Supplementary Information (SI) for Inorganic Chemistry Frontiers.

This journal is © the Partner Organisations 2024

Supporting Information for

Ultrafine cucurbit[n]uril (n = 5-8)-Ni nanocomposites as highly efficient catalysts for electrocatalytic oxygen evolution reaction

Yu-Ting Liu,[†]^a Quan-Jiang Lv,[†]^c Hang Cong,^a Wen-Feng Zhao,^a Qing-Mei Ge,^a Nan Jiang,^{*a} and Qi-Long Zhu^{*b,d}

^a School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China. E-mail: njiang@gzu.edu.cn.

^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China. E-mail: qlzhu@fjirsm.ac.cn.

^c School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.

^d State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, Fujian, China.

*Corresponding authors: Nan Jiang and Qi-Long Zhu E-mail: njiang@gzu.edu.cn; qlzhu@fjirsm.ac.cn

Fig. S1 FT-IR spectra of (a) CB[5] and CB[5]-Ni(II), (b) CB[6] and CB[6]-Ni(II), (c) CB[7] and CB[7]-Ni(II), (d) CB[8] and CB[8]-Ni(II).

Table. S1 The loading mass and average nanoparticle sizes of CB[n]-Ni and CB-free Ni nanocomposites.

Catalysts	CB[5]-Ni	CB[6]-Ni	CB[7]-Ni	CB[8]-Ni	CB-free Ni
Loading mass (wt%)	7.95	5.96	5.72	3.20	-
Average size (nm)	2.03	4.15	1.84	2.90	55.79

Fig. S2 Raman spectra of CB-free Ni and CB[7]-Ni.

Fig. S3 XRD patterns of (a) CB[5] and CB[5]-Ni, (b) CB[6] and CB[6]-Ni, (c) CB[7] and CB[7]-Ni, (d) CB[8] and CB[8]-Ni.

Fig. S4 N₂ sorption at 77 K of (a) CB[5]-Ni, (b) CB[6]-Ni, (c) CB[7]-Ni, and (d) CB[8]-Ni.

Fig. S5 Pore size distributions of (a) CB[5]-Ni, (b) CB[6]-Ni, (c) CB[7]-Ni, and (d) CB[8]-Ni.

Fig. S6 HRTEM images of (a) CB[5]-Ni, (b) CB[6]-Ni, (c) CB[7]-Ni, and (d) CB[8]-Ni. (e) TEM image of CB[7]-Ni with different representative areas.

Fig. S7 XPS surveys of (a) CB[5]-Ni, (b) CB[6]-Ni, (c) CB[7]-Ni, (d) CB[8]-Ni, and (e) CB-free Ni.

Table. S2 The Ni⁰/Ni²⁺ atomic ratios of CB[5]-Ni, CB[6]-Ni, CB[7]-Ni, CB[8]-Ni, and CB-free Ni nanocomposites.

Catalysts	CB[5]-Ni	CB[6]-Ni	CB[7]-Ni	CB[8]-Ni	CB-free Ni
Ni ⁰ /Ni ²⁺	1.24	0.83	1.25	0.55	1.28
atomic ratios					

Fig. S8 (a) LSV curves of CB[6]-Ni (1:2), CB[6]-Ni (1:0.5), and CB[6]-Ni (1:1). (b) LSV curves of CB[7]-Ni (1:2), CB[7]-Ni (1:3), and CB[7]-Ni (1:4). (c) LSV curves of the catalysts with different Ni loading amounts, corresponding to CB[5]-Ni, CB[6]-Ni, CB[7]-Ni, and CB[8]-Ni.

Catalysts	Catalyst loading (mg/cm ²)	η ₁₀ (mV)	Tafel slope (mV/dec)	TOF (s ⁻¹)	Ref
CB[7]-Ni	0.12	320	75	0.24 s ⁻¹ at 320 mV	This work
NiCo@N-C	0.4	530	98		1
CoNi-NCNTs	0.71	360	193		2
Ni-Co-Fe Hydroxides	0.26	250	31	0.17 s ⁻¹ at 300 mV	3
NiCo LDH@HOS	0.45	293	72	0.008 s ⁻¹ at 300 mV	4
Co _{0.75} Ni _{0.25} Fe ₂ O ₄ /rGO	0.23	440	85		5
NiO dots/a-carbon	0.204	296	51		6
CoNi MOF-74	0.2	300	65.6	$0.0267 \text{ s}^{-1} \text{ at } 300 \text{ mV}$	7
N/S-RCQD@NiCo ₂ S ₄	0.26	390	85.6	0.113 s ⁻¹ at 420 mV	8
CO/NCO/NF		320	84	0.0287 s ⁻¹ at 350 mV	9

Table. S3 Comparison of OER activities for different Ni-based electrocatalysts in 0.1 MKOH.

Equivalent circuit	Sample	$R_{s}\left(\Omega ight)$	CPE (F/cm ²)	$R_{ct}(\Omega)$
	CB[5]-Ni	22.23	0.00367	13.79
CPE	CB[6]-Ni	21.15	0.005046	8.86
	CB[7]-Ni	19.17	0.005655	6.89
R _{ot}	CB[8]-Ni	26.22	0.0002893	14.52
	CB-free Ni	34.15	0.0001779	22.74

Table. S4 Detail information of EIS fitting data at 1.66 V vs. RHE.

Fig. S9 CV plots at different scan rates of (a) CB[5]-Ni, (b) CB[6]-Ni, (c) CB[7]-Ni, (d) CB[8]-Ni, and (e) CB-free Ni nanocomposites.

Fig. S10 Nyquist plots of (a) CB[5]-Ni, (b) CB[6]-Ni, (c) CB[7]-Ni, (d) CB[8]-Ni, and (e) CB-free Ni nanocomposites at different applied potentials.

Fig. S11 LSV curves of the pure CB[n] in 0.1 M KOH.

Fig. S12 Stable state of the adsorption of CB[7] on $Ni_{12}O_{10}H_5$.

Samples	C=O bond length (Å)	Adsorption energy (kcal/mol)
CB[5]	1.219	-
CB[5]-Ni	1.227	9.38
CB[6]	1.220	-
CB[6]-Ni	1.233	8.50
CB[7]	1.220	-
CB[7]-Ni	1.234	12.81
CB[8]	1.221	-
CB[8]-Ni	1.231	12.06

 Table. S5 The calculated C=O bond length data from DFT.

Catalyst	CB[5]-Ni	CB[6]-Ni	CB[7]-Ni	CB[8]-Ni	CB-free Ni
Adsorption energy (kcal/mol)	6.99	6.11	5.18	7.64	8.37

Table.	S6	Adsor	ption	energies	of *	HOO	intermediat	es on	CB[n	1]-Ni a	and	CB-free	Ni.
				1)									

Reference:

- Y. Fu, H.-Y. Yu, C. Jiang, T.-H. Zhang, R. Zhan, X. Li, J.-F. Li, J.-H. Tian and R. Yang, NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst, *Adv. Funct. Mater.*, 2018, 28, 1705094.
- Y. Hou, S. Cui, Z. Wen, X. Guo, X. Feng and J. Chen, Strongly coupled 3D hybrids of Ndoped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis, *Small*, 2015, 11, 5940-5948.
- W.-J. Liu, X. Hu, H.-C. Li and H.-Q. Yu, Pseudocapacitive Ni-Co-Fe hydroxides/N-doped carbon nanoplates-based electrocatalyst for efficient oxygen evolution, *Small*, 2018, 14, 1801878.
- K. Xiang, J. Guo, J. Xu, T. Qu, Y. Zhang, S. Chen, P. Hao, M. Li, M. Xie, X. Guo and W. Ding, Surface sulfurization of NiCo-layered double hydroxide nanosheets enable superior and durable oxygen evolution electrocatalysis, *ACS. Appl. Ener. Mater.*, 2018, 1, 4040-4049.
- I. Madakannu, I. Patil, B. A. Kakade and K. R. D. Kasibhatta, Boosting oxygen evolution reaction performance by nickel substituted cobalt-iron oxide nanoparticles embedded over reduced graphene oxide, *Mater. Chem. Phys.*, 2020, 252, 123238.
- B. Jin, Q. Wang, J. Sainio, V. A. Saveleva, H. Jiang, J. Shi, B. Ali, A.-J. Kallio, S. Huotari, D. Sundholm, N. Han and T. Kallio, Amorphous carbon modulated-quantum dots NiO for efficient oxygen evolution in anion exchange membrane water electrolyzer, *Appl. Cata. B.*, 2024, 358, 124437.
- F. Sun, H. Xu, W. Zhu, C. Lu, L. Ren, L. Chong and J. Zou, Bimetal metal-organic framework hollow nanoprisms for enhanced electrochemical oxygen evolution, *Int. J. Hydrogen Energy*, 2023, 48, 3942-3951.
- M. S. Amjadi, H. Ashassi-Sorkhabi, M. G. Hosseini, B. G. Pollet and E. Asghari, N/S-RCQD@NiCo₂S₄ nanocomposite with wrinkled nanosheet-like edges as an anode for water splitting, *J. Energy Storage*, 2023, 72, 108364.
- M. Yang, W. Lu, R. Jin, X.-C. Liu, S. Song and Y. Xing, Superior oxygen evolution reaction performance of Co₃O₄/NiCo₂O₄/Ni foam composite with hierarchical structure, *ACS. Sustain. Chem. Eng.*, 2019, 7, 12214-12221.