Supporting Information

1.	Mat	erials and methods for synthesis	S2
2.	Col	orimetric properties	S3
2	2.1.	Solvatochromism	S3
2	2.2.	Halochromism	S8
2	2.3.	ab initio molecular quantum mechanics calculations	S8
3.	Anti	imicrobial activity	S14
3	3.1.	Culture media and reagents	S14
3	3.2.	Microorganisms	S14
3	3.3.	Compounds solutions	S14
3	3.4.	Susceptibility tests	S14
3	3.5.	Controls and MIC/MLC determination	S14
4.	NM	R spectra	S17
4	4.1.	1H and 13C NMR spectra	S17
4	4.2.	HMBC and HSQC NMR spectra	S75
5.	Ref	erences	S84

1. Materials and methods for synthesis

The new compounds were fully characterized by NMR (¹H, ¹³C), including the ¹H-¹³C correlation spectra (HMQC and HMBC) using DMSO- d_6 as solvent, FT-IR, HR-mass and elemental analysis. Melting points were also determined. The NMR spectra were performed at room temperature on a Bruker Avance 3400 (¹H: 400 MHz, ¹³C: 100 MHz). The data are reported by chemical shifts (ppm), multiplicity (s - singlet, brs - broad singlet, d - doublet, t - triplet, dd - doublet of doublets or m - multiplet), and the coupling constants (*J*) in hertz (Hz). IR spectra were recorded on a Spectrum Two FT-IR Spectrometer from PerkinElmer. The spectra were recorded at room temperature in the range of 4000-450 cm⁻¹, at the resolution of 8 cm⁻¹. The melting points were determined on a Stuart SMP3 melting 2 point apparatus. Elemental analyses were performed on a LECO CHNS-932 instrument (University of Minho). The halochromic properties of compounds were assessed by UV-Vis spectra recorded on the SHIMADZU UV-2501PC apparatus, using 1 cm wide quartz cells.

All commercial reagents were used without further purification. The reagents and solvents were purchased from Acros Organics, Sigma Aldrich, Chemlab, Fisher, Panreac, TCI and VWR chemicals BDH. Specifically, diaminomaleonitrile (DAMN), dimethylamine, 1,4-dioxane, triethyl orthoformate (TEOF), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), trifluoroacetic acid (TFA) and triethylamine (Et₃N) were obtained from Acros Organics; acetonitrile, diatomaceus earth, *p*-fluoroaniline, *p*-chloroaniline, *m*-chloroaniline, *p*-bromoaniline, *m*-bromoaniline, *p*-toluidine or *p*-anisidine or aniline, anilinium chloride were acquired from Sigma Aldrich; acetic acid from Chemlab; piperidine from Riedel-de Haen; phenylhydrazine from Fisher; Diethyl ether, *n*-hexane, silica gel 60 were purchased from Panreac, deuterated DMSO from TCI and absolute ethanol from VWR chemicals BDH. Silica gel flash chromatography was achieved using silica gel 60 (0.015-0.040 mm) for column chromatography from Millipore. The reactions were monitored by thin layer chromatography (TLC) using Macherey-NagelTM aluminum sheets UV254 that were observed directly and by UV light.

The synthetic precursors, 5-amino-4-(cyanoformimidoyl)-1*H*-imidazoles, were obtained inhouse by a well-known method in a three step reaction (**SI Scheme 1**) starting from the following commercial reagents: DAMN, TEOF and a primary amine (*p*-fluoroaniline, *p*-chloroaniline, *m*chloroaniline, *p*-bromoaniline, *m*-bromoaniline, *p*-toluidine or *p*-anisidine or aniline).[1] Then, the 5-aminoimidazole-4-carboxamidrazones **1** were prepared by the reaction of 5-amino-4-(cyanoformimidoyl)-1*H*-imidazoles with phenylhydrazine, accordingly to a previous method developed by the research group.[2] Compounds **1** were used as precursors to obtain the novel azoimidazoles **5**.

SI Scheme 1 – General procedure for the synthesis of amidrazone precursors 1.

2. Colorimetric properties

Azoimidazoles **5** here described exhibit a vibrant green colour, so it was important to study their colorimetric properties through UV-Vis spectroscopy.

2.1. Solvatochromism

UV-Vis spectra of all the compounds of this new class of azoimidazoles were traced in the region of visible light (350 - 700 nm) in different solvents (ethanol, acetonitrile and 1,4-dioxane) (SI-Figures 1 – 9). The goal of this study was to understand how both solvent and structure influenced the absorption spectra. Maxima absorption wavelengths (λ_{max}) and molar absorption coefficients (ϵ) were determined in the same region (SI-Table 1). The Beer-Lambert Law (Equation 1) was used to determine the molar absorption coefficient (ϵ ; M⁻¹ cm⁻¹), considering "c" the concentration of the solution (M), "l" the cell width (cm) and "A" the absorbance.

$$A = \epsilon lc$$
 Equation 1

SI-Figure 1 - UV-Vis spectra of compounds **5** with $R^2 = Pip$ in ethanol. The concentration for all compounds is 3.33×10^{-5} M. acetor

SI-Figure 2 - UV-Vis spectra of compounds **5** with $R^2 = Pip$ in acetonitrile. The concentration for all compounds is 3.33 x 10⁻⁵ M.

SI-Figure 3 - UV-Vis spectra of compounds **5** with $R^2 = Pip$ in 1,4-dioxane. The concentration for all compounds is 3.33 x 10⁻⁵ M.

SI-Figure 4 - UV-Vis spectra of compounds **5** with $R^2 = DMA$ in ethanol. The concentration for all compounds is 3.33×10^{-5} M.

SI-Figure 5 - UV-Vis spectra of compounds **5** with $R^2 = DMA$ in acetonitrile. The concentration for all compounds is 3.33×10^{-5} M. **SI-Figure 6** - UV-Vis spectra of compounds **5** with $R^2 = DMA$ in 1,4-dioxane. The concentration for compounds **5a**, **5d**, **5f** and **5g** is 3.33×10^{-5} M, and for **5b** and **5h** it is 1.67×10^{-5} M.

SI-Figure 7 - UV-Vis spectra of compounds **5** with $R^2 = Pyr$ in ethanol. The concentration for compounds **5a** and **5h** is 3.33 x 10⁻⁵ M, and for **5f** and **5g** it is 1.67 x 10⁻⁵ M.

SI-Figure 8 - UV-Vis spectra of compounds **5** with $R^2 = Pyr$ in acetonitrile. The concentration for compounds **5f**, **5g** and **5h** is 3.33 x 10⁻⁵ M, and for **5a** it is 2.22 x 10⁻⁵ M.

SI-Figure 9 - UV-Vis spectra of compounds **5** with $R^2 = Pyr$ in 1,4-dioxane. The concentration for compounds **5g** and **5h** is 3,33 x 10⁻⁵ M, for **5a** it is 2.22 x 10⁻⁵ M and for **5f** it is 1.67 x 10⁻⁵ M.

			Ethanol		Acetonitrile		1,4-dioxane		
Comp.	R ¹	λmax	$\epsilon (M^{-1} cm^{-1})$	λmax	ϵ (M ⁻¹ cm ⁻¹)	λmax	$\epsilon (M^{-1} cm^{-1})$		
5a	$C_6H_4(p)F$	421, 608	1.15 x 10 ⁴ , 2.36 x 10 ⁴	418, 616	9.90 x 10 ³ , 2.45 x 10 ⁴	424, 619	1.17 x 10 ⁴ , 2.62 x 10 ⁴		
5b	$C_6H_4(p)F$	416, 604	5.73 x 10 ³ , 1.15 x 10 ⁴	416, 613	1.13 x 10 ⁴ , 2.69 x 10 ⁴	422, 626	1.02 x 10 ⁴ , 2.23 x 10 ⁴		
5c	$C_6H_4(p)F$	421,608	1.42 x 10 ³ , 2.65 x 10 ⁴	418, 616	1.35 x 10 ⁴ , 3.31 x 10 ⁴	426, 630	1.25 x 10 ⁴ , 3.24 x 10 ⁴		
5d	$C_6H_4(p)Cl$	421, 609	1.28 x 10 ⁴ , 2.68 x 10 ⁴	419, 615	7.86 x 10 ³ , 1.90 x 10 ⁴	425, 620	1.21 x 10 ⁴ , 2.96 x 10 ⁴		
5e	$C_6H_4(p)Cl$	418, 607	1.04 x 10 ⁴ , 2.14 x 10 ⁴	415, 614	1.13 x 10 ⁴ , 2.68 x 10 ⁴	423, 626	2.03 x 10 ⁴ , 4.97 x 10 ⁴		
5f	$C_6H_4(m)Cl$	418, 609	1.08 x 10 ⁴ , 2.24 x 10 ⁴	410, 614	1.07 x 10 ⁴ , 2.75 x 10 ⁴	420, 617	1.14 x 10 ⁴ , 2.98 x 10 ⁴		
5g	$C_6H_4(p)Br$	414, 608	1.33 x 10 ⁴ , 2.94 x 10 ⁴	420, 617	1.14 x 10 ⁴ , 2.76 x 10 ⁴	424, 622	1.04 x 10 ⁴ , 2.55 x 10 ⁴		
5h	$C_6H_4(p)Br$	418, 607	1.08 x 10 ⁴ , 2.25 x 10 ⁴	414, 615	1.28 x 10 ⁴ , 3.03 x 10 ⁴	422, 627	1.12 x 10 ⁴ , 2.78 x 10 ⁴		
5i	$C_6H_4(m)Br$	414, 607	1.12 x 10 ⁴ , 2.47 x 10 ⁴	413, 615	1.36 x 10 ⁴ , 3.51 x 10 ⁴	417, 618	1.45 x 10 ⁴ , 3.80 x 10 ⁴		
5j	$C_6H_4(p)CH_3$	429, 611	1.25 x 10 ⁴ , 2.35 x 10 ⁴	427, 619	1.40 x 10 ⁴ , 3.15 x 10 ⁴	432, 624	1.11 x 10 ⁴ , 1.99 x 10 ⁴		
5k	$C_6H_4(p)CH_3$	428, 611	1.05 x 10 ⁴ , 1.96 x 10 ⁴	426, 617	1.14 x 10 ⁴ , 2.52 x 10 ⁴	429, 629	1.04 x 10 ⁴ , 2.16 x 10 ⁴		
51	$C_6H_4(p)CH_3$	433, 611	2.72 x 10 ⁴ , 5.09 x 10 ⁴	427, 611	1.24 x 10 ⁴ , 1.71 x 10 ⁴	431, 632	1.65 x 10 ⁴ , 3.95 x 10 ⁴		
5m	$C_6H_4(p)OCH_3$	439, 613	6.90 x 10 ³ , 1.17 x 10 ⁴	438, 622	9.81 x 10 ³ , 2.06 x 10 ⁴	437, 623	8.22 x 10 ³ , 1.30 x 10 ⁴		
5n	$C_6H_4(p)OCH_3$	438, 613	1.16 x 10 ⁴ , 1.96 x 10 ⁴	435, 621	1.30 x 10 ⁴ , 2.67 x 10 ⁴	439, 633	1.13 x 10 ⁴ , 2.21 x 10 ⁴		
50	$C_6H_4(p)OCH_3$	440, 614	3.02 x 10 ⁴ , 5.12 x 10 ⁴	439, 624	1.13 x 10 ⁴ , 2.36 x 10 ⁴	441,637	1.04 x 10 ⁴ , 2.23 x 10 ⁴		
5p	C_6H_5	421, 609	9.90 x 10 ³ , 2.02 x 10 ⁴	420, 616	9.36 x 10 ³ , 2.25 x 10 ⁴	427, 619	1.10 x 10 ⁴ , 1.70 x 10 ⁴		
5q	C_6H_5	418, 607	1.19 x 10 ⁴ , 2.42 x 10 ⁴	418, 614	1.21 x 10 ⁴ , 2.88 x 10 ⁴	423, 626	1.14 x 10 ⁴ , 2.81 x 10 ⁴		
5r	C_6H_5	424, 608	1.09 x 10 ⁴ , 2.24 x 10 ⁴	421, 618	1.22 x 10 ⁴ , 2.95 x 10 ⁴	426, 630	1.06 x 10 ⁴ , 2.69 x 10 ⁴		

SI-Table 1 - Maximum absorption wavelengths (λ_{max}) and molar absorption coefficients (ϵ) of azoimidazoles **5**.

2.2. Halochromism

Uv-Vis spectroscopy was also employed to assess the halochromic properties of compounds **5**. According to the method by *Ossowski et al.*[3], solutions of compound **5j** in a mixture of water/ethanol (60:40, v/v) were prepared. To obtain the different data points (**SI-Table 2**), successive amounts of a 4 M NaOH solution were added to provide pH values in the basic region, while sulfuric acid was added to study the acidic region of the pH spectrum. After each addition, a pH electrode was used to measure the pH of the solution, and the corresponding UV-Vis absorbance spectrum was acquired immediately. (**Figure 4**).

Moreover, pKa was determined by the graphical method of Salgado *et al.*[4]. The maximum absorbance wavelength was determined at minimum and maximum pH values and a graph of absorbance *vs.* pH was plotted at these wavelengths. The pKa corresponds to the point of intersection of the two series, which is determined by equalling the absorbance in the linear equations of the two points closest to the crossing at each curve. The pKa value obtained with this method was 4.89.

pН	Wavelength	Absorbance	Wavelength	Absorbance
2.91	422	0.113	552	0.120
3.64	419	0.113	552	0.120
5.61	422	0.101	585	0.139
6.40	433	0.101	600	0.182
8.33	432	0.104	600	0.181
9.40	424	0.105	600	0.183
10.04	430	0.108	597	0.190

SI-Table 2 - Absorption spectra data of 5j at different pH values.

2.3. ab initio molecular quantum mechanics calculations

 $\label{eq:SI-Figure 10} \begin{array}{c} \textbf{SI-Figure 10} - \textbf{Expected colours of compound 5k in considered tautomeric forms interacting with one water molecule (I-V) and selected protonated forms of tautomer II (II_A - II_E) \end{array}$

Tautomeric form	Structure	ΔG (kcal/mol)	Vertical exc	itations energ	gies for the fin Corre	rst eight excite esponding osc	ed states in gro illator strengt	ound state ge h (f _{osc})	ometry (nm)	
Ι		0	516 0.587	452 0.0145	391 0.768	341 0.00155	333 0.0106	331 0.0225	324 0.0224	317 0.0482
Π		14.6	701 0.187	483 0.0058	436 0.0839	354 0.00993	346 0.000544	338 0.127	317 0.347	309 0.00292
III		14.6	524 0.0507	466 0.851	401 0.256	330 0.08	323 0.02	317 0.0869	309 0.026	301 0.016
IV		11.3	553 0.483	441 0.527	379 0.0903	371 0.00409	354 0.000494	350 0.00461	341 0.037	321 0.0253
V		12.6	489 0.458	441 0.123	394 0.384	356 0.0142	344 0.00294	328 0.0445	322 0.00796	298 0.00926

SI-Table 3 - ab initio calculations of selected tautomeric forms of compound 5k.

(*) Free energy difference from tautomer I

Tautomeric form	Structure	ΔG (kcal/mol)	Vertical exc	itations energ	gies for the fi Corr	rst eight excite esponding osci	ed states in gro illator strengt	ound state geo h (f _{osc})	ometry (nm)	
Ι			534 0.494	451 0.0358	401 0.673	339 0.000428	333 0.0363	330 0.0111	324 0.0343	317 0.0677
Π		10.1	665 0.247	470 0.0163	439 0.133	351 0.0127	348 0.000131	330 0.295	311 0.157	306 0.00543
III		15.2	512 0.0679	473 0.825	401 0.251	331 0.0629	327 0.00552	321 0.082	309 0.0369	306 0.067
IV		15.6	548 0.512	438 0.59	368 0.0482	368 0.0199	356 0.000184	354 0.00467	340 0.0368	325 0.0217
V		14.1	507 0.473	419 0.357	389 0.17	356 0.0156	349 0.00166	344 0.0102	328 0.0416	314 0.0116

SI-Table 4 - ab initio calculations of selected tautomeric forms of compound 5k in ethanol and in the presence of one water molecule.

(*) Free energy difference from tautomer I

Structure	ΔG ^(*) (kcal/mol)	Vertical exc	Vertical excitations energies for the first eight excited states in ground state geometry (nm) Corresponding oscillator strength (fosc)							
	25.4	589 0.361	465 0.105	453 1.27	412 0.0125	381 0.00755	353 0.0223	342 0.00447	312 0.419	
H H H H H H H H H H H H H H H H H H H	6.78	576 0.0123	453 0.00523	440 0.00805	425 0.00345	364 0.00161	346 0.00455	332 0.00218	289 0.00308	
	8.84	515 0.771	480 0.0168	399 0.199	377 0.00835	355 0.00155	341 0.258	297 0.21	292 0.089	
	7.59 -6.98	559 0.287	462 0.0441	422 0.00152	389 0.816	373 0.0778	334 0.0899	305 0.0768	290 0.72	
	Structure	Structure $\Delta G^{(*)}$ (kcal/mol) H^{+} <td< td=""><td>StructureAG (*) (kcal/mol)Vertical exc (kcal/mol)$\stackrel{\stackrel{\stackrel{}{\rightarrow}}{}589\stackrel{\stackrel{\stackrel}{\rightarrow}}{}589\stackrel{\stackrel{\stackrel}{\rightarrow}}{}0.361\stackrel{\stackrel}{}$$\stackrel{\stackrel}{}$<</td>$\stackrel{\stackrel}{}$$\stackrel{\stackrel}{}$<</td<>	StructureAG (*) (kcal/mol)Vertical exc (kcal/mol) $\stackrel{\stackrel{\stackrel{}{\rightarrow}}{}$ 589 $\stackrel{\stackrel{\stackrel}{\rightarrow}}{}$ 589 $\stackrel{\stackrel{\stackrel}{\rightarrow}}{}$ 0.361 $\stackrel{\stackrel}{}$ <	Structure $\Lambda G^{(*)}$ (kcal/mol) Vertical excitations energy $\stackrel{n+}{\rightarrow} \stackrel{n+}{\rightarrow} $	Structure AG (*) (kcal/mol) Vertical excitations energies for the fire Corres $h = \int_{a}^{b} \int_{a}^{b}$	Structure AG (*) (kcal/mol) Vertical excitations energies for the first eight excitation excitations energies for the first excitation excitati	Structure AG (°) (kcal/mol) Vertical excitations energies for the first eight excited states in gr Corresponding oscillator strengt $n^+ + + + + + + + + + + + + + + + + + + $	Structure $\Lambda G^{(*)}$ (kcal/mol) Vertical excitations energies for the first eight excited states in ground state ge Corresponding oscillator strength (face) $h = \int_{a_1}^{b_1} \int_{a_1}^{b_1} \int_{a_2}^{b_1} \int_{a_1}^{b_2} \int_{a_2}^{b_1} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_1} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_2}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_1}^{b_2} \int_{a_2}^{b_2} \int_{a_1}^{b_2} \int_{a_1}^{b_$	Structure AG (*) (kcal/mol Vertical excitations energies for the first eight excited states in ground state geowerty (nm) Corresponding oscillator strength (face) $i + j + j + j + j + j + j + j + j + j + $	

SI-Table 5 - ab initio calculations of selected protonated forms of tautomers I and II of compound 5k in ethanol.

Protonated form	Structure	ΔG ^(*) (kcal/mol)	Vertical ex	citations energ	gies for the fir Corre	st eight excite sponding osc	ed states in gro illator strengt	ound state ge h (f _{osc})	ometry (nm)	
I_D II_B		158 144	760 0.348	703 0.00067	497 1.08	449 0.0349	394 0.00781	362 0.322	352 0.0561	323 0.563
I_D2 II_B2		98.4 83.8	656 0.499	633 0.00863	518 0.0118	453 1.03	377 0.0463	374 0.0103	337 0.014	321 1.06
I_E		158	647 0.325	558 0.00833	502 1.49	460 0.0224	368 0.126	343 0.0567	334 0.0673	326 0.0214
I_E2		96.6	542 0.161	494 0.0983	453 0.00135	445 0.013	391 0.926	343 0.199	289 0.173	274 0.0566

SI-Table 5 (cont.) - ab initio calculations of selected protonated forms of tautomers I and II of compound 5k in ethanol.

Protonated form	Structure	$\Delta G^{(*)}$ (kcal/mol)	Vertical exc	ertical excitations energies for the first eight excited states in ground state geometry (nm) Corresponding oscillator strength (fosc)							
II_C		21.9	1160 0.0364	727 0.302	556 0.0219	424 0.000425	391 0.00343	380 0.0199	362 0.581	347 0.00958	
II_C2	H = H = H	18.6	682 0.547	571 0.225	516 0.00103	487 0.0136	418 0.0499	389 0.8	363 0.0261	341 0.000215	
II_D		12.1	504 0.0993	474 0.0383	342 0.0149	337 0.0299	318 0.541	313 0.00266	300 0.149	283 0.123	
I_F II_E		97 82.5	542 0.161	494 0.0983	453 0.00135	445 0.013	391 0.926	343 0.199	289 0.173	274 0.0566	

SI-Table 5 (cont.) - ab initio calculations of selected protonated forms of tautomers I and II of compound 5k in ethanol.

3. Antimicrobial activity

3.1. Culture media and reagents

For fungus, the culture media/reagents used were: Sabouraud Dextrose Agar (SDA) (bio-Mérieux; Marcy L'Etoile, France); RPMI-1640 broth (Biochrom AG; Berlin, Germany) and 3-(N-morpholino) propanesulfonic acid (MOPS) (Sigma-Aldrich; St. Louis, MO, USA). For the tests, RPMI-1640 was buffered to pH 7.0 using MOPS. For bacteria Mueller-Hinton Agar (MHA) and broth (MHB) (Liofilchem;Téramo, Italy) were used.

3.2. Microorganisms

Two bacteria reference strains from American Type Culture Collection (ATCC) were used: *Escherichia coli* 25922 and *Staphylococcus aureus* 25923. For fungi, the reference strains from ATTC used in this work were: *Candida albicans* 10231, *C. krusei* 6258 and *A. fumigatus* 204305. A reference strain from Colección Española de Cultivos Tipo (CECT) was also used: *Cryptococcus neoformans* 1078. In the case of dermatophytes, a clinical strain was included: *Trichophyton rubrum* FF5.

3.3. Compounds solutions

All the compounds were previously dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich; St. Louis, MO, USA). Before each test, a series of 1:2 dilutions was prepared in the suitable culture medium (RPMI for fungi and MHB for bacteria), with concentrations ranging from 256 to 0.5 μ g mL⁻¹.

3.4. Susceptibility tests

The susceptibility tests were carried out in accordance with the Clinical and Laboratory Standards. Institute (CLSI) with regard to the broth microdilution method for yeasts (reference document M27-A3), filamentous fungi (reference document M38-A2) and bacteria (reference document M07-A10). In resume, the yeasts were subcultured on SDA 24 hours before the test. On the day of the test, a yeast suspension was prepared, the final concentration of which was adjusted to 10^3 colony forming units (CFU) mL⁻¹. In the case of moulds, the procedure was similar, but the concentration of spores was adjusted to $0.4-5 \times 10^4$ spores mL⁻¹ in the case of *A. fumigatus* or $1-3 \times 10^3$ spores mL⁻¹ in the case of dermatophytes. In all cases, these suspensions were prepared in RPMI-1640. In 96-well flat-bottom plates, $100 \ \mu$ L of each of the prepared suspensions were mixed with $100 \ \mu$ L of different dilutions of the compounds. The plates containing yeast and *A. fumigatus* were incubated at $36 \$ °C for 48h and those containing *T. rubrum* at 24 for 5 to 7 days. In the case of bacteria, a suspension with a concentration of 5 x 10^5 CFU mL⁻¹ was prepared in MH broth. In 96-well flat-bottom plates, $50 \ \mu$ L of the bacterial suspension was mixed with $50 \ \mu$ L of each compound dilution. The plates were then incubated at $36 \$ °C for 16 to 18h.

3.5. Controls and MIC/MLC determination

For all the experiments a positive control, consisting of microorganism growing in culture medium (representing 100% growth), a negative control, consisting in culture medium (corresponding to 0% growth), and a DMSO control consisting in microorganism cultured in culture medium supplemented with DMSO at the concentration of 1.0%; v/v (corresponding to the DMSO control) were included.

At the end of incubation, the growth of the different microorganisms was correlated with the turbidity of the medium. The Minimum Inhibitory Concentration (MIC) was determined by visual observation of the plates as the lowest concentration capable of completely inhibiting the growth of the microorganism when comparing with that of the positive control.

Having defined the MIC, $10 \ \mu L$ of the contents of all the wells in which no growth was observed were transferred to a culture plate containing SDA in the case of fungi or MHA in the case of bacteria. The plates were incubated under the temperature and incubation time conditions described previously for each of the microorganisms. The minimum lethal concentration corresponded to the lowest concentration at which no growth was observed.

The MIC and CML results are shown in SI-Table 6.

				MIC (MLC) μg mL ⁻¹			
	5a	5b	5c	5d	5e	5f	5g	5h
C. albicans ATCC 10231	213.3±42.7 (≥256)	192±37.0 (213.3±42.7)	256±0.0 (256±0.0)	192.0±52.3 (≥256)	256±0.0 (256±0.0)	>256 (>256)	>256 (>256)	>256 (>256)
C. krusei ATCC 6258	16.0±0.0 (21.3±5.3)	13.3±2.7 (13.3±2.7)	16±0.0 (16±0.0)	26.7±5.3 (37.3±14.1)	24±4.6 (24±4.6)	32.0±0.0 (32.0±0.0)	32.0±0.0 (53.3±10.7)	36±10.1 (52±12.0)
C. neoformans CECT 1078	$13.3\pm2.7~(13.3\pm2.7)$	8.0±0.0 (13.3±2.7)	10.7±2.7 (10.7±2.7)	32.0±0.0 (42.7±10.7)	10±3.1 (18.7±7.1)	24.0±8.0 (34.7±16.2)	53.3±10.7 (53.3±10.7)	19.1±6.7 (42.7±10.7)
A. fumigatus ATCC 204305	>256 (>256)	256±0.0 (≥256)	256±0.0 (≥256)	>256 (>256)	256±0.0 (256±0.0)	>256 (>256)	>256 (>256)	>256 (>256)
T. rubrum FF5	170.7±42.7 (>256)	128±0.0 (128±0.0)	128±0.0 (128±0.0)	149.3±56.4 (213.3±42.7)	128±0.0 (128±0.0)	≥256 (>256)	>256 (>256)	≥256 (>256)
E. coli ATCC 25922	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)
S. aureus ATCC 25923	213.3±42.7 (>256)	64±18.5 (>256)	>256 (>256)	106.7±21.3 (≥256)	≥256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)

SI-Table 6 - Antimicrobial activity (MIC and MLC) of compounds 5 against fungi (yeasts and filamentous fungi) and bacteria (Gram-positive and Gram-negative).

MIC, minimum inhibitory concentration; MLC, minimum lethal concentration; The results are presented as mean ± SEM.

SI-Table 6 (cont.) - Antimicrobial activity (MIC and MLC) of compounds 5 against fungi (yeasts and filamentous fungi) and bacteria (Gram-positive and Gram-negative).

		MIC (MLC) µg mL ⁻¹										
	5i	5j	5k	51	5m	5n	50	5р	5q	5r		
C. albicans ATCC 10231	>256 (>256)	89.6±15.7 (≥256)	256±0.0 (256±0.0)	>256 (>256)	128.0±0.0 (256.0±0.0)	>256 (>256)	>256 (>256)	128.0±0.0 (256.0±0.0)	>256 (>256)	>256 (>256)		
C. krusei ATCC 6258	32.0±0.0 (53.3±10.7)	4.0±0.0 (5.3±1.3)	16±0.0 (16±0.0)	40±8.0 (80±27.7)	16.0±0.0 (16.0±0.0)	104±15.3 (112±16.0)	128±0.0 (256±0.0)	16.0±0.0 (16.0±0.0)	53.3±10.7(85.3±21.3)	44±7.7 (64±22.6)		
C. neoformans CECT 1078	26.7±5.3 (26.7±5.3)	2.0±0.0 (3.3±0.7)	7.3±0.7 (13.3±2.7)	14.7±1.3 (21.3±5.3)	13.3±2.7 (13.3±2.7)	56±8.0 (96±18.5)	96±32.0 (256±0.0)	13.3±2.7 (18.7±7.1)	16±3.3 (20±4.0)	13.3±2.7 (18.7±7.1)		
A. fumigatus ATCC 204305	>256 (>256)	≥256 (≥256)	256±0.0 (≥256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)		
T. rubrum FF5	341.3±85.3 (>256)	44.0±7.7 (48.0±9.2)	128±0.0 (128±0.0)	256±0.0 (256±0.0)	128.0±0.0 (213.3±42.7)	>256 (>256)	≥256 (>256)	128.0±0.0 (256±0.0)	>256 (>256)	>256 (>256)		
E. coli ATCC 25922	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)	>256 (>256)		
S. aureus ATCC 25923	64.0±0.0 (170.7±42.7)	10.7±1.3 (≥256)	>256 (>256)	>256 (>256)	85.3±21.3 (170.7±42.7)	>256 (>256)	>256 (>256)	128.0±0.0 (170.7±42.7)	>256 (>256)	>256 (>256)		

MIC, minimum inhibitory concentration; MLC, minimum lethal concentration; The results are presented as mean ± SEM.

4. NMR spectra

4.1. 1H and 13C NMR spectra

SI-Figure 11 - ¹H NMR spectrum of (Z)-5-amino-1-(4-fluorophenyl)-*N*-phenyl-1*H*-imidazole-4-carbohydrazonamide (1a).

SI-Figure 12 - ¹³C NMR spectrum of (Z)-5-amino-1-(4-fluorophenyl)-N⁻phenyl-1H-imidazole-4-carbohydrazonamide (1a).

SI-Figure 13 - ¹H NMR spectrum of (Z)-5-amino-1-(4-chlorophenyl)-*N*-phenyl-1*H*-imidazole-4-carbohydrazonamide (1b).

SI-Figure 14 - ¹³C NMR spectrum of (Z)-5-amino-1-(4-chlorophenyl)-N⁻phenyl-1H-imidazole-4-carbohydrazonamide (1b).

SI-Figure 15 - ¹H NMR spectrum of (Z)-5-amino-1-(3-chlorophenyl)-*N*-phenyl-1*H*-imidazole-4-carbohydrazonamide (1c).

SI-Figure 16 - ¹³C NMR spectrum of (Z)-5-amino-1-(3-chlorophenyl)-N⁻phenyl-1H-imidazole-4-carbohydrazonamide (1c).

SI-Figure 17 - ¹H NMR spectrum of (Z)-5-amino-1-(4-bromophenyl)-N-phenyl-1H-imidazole-4-carbohydrazonamide (1d).

SI-Figure 18 - ¹³C NMR spectrum of (Z)-5-amino-1-(4-bromophenyl)-N⁻phenyl-1H-imidazole-4-carbohydrazonamide (1d).

.....

SI-Figure 19 - ¹H NMR spectrum of (Z)-5-amino-1-(3-bromophenyl)-N⁻phenyl-1H-imidazole-4-carbohydrazonamide (1e).

SI-Figure 20 - ¹³C NMR spectrum of (Z)-5-amino-1-(3-bromophenyl)-N⁻phenyl-1H-imidazole-4-carbohydrazonamide (1e).

SI-Figure 21 - ¹H NMR spectrum of (Z)-5-amino-1-(p-tolyl)-N-phenyl-1H-imidazole-4-carbohydrazonamide (1f).

SI-Figure 22 - ¹³C NMR spectrum of (Z)-5-amino-1-(p-tolyl)-N-phenyl-1H-imidazole-4-carbohydrazonamide (1f).

SI-Figure 23 - ¹H NMR spectrum of (Z)-5-amino-1-(4-methoxyphenyl)-N⁻phenyl-1H-imidazole-4-carbohydrazonamide (1g).

SI-Figure 24 - ¹³C NMR spectrum of (Z)-5-amino-1-(4-methoxyphenyl)-N-phenyl-1H-imidazole-4-carbohydrazonamide (1g).

SI-Figure 25 - ¹H NMR spectrum of (Z)-5-amino-N',1-diphenyl-1*H*-imidazole-4-carbohydrazonamide (1h).

SI-Figure 26 - ¹³C NMR spectrum of (Z)-5-amino-N',1-diphenyl-1*H*-imidazole-4-carbohydrazonamide (1h).

SI-Figure 27 - ¹H NMR spectrum of (*Z*)-5-amino-1-(4-chlorophenyl)-*N*⁻-phenyl-2-(piperidin-1-yl)-1*H*-imidazole-4-carbohydrazonamide ($4d_I$) and (*E*)-(1-(4-chlorophenyl)-5-imino-2-(piperidin-1-yl)-1*H*-imidazole-4-carbohydrazonamide ($4d_I$).

SI-Figure 28 - ¹³C NMR spectrum of (*Z*)-5-amino-1-(4-chlorophenyl)-*N*-phenyl-2-(piperidin-1-yl)-1*H*-imidazole-4-carbohydrazonamide (4d_I) and (*E*)-(1-(4-chlorophenyl)-5-imino-2-(piperidin-1-yl)-imidazolidin-4-ylidene)((*E*)-phenyldiazenyl)methanamine (4d_I).

SI-Figure 29 - ¹H NMR spectrum of (*Z*)-5-amino-1-(3-chlorophenyl)-*N*-phenyl-2-(piperidin-1-yl)-1*H*-imidazole-4-carbohydrazonamide (4f_I) and (*E*)-(1-(3-chlorophenyl)-5-imino-2-(piperidin-1-yl)imidazolidin-4-ylidene)((*E*)-phenyldiazenyl)methanamine (4f_I).

SI-Figure 30 - 13 C NMR spectrum of (Z)-5-amino-1-(3-chlorophenyl)-N-phenyl-2-(piperidin-1-yl)-1H-imidazole-4-carbohydrazonamide (4f_I) and (E)-(1-(3-chlorophenyl)-5-imino-2-(piperidin-1-yl)-imidazolidin-4-ylidene)((E)-phenyldiazenyl)methanamine (4f_I).

 $\textbf{SI-Figure 31} - {}^{1}\text{H NMR spectrum of } (Z) - 5 - amino - 1 - (p - tolyl) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - N' - phenyl - 2 - (piperidin - 1 - yl) - 1 H - imidazole - 4 - carbohydrazonamide (4j_l) - 1 - (piperidin - 1 - yl) - (p$

SI-Figure 32 - ¹³C NMR spectrum of (Z)-5-amino-1-(p-tolyl)-N-phenyl-2-(piperidin-1-yl)-1H-imidazole-4-carbohydrazonamide (4j_l)

SI-Figure 33 - ¹H NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-(4-fluorophenyl)-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5a).

SI-Figure 34 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-(4-fluorophenyl)-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5a).

SI-Figure 35 - 1 H NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*5-(4-fluorophenyl)- N^{2} , N^{2} -dimethyl-4*H*-imidazole-2,5-diamine (5b).

SI-Figure 36 - - 13 C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*5-(4-fluorophenyl)- N^2 , N^2 -dimethyl-4*H*-imidazole-2,5-diamine (5b).

SI-Figure 37 - ¹H NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N-(4-fluorophenyl)-2-(pyrrolidin-1-yl)-4H-imidazol-5-amine (5c).

 $\textbf{SI-Figure 38} - {}^{13}C \text{ NMR spectrum of } (4E) - 4 - (amino(phenyldiazenyl)methylene) - N - (4 - fluorophenyl) - 2 - (pyrrolidin - 1 - yl) - 4H - imidazol - 5 - amine (5c).$

SI-Figure 39 - ¹H NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N-(4-chlorophenyl)-2-(piperidin-1-yl)-4H-imidazol-5-amine (5d).

SI-Figure 40 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-(4-chlorophenyl)-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5d).

SI-Figure 41 - ¹H NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*5-(4-chlorophenyl)-*N*²,*N*²-dimethyl-4*H*-imidazole-2,5-diamine (5e).

SI-Figure 42 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*5-(4-chlorophenyl)-*N*²,*N*²-dimethyl-4*H*-imidazole-2,5-diamine (5e).

SI-Figure 43 - ¹H NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N-(3-chlorophenyl)-2-(piperidin-1-yl)-4H-imidazol-5-amine (5f).

SI-Figure 44 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-(3-chlorophenyl)-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5f).

SI-Figure 45 - ¹H NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N-(4-bromophenyl)-2-(piperidin-1-yl)-4H-imidazol-5-amine (5g).

SI-Figure 46 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-(4-bromophenyl)-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5g).

SI-Figure 47 - ¹H NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*5-(4-bromophenyl)-*N*²,*N*²-dimethyl-4*H*-imidazole-2,5-diamine (5h).

SI-Figure 48 - 13 C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*5-(4-bromophenyl)- N^2 , N^2 -dimethyl-4*H*-imidazole-2, 5-diamine (5h).

SI-Figure 49 - ¹H NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-(3-bromophenyl)-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5i).

SI-Figure 50 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-(3-bromophenyl)-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5i).

SI-Figure 51 - ¹H NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N-(p-tolyl)-2-(piperidin-1-yl)-4H-imidazol-5-amine (5j).

SI-Figure 52 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-(*p*-tolyl)-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5j).

SI-Figure 53 - ¹H NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N5-(p-tolyl)-N²,N²-dimethyl-4H-imidazole-2,5-diamine (5k).

SI-Figure 54 - 13 C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-N5-(*p*-tolyl)- N^2 , N^2 -dimethyl-4*H*-imidazole-2, 5-diamine (5k).

SI-Figure 55 - ¹H NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N-(p-tolyl)-2-(pyrrolidin-1-yl)-4H-imidazol-5-amine (5I).

SI-Figure 56 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-(*p*-tolyl)-2-(pyrrolidin-1-yl)-4*H*-imidazol-5-amine (5l).

SI-Figure 57 - ¹H NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-(4-methoxyphenyl)-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5m).

 $\textbf{SI-Figure 58} - {}^{13}C \text{ NMR spectrum of } (4E) - 4 - (amino(phenyldiazenyl)methylene) - N - (4 - methoxyphenyl) - 2 - (piperidin - 1 - yl) - 4H - imidazol - 5 - amine (5m).$

S1-Figure 59 - ¹H NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N5-(4-methoxyphenyl)-N²,N²-dimethyl-4H-imidazole-2,5-diamine (5n). *CH₂Cl₂ impurity

SI-Figure 60 - 13 C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*5-(4-methoxyphenyl)- N^2 , N^2 -dimethyl-4*H*-imidazole-2,5-diamine (5n).

SI-Figure 61 - ¹H NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N-(4-methoxyphenyl)-2-(pyrrolidin-1-yl)-4H-imidazol-5-amine (50).

SI-Figure 62 - 13C NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N-(4-methoxyphenyl)-2-(pyrrolidin-1-yl)-4H-imidazol-5-amine (50).

SI-Figure 63 - ¹H NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-phenyl-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5p).

SI-Figure 64 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-phenyl-2-(piperidin-1-yl)-4*H*-imidazol-5-amine (5p).

SI-Figure 65 - ¹H NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*²,*N*²-dimethyl-*N*5-phenyl-4*H*-imidazole-2,5-diamine (5q).

SI-Figure 66 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*²,*N*²-dimethyl-*N*5-phenyl-4*H*-imidazole-2,5-diamine (5q).

SI-Figure 67 - ¹H NMR spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-N-phenyl-2-(pyrrolidin-1-yl)-4H-imidazol-5-amine (5r).

SI-Figure 68 - ¹³C NMR spectrum of (4*E*)-4-(amino(phenyldiazenyl)methylene)-*N*-phenyl-2-(pyrrolidin-1-yl)-4*H*-imidazol-5-amine (5r).

4.2. HMBC and HSQC NMR spectra

4.2.1. (Z)-5-amino-N'-phenyl-1-(p-tolyl)-1H-imidazole-4-carbohydrazonamide (1f)

SI-Figure 69 – HMBC spectrum of (Z)-5-amino-1-(p-tolyl)-N-phenyl-1H-imidazole-4-carbohydrazonamide (1f).

 $\textbf{SI-Figure 70} - \textbf{HMBC spectrum (expansion) of (Z)-5-amino-1-(\textit{p-tolyl})-\textit{N-phenyl-1}\textit{H-imidazole-4-carbohydrazonamide (1f)}.$

SI-Figure 71 - HMBC spectrum (expansion 2) of (Z)-5-amino-1-(p-tolyl)-N-phenyl-1H-imidazole-4-carbohydrazonamide (1f).

4.2.2.(*E*)-(1-(4-chlorophenyl)-5-imino-2-(piperidin-1-yl)imidazolidin-4-ylidene)((*E*)-phenyldiazenyl)methanamine (4*d*_*II*)

 $SI-Figure 72 - HSQC spectrum (expansion) of (E)-(1-(4-chlorophenyl)-5-imino-2-(piperidin-1-yl)imidazolidin-4-ylidene)((E)-phenyldiazenyl)methanamine (4d_II)$

4.2.3. (Z)-5-amino-N'-phenyl-2-(piperidin-1-yl)-1-(p-tolyl)-1H-imidazole-4carbohydrazonamide (**4j_1**).

 $SI-Figure 73 - HMBC spectrum of (Z)-5-amino-N'-phenyl-2-(piperidin-1-yl)-1-(p-tolyl)-1H-imidazole-4-carbohydrazonamide (4j_I).$

MPS 250

 $SI-Figure 75 - HMBC spectrum (expansion 2) of (Z)-5-amino-N-phenyl-2-(piperidin-1-yl)-1-(p-tolyl)-1H-imidazole-4-carbohydrazonamide (4j_l).$

 $SI-Figure \ 76 \ - \ HMBC \ spectrum \ (expansion \ 3) \ of \ (Z)-5-amino-N-phenyl-2-(piperidin-1-yl)-1-(p-tolyl)-1H-imidazole-4-carbohydrazonamide \ (4j_I).$

 $SI-Figure \ 77 - HMBC \ spectrum \ (expansion \ 4) \ of \ (Z)-5-amino-N-phenyl-2-(piperidin-1-yl)-1-(p-tolyl)-1H-imidazole-4-carbohydrazonamide \ (4j_I).$

 $\label{eq:SI-Figure 78 - HMBC spectrum of (4E)-4-(amino(phenyldiazenyl)methylene)-2-(piperidin-1-yl)-N-(p-tolyl)-4H-imidazol-5-amine (5j).$

SI-Figure 79 - HMBC spectrum (expansion) of (4E)-4-(amino(phenyldiazenyl)methylene)-2-(piperidin-1-yl)-N-(p-tolyl)-4H-imidazol-5-amine (**5**).

 $\textbf{SI-Figure 80} - HMBC \ spectrum \ (expansion \ 2) \ of \ (4E)-4-(amino(phenyldiazenyl)methylene)-2-(piperidin-1-yl)-N-(p-tolyl)-4H-imidazol-5-amine \ (5j).$

SI-Figure 81 - HMBC spectrum (expansion 3) of (4*E*)-4-(amino(phenyldiazenyl)methylene)-2-(piperidin-1-yl)-*N*-(*p*-tolyl)-4*H*-imidazol-5-amine (**5**).

SI-Figure 82 - HMBC spectrum (expansion 4) of (4*E*)-4-(amino(phenyldiazenyl)methylene)-2-(piperidin-1-yl)-*N*-(*p*-tolyl)-4*H*-imidazol-5-amine (**5j**).

5. References

- Alves MJ, Booth BL, Proenç MFJRP. Synthesis of 5-amino-4-(cyanoformimidoyl)-1Himidazole: a reactive intermediate for the synthesis of 6-carbamoyl-1,2-dihydropurines and 6-carbamoylpurines. J Chem Soc, Perkin Trans 1 1990:1705–12. https://doi.org/10.1039/P19900001705.
- [2] Ribeiro AI, Gabriel C, Cerqueira F, Maia M, Pinto E, Sousa JC, et al. Synthesis and antimicrobial activity of novel 5-aminoimidazole-4-carboxamidrazones. Bioorg Med Chem Lett 2014;24:4699–702. https://doi.org/10.1016/j.bmcl.2014.08.025.
- [3] Ossowski T, Goulart MOF, De Abreu FC, Euzébio A, Sant'ana G, Rogério P, et al. Determination of the pK a Values of some Biologically Active and Inactive Hydroxyquinones. vol. 19. 2008.
- Salgado LEV, Vargas-Hernández C. Spectrophotometric Determination of the pKa, Isosbestic Point and Equation of Absorbance vs. pH for a Universal pH Indicator. Am J Anal Chem 2014;05:1290–301. https://doi.org/10.4236/ajac.2014.517135.