O(3)	3.125	2.204	150	158
	N(8)	O(5)	3.266	2.382	145	104
	N(9)	O(6)	3.111	2.142	159	115

Residue (No.)	ϕ	Ψ	ω
Ac ₆ c (1)	-60	-29	-169
Ac ₆ c (2)	-50	-39	-179
Api (3)	-49	-49	-175
Ac ₆ c (4)	-55	-51	-171
Ac ₆ c (5)	-57	-50	-176
Ac ₆ c (6)	-57	-46	-175
Api (7)	-60	-44	-174
Ac ₆ c (8)	-61	-33	-178
Aib (9)	50	43	176
Average (1)-(8)	175	56	43

Table S5. Conformational angles (°) of (P)- α -helical 1C₇ (conf-3) obtained by DFT calculation

Table S6. Parameters of the hydrogen bonds (Å, °) of (*P*)- α -helical **1C**₇ (conf-3) obtained by DFT calculation

-						
	Intramolecular	Intramolecular	N…O	Н…О	N-H…O	С-О…Н
	H-bond Donor	H-bond Acceptor				
	N(1)	-				
	N(2)	-				
	N(3)	O(0)	2.994	2.009	162	130
	N(4)	O(1)	3.076	2.165	148	120
	N(5)	O(2)	3.173	2.471	126	107
	N(6)	O(2)	3.225	2.240	163	160
	N(7)	O(3)	3.121	2.160	157	155
	N(8)	O(4)	3.320	2.401	150	149
	N(9)	O(6)	3.154	2.323	139	100

Residue (No.)	ϕ	Ψ	ω
Ac ₆ c (1)	-61	-29	-168
Ac ₆ c (2)	-49	-41	-179
Api (3)	-50	-51	-174
Ac ₆ c (4)	-55	-50	-171
Ac ₆ c (5)	-55	-49	-175
Ac ₆ c (6)	-57	-47	-175
Api (7)	-65	-43	-174
Ac ₆ c (8)	-59	-36	-179
Aib (9)	50	42	178
Average (1)-(8)	174	56	43

Table S7. Conformational angles (°) of (P)- α -helical 1C₇ (conf-4) obtained by DFT calculation

Table S8. Parameters of the hydrogen bonds (Å, °) of (*P*)- α -helical **1C**₇ (conf-4) obtained by DFT calculation

Intr	amolecular	Intramolecular	N…O	H…O	N-H…O	С-О…Н
H-b	ond Donor	H-bond Acceptor				
	N(1)	-				
	N(2)	-				
	N(3)	O(0)	3.000	2.021	161	129
	N(4)	O(1)	3.097	2.229	143	117
	N(5)	O(2)	3.207	2.549	122	103
	N(6)	O(2)	3.291	2.316	161	158
	N(7)	O(3)	3.232	2.283	155	154
	N(8)	O(4)	3.105	2.150	156	156
	N(9)	O(5)	3.247	2.398	141	144

Residue (No.)	ϕ	Ψ	ω
Ac ₆ c (1)	-53	-48	-163
Ac ₆ c (2)	-54	-50	-174
Api (3)	-55	-54	-176
Ac ₆ c (4)	-53	-49	-176
Ac ₆ c (5)	-55	-54	-174
Ac ₆ c (6)	-58	-42	-172
Api (7)	-58	-45	-179
Ac ₆ c (8)	-77	49	179
Aib (9)	-53	-39	-175
Average (1)-(8)	58	49	174

Table S9. Conformational angles (°) of (*P*)- α -helical **1C**₇ (conf-A) obtained by DFT calculation

Table S10. Parameters of the hydrogen bonds (Å, °) of (*P*)- α -helical **1C**₇ (conf-A) obtained by DFT calculation

	Intramolecular	Intramolecular	N…O	H…O	N-H…O	С-О…Н
_		T-bond Acceptor				
	N(1)	-				
	N(2)	-				
	N(3)	O(0)	2.916	2.083	138	121
	N(4)	O(0)	3.274	2.291	163	156
	N(5)	O(1)	3.100	2.111	164	158
	N(6)	O(2)	3.201	2.235	159	153
	N(7)	O(3)	3.278	2.375	148	152
	N(8)	O(4)	3.294	2.404	146	150
	N(9)	O(7)	2.933	1.998	152	90

Residue (No.)	ϕ	ψ	ω
Ac ₆ c (1)	-52	-50	-164
Ac ₆ c (2)	-51	-52	-173
Api (3)	-51	-56	-177
Ac ₆ c (4)	-54	-50	-174
Ac ₆ c (5)	-55	-49	-175
Ac ₆ c (6)	-56	-46	-175
Api (7)	-61	-45	-175
Ac ₆ c (8)	-60	-35	-178
Aib (9)	50	42	176
Average (1)-(8)	55	48	174

Table S11. Conformational angles (°) of (*P*)- α -helical 1C₇ (conf-B) obtained by DFT calculation

Table S12. Parameters of the hydrogen bonds (Å, °) of (*P*)- α -helical **1C**₇ (conf-B) obtained by DFT calculation

Intramolecular H-bond Donor	Intramolecular H-bond Acceptor	N…O	Н…О	N-H…O	С-О…Н
N(1)	_				
N(2)	_				
N(3)	O(0)	2.931	2.112	136	122
N(4)	O(0)	3.337	2.360	162	154
N(5)	O(1)	3.110	2.118	165	163
N(6)	O(2)	3.135	2.163	160	156
N(7)	O(3)	3.239	2.303	153	154
N(8)	O(4)	3.236	2.292	154	155
N(9)	O(5)	3.271	2.441	139	146

5. X-ray Crystallographic Analysis of 1C7

Crystals of **1C**₇ suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a CH₃CN/CH₂Cl₂ solution of **1C**₇ at room temperature. A colorless single crystal with dimensions 0.18 \times 0.15 \times 0.07 mm³ was selected for intensity measurements. The X-ray diffraction data for **1C**₇ were collected on a Bruker Venture D8 diffractometer with Cu-K α radiation ($\lambda = 1.54178$ Å) at 100 K. The data were corrected for Lorentz and polarization factors and for absorption by semiempirical methods based on symmetry-equivalent and repeated reflections. The structure was solved by direct methods (SHELXD¹⁴) and refined by full-matrix least squares on *F*² using SHELXL 2014¹⁵. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were calculated geometrically and refined using the riding models. The X-ray crystallographic data for the structure of **1C**₇ has been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number 2421064.

Residue (No.)	ϕ	Ψ	ω
Ac ₆ c (1)	-56	-50	-172
Ac ₆ c (2)	-48	-56	-175
Api (3)	-55	-54	-170
Ac ₆ c (4)	-55	-48	-175
Ac ₆ c (5)	-51	-53	-175
Ac ₆ c (6)	-58	-39	-172
Api (7)	-60	-35	-174
Ac ₆ c (8)	-76	-16	-173
Aib (9)	-56	-46	-161
Average (1)-(8)	57	44	173

Table S13. Conformational angles (°) of (*P*)- α -helical **1C**₇ (molecule A)

Table S14. Parameters of the hydrogen bonds (Å, °) of (*P*)- α -helical 1C₇ (molecule A)

Intramolecular	Intramolecular				
H-bond Donor	H-bond Acceptor	N…O	п…О	N-⊟…O	С-О…н
N(1)	_				
N(2)	-				
N(3)	O(0)	2.977	2.49	116	113
N(4)	O(0)	3.163	2.29	171	162
N(5)	O(1)	3.032	2.16	170	167
N(6)	O(2)	3.299	2.45	163	157
N(7)	O(4)	3.108	2.52	125	106
N(8)	O(5)	3.103	2.39	138	111
N(9)	O(6)	3.243	2.39	164	113

Residue (No.)	ϕ	ψ	ω
Ac ₆ c (1)	-52	-53	-169
Ac ₆ c (2)	-47	-56	-176
Api (3)	-49	-57	-176
Ac ₆ c (4)	-54	-52	-174
Ac ₆ c (5)	-56	-48	-172
Ac ₆ c (6)	-59	-44	-172
Api (7)	-57	-38	-172
Ac ₆ c (8)	-75	-23	-172
Aib (9)	48	36	-163
Average (1)-(8)	56	46	173

Table S15. Conformational angles (°) of (*P*)- α -helical **1C**₇ (molecule B)

Table S16. Parameters of the hydrogen bonds (Å, °) of (*P*)- α -helical **1C**₇ (molecule B)

Intramolecular	Intramolecular				
H-bond Donor	H-bond Acceptor	N…O	H…O	N-H…O	С-О…Н
N(1)	_				
N(2)	_				
N(3)	O(0)	3.021	2.57	113	114
N(4)	O(0)	3.269	2.40	168	159
N(5)	O(1)	3.030	2.16	173	171
N(6)	O(2)	3.133	2.28	164	161
N(7)	O(3)	3.302	2.48	157	155
N(8)	O(5)	3.225	2.52	137	109
N(9)	O(6)	3.205	2.36	162	110

6. Kinetic and Thermodynamic Analyses of the P/M Interconversion of 1C7

The free energy of activation (ΔG^{\ddagger} , J mol⁻¹) for the interconversion between the (*P*) and (*M*)- α -helical **1C**₇ and the rate constant for the *P*/*M* interconversion (*k*, sec⁻¹) are given by the following equations.

 $\Delta G^{\ddagger} = RT_{c} \ln[2^{1/2} k_{B} T_{c} / \pi h(\Delta v)] (1)$ $k = (k_{B} T / h) \exp(-\Delta G^{\ddagger} / RT) \qquad (2)$

where T_c is the coalescence temperature and Δv (Hz) is the frequency difference between the N-terminal methylene signals in the ¹H NMR spectrum.

From Figure 3,

 $\Delta v = (5.242 - 5.070) \times 600 \text{ MHz} = 103.2 \text{ Hz}$

 $T_{\rm c} = 373 \, {\rm K}$

By using equations (1) and (2),

 $\Delta G^{\ddagger} = \mathbf{R} T_{\rm c} \ln[2^{1/2} k_{\rm B} T_{\rm c} / \pi h(\Delta v)] = 75.2 \text{ kJ/mol}$

 $k_{298} = (k_{\rm B}T/h)\exp(-\Delta G^{\ddagger}/RT) = 0.41 \text{ sec}^{-1}$

7. ¹H and ¹³C NMR Spectra

Figure S3. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of Z-Api(Boc)-(Ac₆c)₃-Api(Boc)-Aib-OMe.

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃, 25 °C) of Z-Api(Boc)-(Ac₆c)₃-Api(Boc)-Aib-OMe.

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of Z-(Ac₆c)₂-Api(Boc)-(Ac₆c)₃-Api(Boc)-Aib-OMe.

Figure S6. ¹³C NMR spectrum (100 MHz, CDCl₃, 25 °C) of Z-(Ac₆c)₂-Api(Boc)-(Ac₆c)₃-Api(Boc)-Aib-OMe.

Figure S7. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of **2**. The peak at 1.4-1.6 ppm overlaps with water in CDCl₃.

Figure S8. ¹³C NMR spectrum (100 MHz, CDCl₃, 25 °C) of 2.

Figure S9. ¹H NMR spectrum (600 MHz, C₂D₂Cl₄, 25 °C) of 1C₇.

8. Supporting References

- 1. M. Crisma, G. M. Bonora, C. Toniolo, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone and C. Pedone, *Macromolecules*, 1988, **21**, 2071.
- 2. N. Ousaka, M. J. MacLachlan and S. Akine, *Nat. Commun.*, 2023, 14, 6834.
- 3. A. El-Faham, R. S. Funosas, R. Prohens and F. Albericio, *Chem. Eur. J.*, 2009, 15, 9404.
- 4. A. El-Faham and F. Albericio, *J. Pep. Sci.*, 2010, **16**, 6.
- 5. M. Thompson, ArgusLab, Planaria Software LLC, Seattle, WA, 1996.
- 6. S. Arnott and A. J. Wonacott, J. Mol. Biol., 1966, 21, 371.
- 7. S. Arnott and S. D. Dover, J. Mol. Biol., 1967, **30**, 209.
- 8. C. Toniolo and E. Benedetti, *Trends Biochem. Sci.*, 1991, 16, 350.
- 9. E. Benedetti, M. Saviano, R. Iacovino, C. Pedone, A. Santini, M. Crisma, F. Formaggio, C. Toniolo, Q. B. Broxterman and J. Kamphuis, *Biopolymers*, 1998, **46**, 433.
- 10. J. J. P. Stewart, J. Mol. Model., 2007, 13, 1173.
- 11. J. J. P. Stewart, MOPAC2012, Stewart Computational Chemistry, Colorado Springs, CO, USA, <u>http://openmopac.net/</u>, 2012.
- 12. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford, CT, 2016.
- 14. G. M. Sheldrick, *SHELXD-2002, Program for crystal structure determination, University of Göttingen*, 2002.
- 15. G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3.