Supporting information

Synthesis of Indole-Linked β-Cyano-Enones: A Pathway to Indolyl-2-Pyrrolones

Nurabul Mondal, Vidya Kumari, Danish Ali and Lokman H. Choudhury*

Department of Chemistry, Indian Institute of Technology Patna, Patna-801106, India

Email: lokman@iitp.ac.in; lokman@iitp.ac.in; lokman@iitp.ac.in; lokman.iitp@gmail.com

Table of contents:

1.	¹ H and ¹³ C { ¹ H} NMR spectra of all compounds	.802-845
2.	Crystallographic description of compound 5n	.S46-S52
3.	Crystallographic description of compound 5v	.\$52-\$57
4.	Crystallographic description of compound 6a	.\$57-\$62
5.	Detection of H ₂ using gas chromatography	S62-S64
6.	Detection of CO using gas chromatography	S65-S67

100 f1 (ppm)

o

2. Crystallographic description of compound 5n

Ellipsoid plot

Table S1. Crystal data and structure refinement for 5n

CCDC No.	2376014
Empirical formula	C ₂₀ H ₁₃ N ₃ O
Formula weight	311.33
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 21/n
Unit cell dimensions	$a = 13.5858(8) \text{ Å} \alpha = 90^{\circ}.$
	$b = 7.0142(4) \text{ Å} \beta = 95.905(2)^{\circ}.$
	$c = 19.7041(11) \text{ Å} \gamma = 90^{\circ}.$
Volume	1867.71(19) Å ³
Ζ	4
Density (calculated)	1.107 Mg/m ³
Absorption coefficient	0.071 mm ⁻¹
F(000)	648
Crystal size	0.184 x 0.128 x 0.075 mm ³
Theta range for data collection	3.272 to 24.998°.
Index ranges	-16<=h<=16, -8<=k<=8, -23<=l<=23
Reflections collected	49056
Independent reflections	3285 [R(int) = 0.0734]
Completeness to theta = 24.998°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9602 and 0.6988

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3285 / 0 / 221
Goodness-of-fit on F ²	1.054
Final R indices [I>2sigma(I)]	R1 = 0.0614, WR2 = 0.1670
R indices (all data)	R1 = 0.0763, WR2 = 0.1784
Extinction coefficient	n/a
Largest diff. peak and hole	0.235 and -0.221 e.Å ⁻³

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for 5n. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	z	U(eq)
C(1)	7721(2)	4536(5)	3478(2)	89(1)
C(2)	8550(3)	4495(8)	3112(2)	123(2)
C(3)	8975(3)	2831(10)	2987(2)	136(2)
C(4)	8602(4)	1186(9)	3214(3)	146(2)
C(5)	7779(3)	1180(6)	3576(2)	106(1)
C(6)	7333(2)	2901(4)	3702(1)	62(1)
C(7)	6459(2)	2875(3)	4088(1)	52(1)
C(8)	5972(2)	4769(3)	4220(1)	44(1)
C(9)	5241(2)	5315(3)	3723(1)	46(1)
C(10)	4997(2)	4121(3)	3139(1)	54(1)
C(11)	4693(2)	7038(3)	3727(1)	50(1)
C(12)	6311(2)	5742(3)	4837(1)	43(1)
C(13)	5988(2)	7508(3)	5047(1)	47(1)
C(14)	7127(2)	6554(3)	5869(1)	47(1)
C(15)	7762(2)	6517(4)	6476(1)	58(1)
C(16)	8341(2)	4897(4)	6568(1)	68(1)
C(17)	8283(2)	3429(4)	6096(1)	71(1)
C(18)	7655(2)	3501(4)	5499(1)	60(1)
C(19)	7054(2)	5110(3)	5376(1)	47(1)
C(20)	7803(2)	8130(5)	6977(1)	83(1)
N(1)	6462(1)	7981(3)	5649(1)	52(1)
N(2)	4263(2)	8441(3)	3719(1)	68(1)
N(3)	4810(2)	3173(4)	2672(1)	80(1)
O(1)	6110(1)	1431(2)	4299(1)	76(1)

Table S3. Bond lengths [Å] for 5n

C(1)-C(6)	1.355(4)	C(1)-C(6)	1.355(4)
C(1)-C(2)	1.398(5)	C(1)-C(2)	1.398(5)
C(1)-H(1)	0.9300	C(1)-H(1)	0.9300
C(2)-C(3)	1.336(7)	C(2)-C(3)	1.336(7)
C(2)-H(2)	0.9300	C(2)-H(2)	0.9300
C(3)-C(4)	1.355(7)	C(3)-C(4)	1.355(7)
C(3)-H(3)	0.9300	C(3)-H(3)	0.9300
C(4)-C(5)	1.386(6)	C(4)-C(5)	1.386(6)
C(4)-H(4)	0.9300	C(4)-H(4)	0.9300
C(5)-C(6)	1.385(4)	C(5)-C(6)	1.385(4)
C(5)-H(5)	0.9300	C(5)-H(5)	0.9300
C(6)-C(7)	1.474(3)	C(6)-C(7)	1.474(3)
C(7)-O(1)	1.210(3)	C(7)-O(1)	1.210(3)
C(7)-C(8)	1.519(3)	C(7)-C(8)	1.519(3)
C(8)-C(9)	1.375(3)	C(8)-C(9)	1.375(3)
C(8)-C(12)	1.428(3)	C(8)-C(12)	1.428(3)
C(9)-C(11)	1.421(3)	C(9)-C(11)	1.421(3)
C(9)-C(10)	1.435(3)	C(9)-C(10)	1.435(3)
C(10)-N(3)	1.142(3)	C(10)-N(3)	1.142(3)
C(11)-N(2)	1.143(3)		

C(6)-C(1)-C(2)	120.8(4)	C(9)-C(8)-C(12)	128.2(2)	C(15)-C(16)-C(17)	122.1(2)
C(6)-C(1)-H(1)	119.6	C(9)-C(8)-C(7)	114.64(18	С(15)-С(16)-Н(16)	119.0
C(2)-C(1)-H(1)	119.6	C(12)-C(8)- C(7)	117.12(18	С(17)-С(16)-Н(16)	119.0
C(3)-C(2)-C(1)	119.9(4)	C(8)-C(9)- C(11)	125.01(19	C(18)-C(17)-C(16)	122.1(2)
C(3)-C(2)-H(2)	120.0	C(8)-C(9)- C(10)	120.0(2)	С(18)-С(17)-Н(17)	118.9
C(1)-C(2)-H(2)	120.0	C(11)-C(9)- C(10)	115.00(19	С(16)-С(17)-Н(17)	118.9
C(2)-C(3)-C(4)	120.0(4)	N(3)-C(10)- C(9)	179.4(3)	C(17)-C(18)-C(19)	118.4(2)
C(2)-C(3)-H(3)	120.0	N(2)-C(11)- C(9)	178.5(3)	C(17)-C(18)-H(18)	120.8
C(4)-C(3)-H(3)	120.0	C(13)-C(12)- C(8)	126.51(18	C(19)-C(18)-H(18)	120.8
C(3)-C(4)-C(5)	121.4(4)	C(13)-C(12)- C(19)	105.65(17	C(14)-C(19)-C(18)	117.7(2)
C(3)-C(4)-H(4)	119.3	C(8)-C(12)- C(19)	127.85(19)	C(14)-C(19)-C(12)	106.22(18)
C(5)-C(4)-H(4)	119.3	N(1)-C(13)- C(12)	110.42(18	C(18)-C(19)-C(12)	136.0(2)
C(6)-C(5)-C(4)	118.7(4)	N(1)-C(13)- H(13)	124.8	C(15)-C(20)- H(20A)	109.5
C(6)-C(5)-H(5)	120.6	C(12)-C(13)- H(13)	124.8	C(15)-C(20)- H(20B)	109.5
C(4)-C(5)-H(5)	120.6	N(1)-C(14)- C(19)	108.00(18	H(20A)-C(20)- H(20B)	109.5
C(1)-C(6)-C(5)	119.1(3)	N(1)-C(14)- C(15)	127.1(2)	C(15)-C(20)- H(20C)	109.5
C(1)-C(6)-C(7)	122.6(2)	C(19)-C(14)- C(15)	124.9(2)	H(20A)-C(20)- H(20C)	109.5
C(5)-C(6)-C(7)	118.2(3)	C(16)-C(15)- C(14)	114.8(2)	H(20B)-C(20)- H(20C)	109.5
O(1)-C(7)-C(6)	123.5(2)	C(16)-C(15)- C(20)	123.4(2)	C(13)-N(1)-C(14)	109.71(19)
O(1)-C(7)-C(8)	118.7(2)	C(14)-C(15)- C(20)	121.8(2)	C(13)-N(1)-H(1A)	126.5(17)
C(6)-C(7)-C(8)	117.8(2)	C(15)-C(16)- C(17)	122.1(2)	C(14)-N(1)-H(1A)	123.7(17)

Table S4. Bond angles [°] for 5n

Table S5. Anisotropic displacement parameters (Å²x 10³) for 5n. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2} [h^{2}a^{*2}U^{11} + ... + 2h k a^{*}b^{*}U^{12}]$

	U11	U22	U33	U23	U13	U12
C(1)	76(2)	98(2)	98(2)	-6(2)	34(2)	-3(2)
C(2)	92(3)	163(4)	123(3)	-11(3)	54(2)	-18(3)
C(3)	81(3)	216(6)	119(3)	-51(4)	46(2)	6(3)

C(4)	117(4)	166(5)	163(4)	-60(4)	56(3)	38(3)
C(5)	98(2)	98(3)	125(3)	-35(2)	33(2)	21(2)
C(6)	56(1)	71(2)	59(1)	-15(1)	5(1)	5(1)
C(7)	53(1)	46(1)	55(1)	-4(1)	0(1)	-2(1)
C(8)	44(1)	42(1)	49(1)	1(1)	11(1)	-4(1)
C(9)	49(1)	44(1)	45(1)	-1(1)	4(1)	-3(1)
C(10)	53(1)	54(1)	56(1)	-4(1)	3(1)	-6(1)
C(11)	51(1)	51(1)	45(1)	-2(1)	-5(1)	-1(1)
C(12)	42(1)	43(1)	44(1)	4(1)	6(1)	2(1)
C(13)	47(1)	44(1)	47(1)	4(1)	-3(1)	4(1)
C(14)	45(1)	50(1)	47(1)	8(1)	4(1)	4(1)
C(15)	51(1)	72(2)	50(1)	9(1)	-1(1)	2(1)
C(16)	57(1)	89(2)	54(1)	18(1)	-6(1)	10(1)
C(17)	64(2)	76(2)	70(2)	19(1)	2(1)	26(1)
C(18)	59(1)	58(2)	63(1)	8(1)	7(1)	18(1)
C(19)	44(1)	48(1)	48(1)	9(1)	7(1)	4(1)
C(20)	87(2)	96(2)	60(2)	-12(2)	-20(1)	3(2)
N(1)	57(1)	48(1)	48(1)	-4(1)	-4(1)	7(1)
N(2)	72(1)	61(1)	68(1)	-5(1)	-14(1)	11(1)
N(3)	82(2)	83(2)	71(2)	-26(1)	-2(1)	-13(1)
O(1)	79(1)	46(1)	104(2)	7(1)	16(1)	0(1)

Table S6. Hydrogen coordinates ($x\,10^4$) and isotropic displacement parameters (Å $^2x\,10^3$) for 5n

	X	у	Z	U(eq)
H(1)	7433	5699	3568	107
H(2)	8805	5625	2956	148
H(3)	9527	2803	2745	163
H(4)	8905	36	3125	175
H(5)	7532	42	3731	127
H(13)	5509	8253	4802	56
H(16)	8783	4791	6959	81
H(17)	8680	2359	6184	85
H(18)	7633	2505	5186	72
H(20A)	7342	9101	6812	125
H(20B)	7635	7668	7409	125

H(20C)	8460	8653	7032	125
H(1A)	6350(20)	9050(40)	5900(14)	75(8)

Table S7. Torsion angles [°] for 5n

C(6)-C(1)-C(2)-C(3)	-0.8(6)	C(8)-C(12)-C(13)-N(1)	179.8(2)
C(1)-C(2)-C(3)-C(4)	0.1(7)	C(19)-C(12)-C(13)-N(1)	0.1(2)
C(2)-C(3)-C(4)-C(5)	0.1(8)	N(1)-C(14)-C(15)-C(16)	179.3(2)
C(3)-C(4)-C(5)-C(6)	0.4(7)	C(19)-C(14)-C(15)-C(16)	-0.1(3)
C(2)-C(1)-C(6)-C(5)	1.3(5)	N(1)-C(14)-C(15)-C(20)	-1.0(4)
C(2)-C(1)-C(6)-C(7)	-179.9(3)	C(19)-C(14)-C(15)-C(20)	179.5(2)
C(4)-C(5)-C(6)-C(1)	-1.1(5)	C(14)-C(15)-C(16)-C(17)	-0.6(4)
C(4)-C(5)-C(6)-C(7)	-179.9(3)	C(20)-C(15)-C(16)-C(17)	179.8(3)
C(1)-C(6)-C(7)-O(1)	-179.1(3)	C(15)-C(16)-C(17)-C(18)	1.0(4)
C(5)-C(6)-C(7)-O(1)	-0.2(4)	C(16)-C(17)-C(18)-C(19)	-0.7(4)
C(1)-C(6)-C(7)-C(8)	1.4(4)	N(1)-C(14)-C(19)-C(18)	-179.1(2)
C(5)-C(6)-C(7)-C(8)	-179.7(2)	C(15)-C(14)-C(19)-C(18)	0.4(3)
O(1)-C(7)-C(8)-C(9)	-89.8(3)	N(1)-C(14)-C(19)-C(12)	0.5(2)
C(6)-C(7)-C(8)-C(9)	89.7(2)	C(15)-C(14)-C(19)-C(12)	-180.0(2)
O(1)-C(7)-C(8)-	89.5(3)	C(17)-C(18)-C(19)-C(14)	0.0(3)
C(12)			
C(6)-C(7)-C(8)-	-91.0(2)	C(17)-C(18)-C(19)-C(12)	-179.5(2)
C(12)			
C(12)-C(8)-C(9)-	2.0(4)	C(13)-C(12)-C(19)-C(14)	-0.4(2)
C(11)			
C(7)-C(8)-C(9)-	-178.8(2)	C(8)-C(12)-C(19)-C(14)	179.90(19)
C(11)			
C(12)-C(8)-C(9)-	-179.3(2)	C(13)-C(12)-C(19)-C(18)	179.1(3)
C(10)			
C(7)-C(8)-C(9)-	-0.1(3)	C(8)-C(12)-C(19)-C(18)	-0.6(4)
C(10)			
C(9)-C(8)-C(12)-	-2.8(3)	C(12)-C(13)-N(1)-C(14)	0.2(3)
C(13)			
C(7)-C(8)-C(12)-	178.0(2)	C(19)-C(14)-N(1)-C(13)	-0.5(2)
C(13)			
C(9)-C(8)-C(12)-	176.8(2)	C(15)-C(14)-N(1)-C(13)	-180.0(2)

C(19)			
C(7)-C(8)-C(12)-	-2.3(3)		
C(19)			

Symmetry transformations used to generate equivalent atoms:

Table S8.	Hydrogen	bonds for	5n [Å and	°].
-----------	----------	-----------	-----------	-----

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(13)-H(13)N(2)	0.93	2.59	3.392(3)	145.1
C(13)-H(13)O(1)#1	0.93	2.60	3.134(3)	116.6
N(1)-H(1A)N(2)#2	0.92(3)	2.12(3)	3.012(3)	164(2)

Symmetry transformations used to generate equivalent atoms:

#1 x,y+1,z #2 -x+1,-y+2,-z+1

3. Crystallographic description of compound 5v

Ellipsoid plot

Table S9. Crystal data and structure refinement for 5v					
CCDC no.	2354497				
Empirical formula	$C_{25}H_{16}N_2O_2$				
Formula weight	376.40				
Temperature/K	298				
Crystal system	triclinic				
Space group	P-1				
a/Å	9.2194(12)				
b/Å	10.0506(14)				
c/Å	10.4838(14)				
α/°	101.017(8)				

β/°	101.391(7)
γ/°	93.642(7)
Volume/Å ³	929.6(2)
Ζ	2
$\rho_{calc}g/cm^3$	1.345
μ/mm^{-1}	0.086
F(000)	392.0
Crystal size/mm ³	$0.089 \times 0.056 \times 0.045$
Radiation	MoKa ($\lambda = 0.71073$)
2@ range for data collection/°	4.532 to 50.002
Index ranges	$-10 \le h \le 10, -11 \le k \le 11, -12 \le 1 \le 12$
Reflections collected	12101
Independent reflections	3197 [$R_{int} = 0.0730, R_{sigma} = 0.0826$]
Data/restraints/parameters	3197/0/264
Goodness-of-fit on F ²	1.242
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1078, wR_2 = 0.1599$
Final R indexes [all data]	$R_1 = 0.1669, wR_2 = 0.1812$

Table S10. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 5v. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

OIJ ten	1901.			
Atom	x	У	Z	U(eq)
O ₂	2656(4)	7362(4)	420(3)	44.7(10)
01	969(4)	5335(4)	1399(4)	52.5(11)
N ₂	7817(5)	5821(5)	1198(4)	45.5(12)
C ₁₀	3147(5)	7205(5)	1531(5)	34.6(12)
C9	4075(5)	6031(5)	1734(5)	32.8(12)
C ₈	5564(5)	6252(5)	1541(5)	35.2(12)
C1	6307(5)	7484(5)	1325(5)	36.2(12)
C ₁₁	3012(5)	8194(5)	2734(5)	38.3(13)
C ₂₀	1290(6)	4062(5)	3072(5)	37.3(13)
C ₁₇	3444(5)	4952(5)	2122(5)	36.3(13)
C19	1843(5)	4812(5)	2149(5)	41.0(13)
C7	6569(6)	5288(6)	1442(5)	43.4(14)
C_2	5966(6)	8818(5)	1292(5)	46.6(14)
C6	7714(6)	7166(6)	1124(5)	41.4(14)
C ₁₆	3576(6)	8023(5)	4020(5)	43.9(14)
C ₂₅	-115(6)	3361(5)	2688(6)	47.6(15)
C ₃	6994(6)	9731(6)	1055(6)	55.1(16)
C ₁₈	4293(6)	3897(6)	2491(6)	53.1(16)
C ₂₁	2079(6)	4171(6)	4352(5)	49.6(15)
C ₁₂	2356(6)	9370(6)	2576(6)	53.2(16)

Table S10. Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for 5v. U _{eq} is defined as 1/3 of the trace of the orthogonalised
U ₁ J tensor.

UIJ ter	1801.			
Atom	x	y	Z	U(eq)
C4	8384(7)	9376(7)	868(6)	61.6(18)
C ₁₅	3441(6)	8994(6)	5101(6)	52.7(16)
N1	4956(6)	3045(6)	2776(7)	92(2)
C ₂₂	1444(7)	3605(6)	5237(6)	58.1(17)
C ₂₄	-725(7)	2795(6)	3576(6)	57.9(17)
C ₂₃	49(7)	2920(6)	4852(7)	62.4(18)
C ₁₄	2753(7)	10120(6)	4917(6)	62.9(18)
C5	8758(6)	8088(7)	881(6)	58.6(17)
C ₁₃	2226(7)	10316(6)	3656(7)	67.5(19)

Table	Fable S11. Anisotropic Displacement Parameters (Å ² ×10 ³) for 5v. The Anisotropic								
displa	displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$.								
Atom	U11	U22	U33	U23	U13	U12			
O ₂	44(2)	51(2)	40(2)	11.9(18)	3.3(18)	15.5(18)			
O ₁	35(2)	69(3)	63(3)	33(2)	12.5(19)	17(2)			
N ₂	36(3)	58(3)	51(3)	16(2)	19(2)	22(2)			
C ₁₀	24(3)	36(3)	42(3)	8(3)	5(2)	3(2)			
C9	37(3)	35(3)	30(3)	10(2)	10(2)	14(2)			
C ₈	29(3)	45(3)	32(3)	5(2)	7(2)	11(2)			
C1	31(3)	44(3)	35(3)	9(3)	8(2)	4(2)			
C ₁₁	34(3)	37(3)	45(3)	10(3)	11(2)	6(2)			
C ₂₀	38(3)	38(3)	38(3)	9(3)	9(2)	11(2)			
C ₁₇	38(3)	37(3)	39(3)	14(2)	11(2)	14(2)			
C ₁₉	30(3)	41(3)	48(3)	3(3)	4(3)	7(2)			
C ₇	44(3)	50(4)	41(3)	9(3)	18(3)	15(3)			
C ₂	40(3)	49(4)	55(4)	14(3)	15(3)	5(3)			
C ₆	37(3)	53(4)	38(3)	13(3)	9(2)	14(3)			
C ₁₆	44(3)	40(3)	49(4)	11(3)	13(3)	4(3)			
C ₂₅	45(3)	49(4)	49(4)	11(3)	11(3)	8(3)			
C ₃	52(4)	51(4)	69(4)	22(3)	19(3)	8(3)			
C ₁₈	51(4)	49(4)	70(4)	28(3)	23(3)	14(3)			
C ₂₁	50(4)	47(4)	50(4)	6(3)	10(3)	3(3)			
C ₁₂	57(4)	50(4)	53(4)	8(3)	11(3)	20(3)			
C ₄	51(4)	65(5)	75(5)	28(4)	18(3)	-3(3)			
C15	58(4)	52(4)	49(4)	10(3)	13(3)	3(3)			
N ₁	75(4)	83(4)	154(6)	77(4)	48(4)	41(4)			
C ₂₂	77(5)	64(4)	36(3)	12(3)	19(3)	6(4)			
C ₂₄	51(4)	58(4)	68(5)	14(4)	20(3)	0(3)			

Table S11. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 5v. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.										
Atom	Atom U11 U22 U33 U23 U13 U12									
C ₂₃	70(5)	62(4)	66(5)	19(4)	34(4)	9(4)				
C ₁₄	66(4)	60(4)	61(4)	-3(3)	22(4)	12(3)				
C ₅	40(4)	84(5)	61(4)	27(4)	23(3)	5(3)				
C ₁₃	75(5)	53(4)	70(5)	1(4)	7(4)	32(3)				

Table S11. Anisotropic Displacement Parameters (Å ² ×10 ³) for 5v. The Anisotropic
displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}h^{*}U_{12}+1]$

Table S12. Bond Lengths for 5v.							
Atom	Atom	Length/Å	Atom	Atom	Length/Å		
O_2	C ₁₀	1.207(5)	C ₂₀	C ₂₁	1.375(7)		
O_1	C19	1.227(6)	C ₁₇	C19	1.480(7)		
N_2	C ₇	1.328(6)	C ₁₇	C ₁₈	1.424(7)		
N_2	C_6	1.377(6)	C_2	C ₃	1.368(7)		
C_{10}	C9	1.524(6)	C_6	C ₅	1.386(7)		
C_{10}	C11	1.481(7)	C ₁₆	C15	1.379(7)		
C9	C_8	1.436(6)	C ₂₅	C ₂₄	1.369(7)		
C9	C ₁₇	1.365(7)	C ₃	C ₄	1.392(8)		
C_8	C_1	1.454(7)	C ₁₈	N_1	1.135(7)		
C_8	C ₇	1.387(6)	C ₂₁	C ₂₂	1.378(7)		
C_1	C_2	1.402(7)	C ₁₂	C ₁₃	1.363(7)		
C_1	C_6	1.402(6)	C_4	C_5	1.363(8)		
C11	C16	1.393(7)	C ₁₅	C14	1.359(8)		
C_{11}	C ₁₂	1.384(7)	C ₂₂	C ₂₃	1.366(8)		
C_{20}	C ₁₉	1.480(7)	C ₂₄	C ₂₃	1.365(8)		
C_{20}	C ₂₅	1.381(7)	C ₁₄	C ₁₃	1.371(8)		

Table	Table S13. Bond Angles for 5v.							
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°	
C_7	N_2	C_6	110.1(4)	O_1	C19	C ₂₀	119.8(5)	
O_2	C_{10}	C9	119.9(4)	O_1	C19	C17	119.3(5)	
O_2	C_{10}	C11	122.5(5)	C_{20}	C19	C ₁₇	120.9(5)	
C ₁₁	C_{10}	C9	117.4(4)	N_2	C_7	C_8	110.5(5)	
C_8	C9	C ₁₀	113.8(4)	C_3	C_2	C_1	119.4(5)	
C ₁₇	C9	C ₁₀	118.0(4)	N_2	C_6	C_1	107.6(5)	
C ₁₇	C9	C_8	128.2(4)	N_2	C_6	C ₅	128.7(5)	
C9	C_8	C_1	128.2(4)	C_5	C_6	C_1	123.7(5)	
C_7	C_8	C9	126.4(5)	C ₁₅	C ₁₆	C ₁₁	120.1(5)	
C_7	C_8	C_1	105.3(4)	C ₂₄	C ₂₅	C ₂₀	120.4(6)	
C_2	C_1	C_8	136.4(5)	C_2	C ₃	C ₄	121.6(6)	

Table	Table S13. Bond Angles for 5v.									
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°			
C_6	C_1	C_8	106.4(4)	N_1	C ₁₈	C17	179.2(8)			
C_6	C_1	C_2	117.2(5)	C_{20}	C ₂₁	C ₂₂	119.6(6)			
C ₁₆	C_{11}	C10	122.9(5)	C ₁₃	C ₁₂	C11	120.6(6)			
C ₁₂	C_{11}	C ₁₀	118.6(5)	C_5	C_4	C ₃	121.0(6)			
C ₁₂	C_{11}	C ₁₆	118.4(5)	C ₁₄	C ₁₅	C ₁₆	120.2(6)			
C ₂₅	C_{20}	C19	119.2(5)	C ₂₃	C ₂₂	C ₂₁	120.8(6)			
C ₂₁	C_{20}	C19	121.2(5)	C ₂₃	C ₂₄	C ₂₅	120.3(6)			
C ₂₁	C_{20}	C ₂₅	119.3(5)	C ₂₄	C ₂₃	C ₂₂	119.6(6)			
C9	C_{17}	C19	121.4(4)	C ₁₅	C14	C13	120.2(6)			
C ₉	C ₁₇	C ₁₈	121.4(5)	C_4	C_5	C_6	117.2(5)			
C ₁₈	C ₁₇	C19	117.2(5)	C ₁₂	C ₁₃	C14	120.4(6)			

Tał	Table S14. Torsion Angles for 5v.									
Α	B	С	D	Angle/°		Α	B	С	D	Angle/°
O_2	C_{10}	C9	C_8	75.6(6)		C_{20}	C_{25}	C_{24}	C_{23}	0.1(9)
O_2	C_{10}	C9	C ₁₇	-107.2(6)		C_{20}	C_{21}	C_{22}	C ₂₃	1.0(9)
O_2	C_{10}	C_{11}	C ₁₆	-179.9(5)		C_{17}	C9	C_8	C_1	-169.8(5)
O_2	C_{10}	C_{11}	C ₁₂	-2.9(8)		C17	C9	C_8	C_7	14.5(8)
N_2	C_6	C_5	C_4	-179.5(6)		C_{19}	C_{20}	C_{25}	C_{24}	-172.2(5)
C_{10}	C9	C_8	C_1	7.1(7)		C19	C_{20}	C_{21}	C_{22}	171.5(5)
C_{10}	C9	C_8	C_7	-168.6(5)		C_7	N_2	C_6	C_1	-0.5(6)
C_{10}	C9	C_{17}	C19	9.2(7)		C_7	N_2	C_6	C_5	-179.6(5)
C_{10}	C9	C_{17}	C_{18}	-172.1(5)		C_7	C_8	C_1	C_2	-179.7(6)
C_{10}	C_{11}	C_{16}	C15	178.7(5)		C_7	C_8	C_1	C_6	-0.6(5)
C_{10}	C_{11}	C_{12}	C ₁₃	-179.1(5)		C_2	C_1	C_6	N_2	179.9(5)
C9	C_{10}	C_{11}	C ₁₆	-5.9(7)		C_2	C_1	C_6	C_5	-0.9(8)
C9	C_{10}	C_{11}	C ₁₂	171.1(5)		C_2	C_3	C_4	C_5	1.7(10)
C_9	C_8	C_1	C_2	3.9(10)		C_6	N_2	C_7	C_8	0.1(6)
C ₉	C_8	C_1	C_6	-177.0(5)		C_6	C_1	C_2	C_3	0.7(8)
C9	C_8	C_7	N_2	176.8(5)		C_{16}	C_{11}	C ₁₂	C13	-2.0(9)
C9	C_{17}	C_{19}	O_1	26.7(8)		C_{16}	C15	C_{14}	C13	-1.8(9)
C9	C_{17}	C_{19}	C_{20}	-152.8(5)		C_{25}	C_{20}	C_{19}	O_1	32.9(7)
C_8	C9	C_{17}	C19	-174.0(5)		C_{25}	C_{20}	C19	C_{17}	-147.6(5)
C_8	C9	C ₁₇	C_{18}	4.7(8)		C_{25}	C_{20}	C_{21}	C_{22}	-1.4(8)
C_8	C_1	C_2	C_3	179.7(6)		C_{25}	C_{24}	C_{23}	C_{22}	-0.6(9)
C_8	C_1	C_6	N_2	0.6(6)		C_3	C_4	C_5	C_6	-1.8(9)
C_8	\mathbf{C}_1	C_6	C_5	179.8(5)		C_{18}	C_{17}	C_{19}	O_1	-152.0(5)
C_1	C_8	\mathbf{C}_7	N_2	0.3(6)		C_{18}	C_{17}	C_{19}	C_{20}	28.5(7)
C_1	$\overline{C_2}$	C_3	C_4	-1.1(9)		\overline{C}_{21}	\overline{C}_{20}	C_{19}	O_1	-140.1(5)
C_1	C_6	C_5	C_4	1.5(9)		C_{21}	\overline{C}_{20}	C_{19}	C_{17}	39.5(7)

Table S14. Torsion Angles for 5v.										
Α	B	С	D	Angle/°		Α	В	С	D	Angle/°
C11	C_{10}	C9	C_8	-98.6(5)		C_{21}	C_{20}	C_{25}	C_{24}	0.9(8)
C11	C_{10}	C9	C_{17}	78.7(6)		C_{21}	C_{22}	C_{23}	C_{24}	0.0(9)
C11	C_{16}	C_{15}	C_{14}	0.2(8)		C_{12}	C_{11}	C_{16}	C15	1.7(8)
C ₁₁	C_{12}	C ₁₃	C_{14}	0.5(10)		C ₁₅	C_{14}	C ₁₃	C_{12}	1.5(10)

Table S15. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 5v.

1 41 411									
Atom	x	у	z	U(eq)					
H ₂	8576.79	5389.85	1101.03	55					
H ₇	6395.02	4392.83	1532.46	52					
H _{2A}	5050.03	9079.48	1428.77	56					
H16	4045.18	7251.9	4149.85	53					
H25	-650.21	3272.01	1820.11	57					
H ₃	6758.89	10611.17	1018.25	66					
H ₂₁	3035.01	4622.99	4619.85	59					
H ₁₂	2001.06	9515.63	1725.56	64					
H ₄	9067.39	10028.11	732.55	74					
H15	3821.54	8878.19	5957.93	63					
H ₂₂	1971.76	3690.46	6106.3	70					
H ₂₄	-1671.1	2322.18	3307.65	69					
H ₂₃	-370.3	2542.22	5456.25	75					
H ₁₄	2639.85	10760.42	5648.76	75					
H ₅	9673.61	7836.86	732.02	70					
H ₁₃	1776.19	11099	3537.05	81					

4. Crystallographic description of compound 6a

Ellipsoid plot

Table S16. Crystal data and	Table S16. Crystal data and structure refinement for 6a.						
CCDC No.	2361275						
Empirical formula	$C_{19}H_{13}N_{3}O_{2}$						
Formula weight	315.32						
Temperature/K	298						
Crystal system	monoclinic						
Space group	P2 ₁ /c						
a/Å	10.4772(6)						
b/Å	22.4464(13)						
c/Å	9.0718(4)						
α/°	90						
β/°	96.262(2)						
γ/°	90						
Volume/Å ³	2120.7(2)						
Ζ	4						
$\rho_{calc}g/cm^3$	0.988						
µ/mm ⁻¹	0.066						
F(000)	656.0						
Crystal size/mm ³	$0.214 \times 0.136 \times 0.123$						
Radiation	MoKa ($\lambda = 0.71073$)						
2@ range for data collection/°	4.868 to 52.84						
Index ranges	$-13 \le h \le 13, -28 \le k \le 28, -11 \le 1 \le 11$						
Reflections collected	20924						
Independent reflections	4323 [$R_{int} = 0.0503, R_{sigma} = 0.0335$]						
Data/restraints/parameters	4323/0/222						
Goodness-of-fit on F ²	1.034						
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0735, wR_2 = 0.2339$						
Final R indexes [all data]	$R_1 = 0.0826, wR_2 = 0.2429$						
Largest diff. peak/hole / e Å ⁻³	0.26/-0.27						

Table S17. Fractional Atomic Coordinates (×104) and Equivalent IsotropicDisplacement Parameters (Å2×103) for 6a. Ueq is defined as 1/3 of the trace of theorthogonalised UIJ tensor.

orthog	Somanisea Olij temson.			
Atom	x	у	Z	U(eq)
O ₂	6337.9(17)	5241.9(9)	6965.8(16)	64.5(5)
O ₁	5208.8(15)	5670.7(10)	2215.1(18)	67.1(5)
N3	7821(2)	4790.9(10)	-375(2)	62.3(6)
N ₁	5933(2)	5749.2(12)	4768(2)	63.8(6)
C ₆	8780(2)	4568.0(10)	1903(2)	50.6(5)
C ₁₄	7007(2)	6290.1(11)	2897(2)	56.1(6)
C4	7162(2)	5169.4(10)	3324(2)	49.6(5)
C5	7701(2)	4956.9(10)	2036(2)	49.8(5)
C ₂	7254(2)	4959.3(11)	4745(2)	52.1(5)
C1	6482(2)	5324.4(11)	5638(2)	54.0(5)

orthog	orthogonalised Uij tensor.								
Atom	x	у	Z	U(eq)					
C ₁₂	7179(2)	5086.1(12)	587(2)	59.0(6)					
C ₇	9782(2)	4324.7(11)	2877(3)	59.5(6)					
C ₁₁	8817(2)	4472.2(10)	364(2)	54.2(5)					
N ₂	8334(3)	4050.0(13)	6041(3)	92.5(8)					
C ₁₃	6295(2)	5722.8(11)	3254(2)	54.5(6)					
C3	7862(3)	4447.7(12)	5413(2)	63.0(6)					
C ₁₉	8290(3)	6363.7(13)	3368(3)	72.0(7)					
C ₁₀	9755(3)	4130.0(12)	-196(3)	67.0(7)					
C_8	10705(3)	3987.5(13)	2319(3)	70.1(7)					
C9	10691(3)	3882.7(13)	795(3)	72.4(7)					
C ₁₈	8941(4)	6880.1(15)	3071(4)	88.3(9)					
C15	6379(3)	6750.4(16)	2134(5)	96.8(11)					
C ₁₇	8297(4)	7326.7(15)	2309(5)	102.3(12)					
C ₁₆	7033(5)	7271.1(17)	1825(6)	125.5(16)					

Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic
Displacement Parameters ($Å^2 \times 10^3$) for 6a. U _{eq} is defined as 1/3 of the trace of the
orthogonalised U ₁ tensor.

Table	Table S18. Anisotropic Displacement Parameters (Å ² ×10 ³) for 6a. The Anisotropic									
displa	displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$.									
Atom	U 11	U22	U33	U23	U13	U12				
O ₂	66.5(10)	93.7(13)	32.7(8)	6.9(7)	2.8(7)	-9.5(9)				
O ₁	49.9(9)	101.8(14)	47.4(9)	20.0(8)	-4.6(7)	-4.1(9)				
N3	72.8(13)	82.1(14)	30.9(9)	5.7(8)	0.7(8)	-6.5(11)				
N_1	56.6(12)	92.9(16)	42.7(10)	11.4(10)	9.3(9)	11.0(11)				
C6	58.7(12)	54.5(12)	37.6(10)	4.1(8)	1.2(9)	-10.4(10)				
C ₁₄	60.2(13)	64.8(14)	43.9(11)	5.5(9)	8.4(9)	7.0(10)				
C4	52.0(11)	61.2(12)	34.3(10)	8.0(8)	-1.4(8)	-9.7(9)				
C5	57.6(12)	58.4(12)	32.3(9)	7.0(8)	-0.2(8)	-5.1(10)				
C ₂	58.7(12)	64.0(13)	32.7(10)	6.4(9)	0.5(8)	-6.8(10)				
C1	51.2(12)	73.6(14)	36.2(10)	7.8(9)	-0.5(8)	-10.6(10)				
C ₁₂	62.7(14)	78.8(16)	34.6(10)	9.7(10)	0.9(9)	-2.8(11)				
C ₇	65.5(14)	66.5(14)	45.0(12)	5.4(10)	-1.4(10)	-1.1(11)				
C ₁₁	66.5(14)	57.3(12)	38.3(10)	2.6(9)	2.9(9)	-10.9(10)				
N ₂	119(2)	84.2(17)	73.8(16)	30.5(13)	7.9(15)	13.8(16)				
C ₁₃	49.4(11)	80.2(15)	33.0(10)	11.7(9)	0.6(8)	2.0(10)				
C3	78.1(16)	69.2(15)	40.5(11)	11.5(10)	0.8(11)	-2.3(13)				
C19	66.9(16)	74.3(17)	72.1(17)	13.2(13)	-4.8(12)	-5.9(13)				
C10	78.8(17)	71.0(15)	52.4(13)	-9.9(11)	12.9(12)	-9.3(13)				
C ₈	69.2(16)	73.0(16)	66.9(15)	4.3(12)	1.7(12)	4.1(13)				
C9	75.8(17)	66.8(16)	76.5(17)	-7.3(13)	17.1(14)	1.8(13)				

displa	displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.										
Atom	0m U11 U22 U33 U23 U13 U12										
C ₁₈	88(2)	77(2)	100(2)	0.8(17)	9.2(18)	-18.5(17)					
C ₁₅	71.1(19)	86(2)	130(3)	27(2)	-5.5(19)	14.0(16)					
C ₁₇	108(3)	59.6(18)	143(3)	2.7(19)	31(2)	-4.2(18)					
C ₁₆	115(3)	69(2)	191(5)	40(3)	7(3)	20(2)					

 Table S18. Anisotropic Displacement Parameters (Å²×10³) for 6a. The Anisotropic

Table	Table S19. Bond Lengths for 6a.									
Atom	Atom	Length/Å	Atom	Atom	Length/Å					
O ₂	C1	1.244(2)	C4	C ₁₃	1.536(3)					
O1	C ₁₃	1.402(3)	C5	C ₁₂	1.398(3)					
N ₃	C ₁₂	1.334(3)	C ₂	C1	1.457(3)					
N3	C ₁₁	1.378(3)	C ₂	C3	1.417(3)					
N_1	C1	1.328(3)	C7	C ₈	1.368(4)					
N1	C ₁₃	1.465(3)	C ₁₁	C10	1.386(4)					
C ₆	C5	1.444(3)	N ₂	C ₃	1.142(3)					
C ₆	C ₇	1.407(3)	C19	C ₁₈	1.386(4)					
C ₆	C ₁₁	1.417(3)	C ₁₀	C ₉	1.373(4)					
C ₁₄	C ₁₃	1.528(3)	C_8	C ₉	1.401(4)					
C14	C19	1.376(4)	C ₁₈	C17	1.355(5)					
C14	C15	1.371(4)	C15	C16	1.399(5)					
C ₄	C ₅	1.434(3)	C17	C16	1.355(6)					
C_4	C_2	1.366(3)								

Table	Table S20. Bond Angles for 6a.									
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°			
C ₁₂	N_3	C ₁₁	110.40(18)	N_3	C ₁₂	C5	109.8(2)			
\mathbf{C}_1	N_1	C ₁₃	112.9(2)	C_8	C_7	C6	119.4(2)			
C_7	C_6	C ₅	136.0(2)	N_3	C11	C6	107.4(2)			
C_7	C6	C ₁₁	117.4(2)	N_3	C ₁₁	C ₁₀	129.7(2)			
C ₁₁	C_6	C5	106.28(19)	C_{10}	C ₁₁	C ₆	122.8(2)			
C19	C ₁₄	C ₁₃	121.2(2)	O ₁	C ₁₃	N_1	111.07(18)			
C ₁₅	C ₁₄	C ₁₃	121.1(2)	O ₁	C ₁₃	C ₁₄	107.83(18)			
C15	C14	C19	117.7(3)	O ₁	C ₁₃	C4	113.2(2)			
C_5	C4	C ₁₃	121.26(18)	N_1	C ₁₃	C ₁₄	110.3(2)			
C_2	C4	C5	131.4(2)	N_1	C ₁₃	C4	101.90(17)			
C_2	C4	C ₁₃	107.38(19)	C ₁₄	C ₁₃	C4	112.52(18)			
C_4	C5	C ₆	130.61(19)	N_2	C ₃	C ₂	175.4(3)			
C ₁₂	C ₅	C ₆	106.0(2)	C ₁₄	C ₁₉	C ₁₈	121.7(3)			

Table S20. Bond Angles for 6a.								
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°	
C ₁₂	C5	C4	123.3(2)	C9	C10	C11	117.9(2)	
C4	C ₂	C1	110.1(2)	C_7	C_8	C9	121.8(3)	
C4	C ₂	C3	131.7(2)	C ₁₀	C9	C ₈	120.6(3)	
C3	C_2	C1	117.97(19)	C ₁₇	C ₁₈	C ₁₉	119.3(3)	
O ₂	C1	N ₁	126.3(2)	C ₁₄	C ₁₅	C ₁₆	120.8(3)	
O ₂	C1	C ₂	126.0(2)	C ₁₆	C ₁₇	C ₁₈	120.8(3)	
N_1	C1	C_2	107.69(19)	C ₁₇	C ₁₆	C ₁₅	119.7(3)	

Tal	Table S21. Torsion Angles for 6a.										
Α	B	С	D	Angle/°	Α	B	С	D	Angle/°		
N_3	C_{11}	C_{10}	C9	176.4(2)	C_7	C_6	C11	N ₃	-174.7(2)		
C_6	C_5	C ₁₂	N_3	2.4(3)	C_7	C_6	C ₁₁	C_{10}	3.1(3)		
C_6	C_7	C_8	C9	0.8(4)	C_7	C_8	C9	C_{10}	1.5(4)		
C_6	C_{11}	C_{10}	C ₉	-0.9(4)	C ₁₁	N_3	C ₁₂	C_5	-2.2(3)		
C_{14}	C_{19}	C_{18}	C ₁₇	0.6(5)	C_{11}	C_6	C_5	C_4	175.6(2)		
C_{14}	C_{15}	C ₁₆	C ₁₇	-1.3(7)	C ₁₁	C_6	C_5	C ₁₂	-1.7(2)		
C_4	C_5	C ₁₂	N_3	-175.1(2)	C11	C_6	C_7	C_8	-3.0(3)		
C_4	C_2	C_1	O ₂	178.2(2)	C ₁₁	C_1	C9	C_8	-1.5(4)		
C_4	C_2	C_1	N_1	-0.1(3)	C ₁₃	N_1	C_1	O_2	-179.6(2)		
C_5	C_6	C_7	C_8	-176.3(3)	C ₁₃	N_1	C_1	C_2	-1.4(3)		
C_5	C_6	C11	N ₃	0.5(2)	C ₁₃	C ₁ 4	C19	C_{18}	-179.0(3)		
C_5	C_6	C11	C ₁₀	178.3(2)	C ₁₃	C_1 4	C15	C_{16}	179.3(4)		
C_5	C_4	C_2	C_1	-177.9(2)	C ₁₃	C_4	C_5	C_6	160.7(2)		
C_5	C_4	C_2	C ₃	-3.2(4)	C ₁₃	C_4	C_5	C ₁₂	-22.4(3)		
C_5	C_4	C ₁₃	O_1	58.0(3)	C ₁₃	C_4	C_2	C_1	1.4(2)		
C_5	C_4	C ₁₃	N_1	177.28(19)	C ₁₃	C_4	C_2	C3	176.0(3)		
C_5	C_4	C ₁₃	C ₁₄	-64.6(3)	C3	C_2	C_1	O_2	2.7(4)		
C_2	C_4	C_5	C_6	-20.1(4)	C3	C_2	C_1	N_1	-175.5(2)		
C_2	C_4	C_5	C ₁₂	156.7(2)	C19	C_1 4	C ₁₃	O_1	-157.9(2)		
C_2	C_4	C ₁₃	O_1	-121.38(19)	C19	C ₁ 4	C ₁₃	N_1	80.6(3)		
C_2	C_4	C ₁₃	N_1	-2.0(2)	C ₁₉	C_1_4	C ₁₃	C_4	-32.4(3)		
C_2	C_4	C ₁₃	C ₁₄	116.1(2)	C ₁₉	C_1_4	C ₁₅	C ₁₆	1.1(6)		
C_1	N_1	C ₁₃	O_1	122.9(2)	C ₁₉	C_1 8	C ₁₇	C ₁₆	-0.7(6)		

Tal	Table S21. Torsion Angles for 6a.											
Α	B	С	D	Angle/°		Α	B	С	D	Angle/°		
C_1	N_1	C ₁₃	C ₁₄	-117.6(2)		C_{18}	C1 7	C_{16}	C_{15}	1.0(7)		
C_1	N_1	C ₁₃	C4	2.1(3)		C ₁₅	C_1 4	C ₁₃	O_1	24.0(3)		
C ₁₂	N ₃	C ₁₁	C_6	1.0(3)		C ₁₅	C_1 4	C ₁₃	N_1	-97.5(3)		
C ₁₂	N3	C11	C ₁₀	-176.6(3)		C15	C_1 4	C ₁₃	C_4	149.5(3)		
C7	C_6	C5	C4	-10.7(4)		C ₁₅	C_1 4	C19	C_{18}	-0.8(5)		
C_7	C_6	C_5	C ₁₂	172.1(3)								

Table S22. Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement	
Parameters (Å ² ×10 ³) for 6a.	

1 41 411										
Atom	x	у	z	U(eq)						
H ₁	4818.34	5365.24	2377.65	101						
H ₃	7639.26	4798.66	-1322.35	75						
H ₁₂	6488.59	5339.65	331.35	71						
H ₇	9817.11	4392.61	3892.24	71						
H19	8732.43	6059.18	3898.26	86						
H ₁₀	9750.64	4069.94	-1210.64	80						
H_8	11359.34	3823.4	2968.8	84						
H9	11320.16	3643.64	451.6	87						
H18	9811.23	6919.53	3390.64	106						
H15	5507.58	6715.97	1817.93	116						
H ₁₇	8728.15	7675.7	2116.67	123						
H ₁₆	6602.79	7577.51	1289.03	151						
H _{1A}	5480(40)	5947(16)	5100(40)	86(11)						

Table S23. Solvent masks information for 6a.									
Number	X	Y	Z	Volume	Electron count	Content			
1	-0.340	0.250	-0.157	369.2	90.5	2 C3H6O2,2			
2	0.340	0.750	-0.959	369.2	90.5	2 C3H6O2,2			

5. Detection of H₂ using gas chromatography (GC)

Gas Chromatography (GC) was performed using a GC-5800 gas chromatograph, Ar was used as carrier gas, thermal conductivity detector (TCD temperature was 50 °C) equipped with carbo-sieve column.

Reaction setup for the H₂ evolution of 4a

UV and HPLC spectroscopy-graded DMF was degassed by using a vacuum pump and sonicator for an hour to remove dissolved oxygen. Then, to a 10 mL cleaned and dried glass-sealed tube II, 76 mg (0.5 mmol) of 4a and a magnetic bead were added. Then 4 mL of degassed DMF was injected and purged with N₂ for an hour. In a similar fashion sealed tube I was prepared without compound 4a. Both tube I and tube II were heated with continuous stirring at 100 °C for 8 hours. After 8 hours of reaction, tube I and tube II were sent to the GC lab for analysis. 1 mL of gas from each of the tubes was injected in GC for the analysis.

The standard H₂ shows a retention time of 0.25 min (Fig. S1). The gas from the tube I show only one peak of N₂ gas with the retention time of 0.61 min. (Fig. S2). Tube II shows two peaks with a retention time of 0.19 min and 0.61 min for H₂ and N₂ respectively (Fig. S3).

Fig. S1 Chromatogram of reference substance H_2

Fig. S2. Chromatogram of gas in the tube I

Fig. S3 Chromatogram of gas in the tube II

6. Detection of CO using gas chromatography

The presence of CO during the heating of DMF could indeed indicate the formation of dimethylamine. This transformation typically occurs via decarbonylation, where the carbonyl group (-C=O) in DMF is eliminated as carbon monoxide (CO).

A 10 mL cleaned and dried glass-sealed tube was charged with 4 mL of UV and HPLC grade DMF, which was then degassed using a vacuum pump and sonicated for one hour. The sealed tube containing the DMF was subsequently heated at 100°C for 8 hours. Afterward, 1 mL of gas from the tube was collected and injected into a gas chromatograph

(GC) for CO analysis. The output is presented in Fig. S5. A GC analysis of atmospheric air was also conducted to ensure that CO was only detected from the sealed tube.

The standard CO shows the retention time of 0.9 min (Fig. S4). The CO from DMF was shown at 0.87 min (Fig. S5). The Figure S6 is the chromatogram of atmospheric air.

Fig. S4 Chromatogram of reference substance CO

Fig. S5 Chromatogram of gas from heated DMF

Fig. S6 Chromatogram of atmospheric air